Show simple item record

dc.contributor.authorMwita, Peter N.
dc.contributor.authorOtieno, Romanus Odhiambo
dc.date.accessioned2019-08-16T08:26:21Z
dc.date.available2019-08-16T08:26:21Z
dc.date.issued2005
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/4737
dc.description.abstractStandard approach for modeling and understanding the variability of statistical data or, generally, dependant data, is often based on the mean variance regression models. However, the assumptions employed on standardized residuals may be too restrictive, in particular, when the data follows heavy-tailed distribution with probably infinite variance. This paper considers the problem of nonparametric estimation of conditional scale function of time series, based on quantile regression methodology of Koenker and Bassett (1978). We use a flexible model introduced in Mwita (2003), that makes no moment assumptions, and discuss an estimate which we get by inverting a kernel estimate of the conditional distribution function. We finally prove the consistency and asymptotic normality for the estimateen_US
dc.language.isoen_USen_US
dc.publisherAfrican Network of Scientific and Technical Institutions (ANSTI)en_US
dc.subjectConditional quantileen_US
dc.subjectKernel estimateen_US
dc.subjectQuantile autoregressionen_US
dc.subjectARCHen_US
dc.subjectQARCHen_US
dc.subjectTime seriesen_US
dc.subjectConsistencyen_US
dc.subjectAsymptotic normalityen_US
dc.subjectValue-at-risk.en_US
dc.titleConditional scale function estimate in the presence of unknown conditional quantile functionen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record