Discrete Mathenlatics
Abstract
For most students, the first and often only course in college mathematics
is calculus. It is true that calculus is the single most important field of
mathematics, whose emergence in the seventeenth century signaled the
birth of modern mathematics and was the key to the successful applications
of mathematics in the sciences and engineering.
But calculus (or analysis) is also very technical. It takes a lot of work
even to introduce its fundamental notions like continuity and the derivative
(after all, it took two centuries just to develop the proper definition of these
notions). To get a feeling for the power of its methods, say by describing
one of its important applications in detail, takes years of study.
If you want to become a mathematician, computer scientist, or engineer,
this investment is necessary. But if your goal is to develop a feeling for what
mathematics is all about, where mathematical methods can be helpful, and
what kinds of questions do mathematicians work on, you may want to look
for the answer in some other fields of mathematics.
There are many success stories of applied mathematics outside calculus.
A recent hot topic is mathematical cryptography, which is based on number
theory (the study of the positive integers 1,2,3, ... ), and is widely applied,
for example, in computer security and electronic banking. Other important
areas in applied mathematics are linear programming, coding theory, and
the theory of computing. The mathematical content in these applications
is collectively called discrete mathematics. (The word "discrete" is used in
the sense of "separated from each other," the opposite of "continuous;" it is
also often used in the more restrictive sense of "finite." The more everyday
version of this word, meaning "circumspect," is spelled "discreet.")