• Login
    View Item 
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Group Theory Applied to Chemistry

    Thumbnail
    View/Open
    Full Text (3.439Mb)
    Date
    2013
    Author
    Ceulemans, Arnout Jozef
    Metadata
    Show full item record
    Abstract
    Symmetry is a general principle, which plays an important role in various areas of knowledge and perception, ranging from arts and aesthetics to natural sciences and mathematics. According to Barut,1 the symmetry of a physical system may be looked at in a number of different ways. We can think of symmetry as representing • the impossibility of knowing or measuring some quantities, e.g., the impossibility of measuring absolute positions, absolute directions or absolute left or right; • the impossibility of distinguishing between two situations; • the independence of physical laws or equations from certain coordinate systems, i.e., the independence of absolute coordinates; • the invariance of physical laws or equations under certain transformations; • the existence of constants of motions and quantum numbers; • the equivalence of different descriptions of the same system. Chemists are more used to the operational definition of symmetry, which crystallographers have been using long before the advent of quantum chemistry. Their balland- stick models of molecules naturally exhibit the symmetry properties of macroscopic objects: they pass into congruent forms upon application of bodily rotations about proper and improper axes of symmetry. Needless to say, the practitioner of quantum chemistry and molecular modeling is not concerned with balls and sticks, but with subatomic particles, nuclei, and electrons. It is hard to see how bodily rotations, which leave all interparticle distances unaltered, could affect in any way the study of molecular phenomena that only depend on these internal distances. Hence, the purpose of the book will be to come to terms with the subtle metaphors that relate our macroscopic intuitive ideas about symmetry to the molecular world. In the end the reader should have acquired the skills to make use of the mathematical tools of group theory for whatever chemical problems he/she will be confronted with in the course of his or her own research.
    URI
    http://ir.mksu.ac.ke/handle/123456780/6234
    Collections
    • School of Pure & Applied Sciences [197]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV