• Login
    View Item 
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ordinary Differential Equations

    Thumbnail
    View/Open
    Full Text (8.333Mb)
    Date
    2012
    Author
    Adkins, William A.
    Davidson, Mark G.
    Metadata
    Show full item record
    Abstract
    This text is intended for the introductory three- or four-hour one-semester sophomore level differential equations course traditionally taken by students majoring in science or engineering. The prerequisite is the standard course in elementary calculus. Engineering students frequently take a course on and use the Laplace transform as an essential tool in their studies. In most differential equations texts, the Laplace transform is presented, usually toward the end of the text, as an alternative method for the solution of constant coefficient linear differential equations, with particular emphasis on discontinuous or impulsive forcing functions. Because of its placement at the end of the course, this important concept is not as fully assimilated as one might hope for continued applications in the engineering curriculum. Thus, a goal of the present text is to present the Laplace transform early in the text, and use it as a tool for motivating and developing much of the remaining differential equation concepts for which it is particularly well suited. There are several rewards for investing in an early development of the Laplace transform. The standard solution methods for constant coefficient linear differential equations are immediate and simplified. We are able to provide a proof of the existence and uniqueness theoremswhich are not usually given in introductory texts. The solution method for constant coefficient linear systems is streamlined, and we avoid having to introduce the notion of a defective or nondefectivematrix or develop generalized eigenvectors. Even the Cayley–Hamilton theorem, used in Sect. 9.6, is a simple consequence of the Laplace transform. In short, the Laplace transform is an effective tool with surprisingly diverse applications. Mathematicians are well aware of the importance of transform methods to simplify mathematical problems. For example, the Fourier transform is extremely important and has extensive use in more advanced mathematics courses. The wavelet transform has received much attention from both engineers and mathematicians recently. It has been applied to problems in signal analysis, storage and transmission of data, and data compression. We believe that students should be introduced to transformmethods early on in their studies and to that end, the Laplace transform is particularly well suited for a sophomore level course in differential equations. It has been our experience that by introducing the Laplace transform near the beginning of the text, students become proficient in its use and comfortable with this important concept, while at the same time learning the standard topics in differential equations.
    URI
    http://ir.mksu.ac.ke/handle/123456780/6007
    Collections
    • School of Pure & Applied Sciences [197]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV