• Login
    View Item 
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Agricultural Sciences
    • School of Agricultural Sciences
    • School of Agricultural Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Agricultural Sciences
    • School of Agricultural Sciences
    • School of Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Expression of a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene in peach (Prunus persica L.) fruit in response to treatment with carbon dioxide and 1-methylcyclopropene: possible role of ethylene

    Thumbnail
    View/Open
    Full Text (275.2Kb)
    Date
    2004
    Author
    Mathooko, Francis M.
    Tsunashima, Yuki
    Kubo, Yasutaka
    Inaba, Akitsugu
    Metadata
    Show full item record
    Abstract
    In this study we investigated the effect of exogenous ethylene treatment on ethylene production, 1-aminocyclopropane-1-carboxylate (ACC) oxidase activity and expression of an ACC oxidase (PP-ACO1) gene previously cloned (Mathooko et al., 2001) in peach (Prunuspersica L.) fruit. We also investigated the mode of action of CO2 and 1-methycyclopropene (1-MCP) in the regulation of ethylene biosynthesis during peach fruit ripening. Fruits were treated with various concentrations of ethylene (0.1, 1, 10, 100, 500, 1000 ppm) and also with CO2 and 1-MCP in the presence or absence of 500 ppm ethylene. Ethylene stimulated ethylene production at concentrations of 100 ppm and above while ACC oxidase activity was stimulated in a concentration-dependent manner. PP-ACO1 was slightly constitutively expressed and exogenous ethylene stimulated accumulation of its mRNA transcript in a concentration-dependent manner up to 100 ppm after which the level remained constant. CO2 and 1-MCP inhibited the ethylene-stimulated ethylene production, ACC oxidase activity and accumulation of PP-ACO1 transcripts by about 50%. These results indicate that ethylene plays a key role in the regulation of ethylene production and ACC oxidase activity and its gene expression in peach fruit. Further the results indicate that CO2and 1-MCP regulate ethylene biosynthesis in peach fruit during ripening, at least in part, by antagonizing ethylene action.
    URI
    http://ir.mksu.ac.ke/handle/123456780/4915
    Collections
    • School of Agricultural Sciences [118]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV