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Foreword

The present edition of the book differs substantially from the previous one. Over the
period of time since the publication of the previous edition the author has accumu-
lated quite a lot of ideas concerning possible improvements to some chapters of the
book. In addition, some new opportunities were found for an accessible exposition
of new topics that had not appeared in textbooks before but which are of certain
interest for applications and reflect current trends in the development of modern
probability theory. All this led to the need for one more revision of the book. As
a result, many methodological changes were made and a lot of new material was
added, which makes the book more logically coherent and complete. We will list
here only the main changes in the order of their appearance in the text.

e Section 4.4 “Expectations of Sums of a Random Number of Random Variables”
was significantly revised. New sufficient conditions for Wald’s identity were added.
An example is given showing that, when summands are non-identically distributed,
Wald’s identity can fail to hold even in the case when its right-hand side is well-
defined. Later on, Theorem 11.3.2 shows that, for identically distributed summands,
Wald’s identity is always valid whenever its right-hand side is well-defined.

e In Sect. 6.1 a criterion of uniform integrability of random variables is con-
structed, which simplifies the use of this notion. For example, the criterion directly
implies uniform integrability of weighted sums of uniformly integrable random vari-
ables.

e Section 7.2, which is devoted to inversion formulas, was substantially expanded
and now includes assertions useful for proving integro-local theorems in Sect. 8.7.

e In Chap. 8, integro-local limit theorems for sums of identically distributed ran-
dom variables were added (Sects. 8.7 and 8.8). These theorems, being substantially
more precise assertions than the integral limit theorems, do not require additional
conditions and play an important role in investigating large deviation probabilities
in Chap. 9.
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e A new chapter was written on probabilities of large deviations of sums of ran-
dom variables (Chap. 9). The chapter provides a systematic and rather complete
exposition of the large deviation theory both in the case where the Cramér condition
(rapid decay of distributions at infinity) is satisfied and where it is not. Both integral
and integro-local theorems are obtained. The large deviation principle is established.

e Assertions concerning the case of non-identically distributed random variables
were added in Chap. 10 on “Renewal Processes”. Among them are renewal theo-
rems as well as the law of large numbers and the central limit theorem for renewal
processes. A new section was written to present the theory of generalised renewal
processes.

e An extension of the Kolmogorov strong law of large numbers to the case
of non-identically distributed random variables having the first moment only was
added to Chap. 11. A new subsection on the “Strong law of large numbers for gen-
eralised renewal processes” was written.

e Chapter 12 on “Random walks and factorisation identities” was substantially
revised. A number of new sections were added: on finding factorisation components
in explicit form, on the asymptotic properties of the distribution of the suprema of
cumulated sums and generalised renewal processes, and on the distribution of the
first passage time.

e In Chap. 13, devoted to Markov chains, a section on “The law of large numbers
and central limit theorem for sums of random variables defined on a Markov chain”
was added.

e Three new appendices (6, 7 and 8) were written. They present important aux-
iliary material on the following topics: “The basic properties of regularly varying
functions and subexponential distributions”, “Proofs of theorems on convergence to
stable laws”, and “Upper and lower bounds for the distributions of sums and maxima
of sums of independent random variables”.

As has already been noted, these are just the most significant changes; there are
also many others. A lot of typos and other inaccuracies were fixed. The process of
creating new typos and misprints in the course of one’s work on a book is random
and can be well described mathematically by the Poisson process (for the defini-
tion of Poisson processes, see Chaps 10 and 19). An important characteristic of the
quality of a book is the intensity of this process. Unfortunately, I am afraid that in
the two previous editions (1999 and 2003) this intensity perhaps exceeded a certain
acceptable level. Not renouncing his own responsibility, the author still admits that
this may be due, to some extent, to the fact that the publication of these editions took
place at the time of a certain decline of the publishing industry in Russia related to
the general state of the economy at that time (in the 1972, 1976 and 1986 editions
there were much fewer such defects).
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Before starting to work on the new edition, I asked my colleagues from our lab-
oratory at the Sobolev Institute of Mathematics and from the Chair of Probability
Theory and Mathematical Statistics at Novosibirsk State University to prepare lists
of any typos and other inaccuracies they had spotted in the book, as well as sug-
gested improvements of exposition. I am very grateful to everyone who provided
me with such information. I would like to express special thanks to 1.S. Borisov,
V.I. Lotov, A.A. Mogul’sky and S.G. Foss, who also offered a number of method-
ological improvements.

