• Login
    View Item 
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of Central Composite Design to Optimize Spawns Propagation

    Thumbnail
    View/Open
    Full text (1.644Mb)
    Date
    2020
    Author
    Kasina, Martin M
    Koske, Joseph
    Mutiso, John
    Metadata
    Show full item record
    Abstract
    Despite the increased recognition of the nutritional value of the Oyster mushroom, coupled with its ability to tolerate a wide range of climatic conditions, its production is still at infancy stage with low adoption rate in Kenya. The low uptake could be attributed to the cost of spawns or lack of skills for spawns preparations coupled with poor knowledge on oyster mushroom consumption benefits. The objective of this study was to optimize Pleurotus ostreatus (Oyster mushroom) spawns production. To achieve the objective, the spawns propagation was optimized by varying the temperature level, sterilization time and culture media concentration in order to establish the feasible levels which minimized the days of mycelium full development using central composite designs. Based on the study findings, 26.29˚C, 17.36 minutes and 60.95 g/L of temperature level, sterilization time and culture media concentration levels respectively minimized the days to full coverage of mycelium in a petri dish. Central composite designs for controlling temperature, sterilization time and culture media concentration were recommended for spawns maximum production. A further research on multiple response optimizations aimed at achieving resistance to bacterial diseases and yield by varying the strain in the culture were recommended.
    URI
    http://ir.mksu.ac.ke/handle/123456780/7310
    Collections
    • School of Pure and Applied Sciences [259]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV