Show simple item record

dc.contributor.authorKithinji, Martin M.
dc.contributor.authorMwita, Peter N.
dc.contributor.authorKube, Ananda O.
dc.date.accessioned2022-01-12T07:00:55Z
dc.date.available2022-01-12T07:00:55Z
dc.date.issued2021-07-14
dc.identifier.issn2162-2442
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/8175
dc.description.abstractIn this paper, we present an estimator that improves the well-calibrated coherent risk measure: expected shortfall by restructuring its functional form to incorporate dynamic weights on extreme conditional quantiles used in its definition. Adjusted Extreme Quantile Autoregression will is used in estimating intermediary location measures. Consistency and coherence of the estimator are also proved. The resulting estimator was found to be less conservative compared to the expected shortfall.en_US
dc.language.isoen_USen_US
dc.publisherScientific Research Publishing Inc.en_US
dc.subjectExreme Quantile Autoregressionen_US
dc.subjectExpected Shortfallen_US
dc.subjectValue at Risken_US
dc.subjectCoherenceen_US
dc.subjectRisk Measurementen_US
dc.titleEstimation of Conditional Weighted Expected Shortfall under Adjusted Extreme Quantile Autoregressionen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record