Show simple item record

dc.contributor.authorKImathi, M.E
dc.contributor.authorMutua, S.K
dc.date.accessioned2019-01-22T12:22:15Z
dc.date.available2019-01-22T12:22:15Z
dc.date.issued2015
dc.identifier.issn1792-6939
dc.identifier.urihttp://ir.mksu.ac.ke/bitstream/handle/123456780/2193/Vol%205_2_4.pdf?sequence=1&isAllowed=y
dc.description.abstractIn this paper we deal with the study of Euler equations for isothermal gas that is governed by two hyperbolic equations. By analysing the equations we obtain two real and distinct eigenvalues which enables us to determine the wave structure of the possible solution to the Riemann problem set up. We then obtain the numerical solution to the Riemann problem that we set up using the Godunov scheme and the relaxation scheme. Finally, we compare the results obtained from these two schemes graphically and explain in detailsen_US
dc.language.isoen_USen_US
dc.publisherJournal of Applied Mathematics and Bioinformaticsen_US
dc.subjectIsothermal gasen_US
dc.subjectEigen valuesen_US
dc.subjectRiemann problemen_US
dc.subjectRankine-Hugonioten_US
dc.subjectRelaxation schemeen_US
dc.subjectGodunov schemeen_US
dc.titleComparison of Godunov’s and Relaxation Schemes Approximation of Solutions to the Euler Equationsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record