Show simple item record

dc.contributor.authorGichovi, Ireri T.
dc.contributor.authorMurage, Daniel K.
dc.contributor.authorAbungu, Nicodemus
dc.date.accessioned2019-07-30T07:25:36Z
dc.date.available2019-07-30T07:25:36Z
dc.date.issued2013
dc.identifier.issn2079-6226
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/4670
dc.description.abstractLoad forecasting refers to the prediction of future load conditions based on present or historical data. This is important especially for transmission planning and economic dispatch. In this paper, an Artificial Neural Network (ANN) is trained using historical data for a sub-station at Ruiru, Kenya and the corresponding loading conditions for the sub-station are used to test its accuracy in forecasting the electrical load when given other parameters.en_US
dc.language.isoen_USen_US
dc.publisherProceedings of 2013 Mechanical Engineering Conference on Sustainable Research and Innovationen_US
dc.subjectANNen_US
dc.subjectLoad Forecastingen_US
dc.titleShort Term Load Forecasting Using Artificial Neural Networksen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record