• Login
    View Item 
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mathematical Physics

    Thumbnail
    View/Open
    Full Text (11.12Mb)
    Date
    2013
    Author
    Hassani, Sadri
    Metadata
    Show full item record
    Abstract
    Based on my own experience of teaching from the first edition, and more importantly based on the comments of the adopters and readers, I have made some significant changes to the new edition of the book: Part I is substantially rewritten, Part VIII has been changed to incorporate Clifford algebras, Part IX now includes the representation of Clifford algebras, and the new Part X discusses the important topic of fiber bundles. I felt that a short section on algebra did not do justice to such an important topic. Therefore, I expanded it into a comprehensive chapter dealing with the basic properties of algebras and their classification. This required a rewriting of the chapter on operator algebras, including the introduction of a section on the representation of algebras in general. The chapter on spectral decomposition underwent a complete overhaul, as a result of which the topic is now more cohesive and the proofs more rigorous and illuminating. This entailed separate treatments of the spectral decomposition theorem for real and complex vector spaces. The inner product of relativity is non-Euclidean. Therefore, in the discussion of tensors, I have explicitly expanded on the indefinite inner products and introduced a brief discussion of the subspaces of a non-Euclidean (the so-called semi-Riemannian or pseudo-Riemannian) vector space. This inner product, combined with the notion of algebra, leads naturally to Clifford algebras, the topic of the second chapter of Part VIII. Motivating the subject by introducing the Dirac equation, the chapter discusses the general properties of Clifford algebras in some detail and completely classifies the Clifford algebras Cν μ(R), the generalization of the algebra C13 (R), the Clifford algebra of the Minkowski space. The representation of Clifford algebras, including a treatment of spinors, is taken up in Part IX, after a discussion of the representation of Lie Groups and Lie algebras.
    URI
    http://ir.mksu.ac.ke/handle/123456780/6236
    Collections
    • School of Pure & Applied Sciences [197]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV