Show simple item record

dc.contributor.authorMutua, S.K.
dc.contributor.authorKimathi, M.E.
dc.contributor.authorJ.K Kwanza
dc.date.accessioned2019-01-25T09:00:30Z
dc.date.available2019-01-25T09:00:30Z
dc.date.issued2014
dc.identifier.issn2347-3142
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/2196
dc.description.abstractIn this paper we deal with the study of the traffic flow model that is governed by two hyperbolic equations. By analysing the equations we obtain two real and distinct eigen values which enables us to determine the wave structure of the possible solution to the Riemann problem set up. We then obtain the numerical solution to the Riemann problem that we set up using the Godunov scheme and the relaxation scheme. Finally, we compare the results obtained from these two schemes graphically and explain in details.en_US
dc.language.isoen_USen_US
dc.publisherInternational Journal of Scientific and Innovative Mathematical Researchen_US
dc.subjectEigen valuesen_US
dc.subjectRiemann problemen_US
dc.subjectRankine-Hugonoiten_US
dc.subjectIntegral curvesen_US
dc.subjectRelaxation schemeen_US
dc.subjectGodunov schemeen_US
dc.subjectWeak solutionen_US
dc.titleComparison of Godunov’s and Relaxation Schemes Approximation of Solutions to the Traffic Flow Equationsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record