I am also deeply grateful to T.V. Belyaeva for her invaluable assistance in type-
setting the book with its numerous changes. Without that help, the work on the new
edition would have been much more difficult.

A.A. Borovkov



Foreword to the Third and Fourth Editions

This book has been written on the basis of the Russian version (1986) published
by “Nauka” Publishers in Moscow. A number of sections have been substantially
revised and several new chapters have been introduced. The author has striven to
provide a complete and logical exposition and simpler and more illustrative proofs.
The 1986 text was preceded by two earlier editions (1972 and 1976). The first one
appeared as an extended version of lecture notes of the course the author taught
at the Department of Mechanics and Mathematics of Novosibirsk State University.
Each new edition responded to comments by the readers and was completed with
new sections which made the exposition more unified and complete.

The readers are assumed to be familiar with a traditional calculus course. They
would also benefit from knowing elements of measure theory and, in particular,
the notion of integral with respect to a measure on an arbitrary space and its basic
properties. However, provided they are prepared to use a less general version of
some of the assertions, this lack of additional knowledge will not hinder the reader
from successfully mastering the material. It is also possible for the reader to avoid
such complications completely by reading the respective Appendices (located at the
end of the book) which contain all the necessary results.

The first ten chapters of the book are devoted to the basics of probability theory
(including the main limit theorems for cumulative sums of random variables), and it
is best to read them in succession. The remaining chapters deal with more specific
parts of the theory of probability and could be divided into two blocks: random
processes in discrete time (or random sequences, Chaps. 12 and 14—-16) and random
processes in continuous time (Chaps. 17-21).

There are also chapters which remain outside the mainstream of the text as indi-
cated above. These include Chap. 11 “Factorisation Identities”. The chapter not only
contains a series of very useful probabilistic results, but also displays interesting re-
lationships between problems on random walks in the presence of boundaries and
boundary problems of complex analysis. Chapter 13 “Information and Entropy” and
Chap. 19 “Functional Limit Theorems” also deviate from the mainstream. The for-
mer deals with problems closely related to probability theory but very rarely treated
in texts on the discipline. The latter presents limit theorems for the convergence

ix
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of processes generated by cumulative sums of random variables to the Wiener and
Poisson processes; as a consequence, the law of the iterated logarithm is established
in that chapter.

The book has incorporated a number of methodological improvements. Some
parts of it are devoted to subjects to be covered in a textbook for the first time (for
example, Chap. 16 on stochastic recursive sequences playing an important role in
applications).

The book can serve as a basis for third year courses for students with a rea-
sonable mathematical background, and also for postgraduates. A one-semester (or
two-trimester) course on probability theory might consist (there could be many vari-
ants) of the following parts: Chaps. 1-2, Sects. 3.1-3.4, 4.1-4.6 (partially), 5.2 and
5.4 (partially), 6.1-6.3 (partially), 7.1, 7.2, 7.4-7.6, 8.1-8.2 and 8.4 (partially), 10.1,
10.3, and the main results of Chap. 12.

For a more detailed exposition of some aspects of Probability Theory and the
Theory of Random Processes, see for example [2, 10, 12-14, 26, 31].

While working on the different versions of the book, I received advice and
help from many of my colleagues and friends. I am grateful to Yu.V. Prokhorov,
V.V. Petrov and B.A. Rogozin for their numerous useful comments which helped
to improve the first variant of the book. I am deeply indebted to A.N. Kolmogorov
whose remarks and valuable recommendations, especially of methodological char-
acter, contributed to improvements in the second version of the book. In regard to
the second and third versions, I am again thankful to V.V Petrov who gave me his
comments, and to P. Franken, with whom I had a lot of useful discussions while the
book was translated into German.

In conclusion [ want to express my sincere gratitude to V. V. Yurinskii, A.I. Sakha-
nenko, K.A. Borovkov, and other colleagues of mine who also gave me their com-
ments on the manuscript. I would also like to express my gratitude to all those who
contributed, in one way or another, to the preparation and improvement of the book.

A.A. Borovkov



For the Reader’s Attention

The numeration of formulas, lemmas, theorems and corollaries consists of three
numbers, of which the first two are the numbers of the current chapter and section.
For instance, Theorem 4.3.1 means Theorem 1 from Sect. 3 of Chap. 4. Section 6.2
means Sect. 2 of Chap. 6.

The sections marked with an asterisk may be omitted in the first reading.

The symbol [ at the end of a paragraph denotes the end of a proof or an important
argument, when it should be pointed out that the argument has ended.

The symbol :=, systematically used in the book, means that the left-hand side is
defined to be given by the right-hand side. The relation =: has the opposite meaning:
the right-hand side is defined by the left-hand side.

The reader may find it useful to refer to the Index of Basic Notation and Subject
index, which can be found at the end of this book.
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Introduction

1. It is customary to set the origins of Probability Theory at the 17th century and
relate them to combinatorial problems of games of chance. The latter can hardly be
considered a serious occupation. However, it is games of chance that led to prob-
lems which could not be stated and solved within the framework of the then existing
mathematical models, and thereby stimulated the introduction of new concepts, ap-
proaches and ideas. These new elements can already be encountered in writings by
P. Fermat, D. Pascal, C. Huygens and, in a more developed form and somewhat
later, in the works of J. Bernoulli, P.-S. Laplace, C.F. Gauss and others. The above-
mentioned names undoubtedly decorate the genealogy of Probability Theory which,
as we saw, is also related to some extent to the vices of society. Incidentally, as it
soon became clear, it is precisely this last circumstance that can make Probability
Theory more attractive to the reader.

The first text on Probability Theory was Huygens’ treatise De Ratiociniis in Ludo
Alea (“On Ratiocination in Dice Games”, 1657). A bit later in 1663 the book Liber
de Ludo Aleae (“Book on Games of Chance”) by G. Cardano was published (in
fact it was written earlier, in the mid 16th century). The subject of these treatises
was the same as in the writings of Fermat and Pascal: dice and card games (prob-
lems within the framework of Sect. 1.2 of the present book). As if Huygens foresaw
future events, he wrote that if the reader studied the subject closely, he would no-
tice that one was not dealing just with a game here, but rather that the foundations
of a very interesting and deep theory were being laid. Huygens’ treatise, which is
also known as the first text introducing the concept of mathematical expectation,
was later included by J. Bernoulli in his famous book Ars Conjectandi (“The Art
of Conjecturing”’; published posthumously in 1713). To this book is related the no-
tion of the so-called Bernoulli scheme (see Sect. 1.3), for which Bernoulli gave a
cumbersome (cf. our Sect. 5.1) but mathematically faultless proof of the first limit
theorem of Probability Theory, the Law of Large Numbers.

By the end of the 19th and the beginning of the 20th centuries, the natural sci-
ences led to the formulation of more serious problems which resulted in the develop-
ment of a large branch of mathematics that is nowadays called Probability Theory.
This subject is still going through a stage of intensive development. To a large extent,
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Xiv Introduction

Probability Theory owes its elegance, modern form and a multitude of achievements
to the remarkable Russian mathematicians P.L. Chebyshev, A.A. Markov, A.N. Kol-
mogorov and others.

The fact that increasing our knowledge about nature leads to further demand for
Probability Theory appears, at first glance, paradoxical. Indeed, as the reader might
already know, the main object of the theory is randomness, or uncertainty, which is
due, as a rule, to a lack of knowledge. This is certainly so in the classical example
of coin tossing, where one cannot take into account all the factors influencing the
eventual position of the tossed coin when it lands.

However, this is only an apparent paradox. In fact, there are almost no exact de-
terministic quantitative laws in nature. Thus, for example, the classical law relating
the pressure and temperature in a volume of gas is actually a result of a probabilistic
nature that relates the number of collisions of particles with the vessel walls to their
velocities. The fact is, at typical temperatures and pressures, the number of particles
is so large and their individual contributions are so small that, using conventional
instruments, one simply cannot register the random deviations from the relationship
which actually take place. This is not the case when one studies more sparse flows
of particles—say, cosmic rays—although there is no qualitative difference between
these two examples.

We could move in a somewhat different direction and name here the uncertainty
principle stating that one cannot simultaneously obtain exact measurements of any
two conjugate observables (for example, the position and velocity of an object).
Here randomness is not entailed by a lack of knowledge, but rather appears as a fun-
damental phenomenon reflecting the nature of things. For instance, the lifetime of a
radioactive nucleus is essentially random, and this randomness cannot be eliminated
by increasing our knowledge.

Thus, uncertainty was there at the very beginning of the cognition process, and
it will always accompany us in our quest for knowledge. These are rather general
comments, of course, but it appears that the answer to the question of when one
should use the methods of Probability Theory and when one should not will always
be determined by the relationship between the degree of precision we want to attain
when studying a given phenomenon and what we know about the nature of the latter.

2. In almost all areas of human activity there are situations where some exper-
iments or observations can be repeated a large number of times under the same
conditions. Probability Theory deals with those experiments of which the result (ex-
pressed in one way or another) may vary from trial to trial. The events that refer to
the experiment’s result and which may or may not occur are usually called random
events.

For example, suppose we are tossing a coin. The experiment has only two out-
comes: either heads or tails show up, and before the experiment has been carried
out, it is impossible to say which one will occur. As we have already noted, the rea-
son for this is that we cannot take into account all the factors influencing the final
position of the coin. A similar situation will prevail if you buy a ticket for each lot-
tery draw and try to predict whether it will win or not, or, observing the operation of
a complex machine, you try to determine in advance if it will have failed before or
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Fig. 1 The plot of the My
relative frequencies ny,/n n
corresponding to the outcome
sequence htthtthhhthht in

the coin tossing experiment

1/2 . "

NS

of 12 3 4 5 6 7 8 910111213 n

after a given time. In such situations, it is very hard to find any laws when consid-
ering the results of individual experiments. Therefore there is little justification for
constructing any theory here.

However, if one turns to a long sequence of repetitions of such an experiment,
an interesting phenomenon becomes apparent. While individual results of the ex-
periments display a highly “irregular” behaviour, the average results demonstrate
stability. Consider, say, a long series of repetitions of our coin tossing experiment
and denote by nj the number of heads in the first n trials. Plot the ratio nj,/n ver-
sus the number n of conducted experiments (see Fig. 1; the plot corresponds to the
outcome sequence htthtthhhthh, where h stands for heads and ¢ for tails, respec-
tively).

We will then see that, as n increases, the polygon connecting the consecutive
points (n,np/n) very quickly approaches the straight line n,/n = 1/2. To verify
this observation, G.L. Leclerc, comte de Buffon,! tossed a coin 4040 times. The
number of heads was 2048, so that the relative frequency n/n of heads was 0.5069.
K. Pearson tossed a coin 24,000 times and got 12,012 heads, so that n, /n = 0.5005.

It turns out that this phenomenon is universal: the relative frequency of a certain
outcome in a series of repetitions of an experiment under the same conditions tends
towards a certain number p € [0, 1] as the number of repetitions grows. It is an
objective law of nature which forms the foundation of Probability Theory.

It would be natural to define the probability of an experiment outcome to be just
the number p towards which the relative frequency of the outcome tends. How-
ever, such a definition of probability (usually related to the name of R. von Mises)
has proven to be inconvenient. First of all, in reality, each time we will be dealing
not with an infinite sequence of frequencies, but rather with finitely many elements
thereof. Obtaining the entire sequence is unfeasible. Hence the frequency (let it
again be nj,/n) of the occurrence of a certain outcome will, as a rule, be different
for each new series of repetitions of the same experiment.

This fact led to intense discussions and a lot of disagreement regarding how one
should define the concept of probability. Fortunately, there was a class of phenomena
that possessed certain “symmetry” (in gambling, coin tossing etc.) for which one
could compute in advance, prior to the experiment, the expected numerical values

IThe data is borrowed from [15].
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of the probabilities. Take, for instance, a cube made of a sufficiently homogeneous
material. There are no reasons for the cube to fall on any of its faces more often
than on some other face. It is therefore natural to expect that, when rolling a die a
large number of times, the frequency of each of its faces will be close to 1/6. Based
on these considerations, Laplace believed that the concept of equiprobability is the
fundamental one for Probability Theory. The probability of an event would then be
defined as the ratio of the number of “favourable” outcomes to the total number of
possible outcomes. Thus, the probability of getting an odd number of points (e.g. 1,
3 or 5) when rolling a die once was declared to be 3/6 (i.e. the number of faces with
an odd number of points was divided by the total number of all faces). If the die were
rolled ten times, then one would have 6!0 in the denominator, as this number gives
the total number of equally likely outcomes and calculating probabilities reduces to
counting the number of “favourable outcomes” (the ones resulting in the occurrence
of a given event).

The development of the mathematical theory of probabilities began from the in-
stance when one started defining probability as the ratio of the number of favourable
outcomes to the total number of equally likely outcomes, and this approach is nowa-
days called “classical” (for more details, see Chap. 1).

Later on, at the beginning of the 20th century, this approach was severely crit-
icised for being too restrictive. The initiator of the critique was R. von Mises. As
we have already noted, his conception was based on postulating stability of the fre-
quencies of events in a long series of experiments. That was a confusion of physical
and mathematical concepts. No passage to the limit can serve as justification for
introducing the notion of “probability”. If, for instance, the values nj/n were to
converge to the limiting value 1/2 in Fig. 1 too slowly, that would mean that no-
body would be able to find the value of that limit in the general (non-classical) case.
So the approach is clearly vulnerable: it would mean that Probability Theory would
be applicable only to those situations where frequencies have a limit. But why fre-
quencies would have a limit remained unexplained and was not even discussed.

In this relation, R. von Mises’ conception has been in turn criticised by many
mathematicians, including A.Ya. Khinchin, S.N. Bernstein, A.N. Kolmogorov and
others. Somewhat later, another approach was suggested that proved to be fruitful
for the development of the mathematical theory of probabilities. Its general features
were outlined by S.N. Bernstein in 1908. In 1933 a rather short book “Foundations
of Probability Theory” by A.N. Kolmogorov appeared that contained a complete
and clear exposition of the axioms of Probability Theory. The general construction
of the concept of probability based on Kolmogorov’s axiomatics removed all the
obstacles for the development of the theory and is nowadays universally accepted.

The creation of an axiomatic Probability Theory provided a solution to the sixth
Hilbert problem (which concerned, in particular, Probability Theory) that had been
formulated by D. Hilbert at the Second International Congress of Mathematicians
in Paris in 1900. The problem was on the axiomatic construction of a number of
physical sciences, Probability Theory being classified as such by Hilbert at that
time.

An axiomatic foundation separates the mathematical aspect from the physical:
one no longer needs to explain how and where the concept of probability comes
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from. The concept simply becomes a primitive one, its properties being described
by axioms (which are essentially the axioms of Measure Theory). However, the
problem of how the probability thus introduced is related (and can be applied) to
the real world remains open. But this problem is mostly removed by the remarkable
fact that, under the axiomatic construction, the desired fundamental property that the
frequencies of the occurrence of an event converge to the probability of the event
does take place and is a precise mathematical result. (For more details, see Chaps. 2
and 5.)2

We will begin by defining probability in a somewhat simplified situation, in the
so-called discrete case.

2Much later, in the 1960s A.N. Kolmogorov attempted to develop a fundamentally different ap-
proach to the notions of probability and randomness. In that approach, the measure of randomness,
say, of a sequence 0, 1, 0,0, 1, ... consisting of Os and 1s (or some other symbols) is the complex-
ity of the algorithm describing this sequence. The new approach stimulated the development of a
number of directions in contemporary mathematics, but, mostly due to its complexity, has not yet
become widely accepted.
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Chapter 1
Discrete Spaces of Elementary Events

Abstract Section 1.1 introduces the fundamental concept of probability space,
along with some basic terminology and properties of probability when it is easy
to do, i.e. in the simple case of random experiments with finitely or at most count-
ably many outcomes. The classical scheme of finitely many equally likely outcomes
is discussed in more detail in Sect. 1.2. Then the Bernoulli scheme is introduced and
the properties of the binomial distribution are studied in Sect. 1.3. Sampling without
replacement from a large population is considered, and convergence of the emerging
hypergeometric distributions to the binomial one is formally proved. The inclusion-
exclusion formula for the probabilities of unions of events is derived and illustrated
by some applications in Sect. 1.4.

1.1 Probability Space

To mathematically describe experiments with random outcomes, we will first of all
need the notion of the space of elementary events (or outcomes) corresponding to the
experiment under consideration. We will denote by §2 any set such that each result
of the experiment we are interested in can be uniquely specified by the elements
of £2.

In the simplest experiments we usually deal with finite spaces of elementary out-
comes. In the coin tossing example we considered above, §2 consists of two ele-
ments, “heads” and “tails”. In the die rolling experiment, the space 2 is also finite
and consists of 6 elements. However, even for tossing a coin (or rolling a die) one
can arrange such experiments for which finite spaces of elementary events will not
suffice. For instance, consider the following experiment: a coin is tossed until heads
shows for the first time, and then the experiment is stopped. If ¢ designates tails in
a toss and & heads, then an “elementary outcome” of the experiment can be repre-
sented by a sequence (¢7...th). There are infinitely many such sequences, and all
of them are different, so there is no way to describe unambiguously all the outcomes
of the experiment by elements of a finite space.

Consider finite or countably infinite spaces of elementary events §2. These are
the so-called discrete spaces. We will denote the elements of a space £2 by the letter
w and call them elementary events (or elementary outcomes).

A.A. Borovkov, Probability Theory, Universitext, 1
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2 1 Discrete Spaces of Elementary Events

The notion of the space of elementary events itself is mathematically undefinable:
it is a primitive one, like the notion of a point in geometry. The specific nature of £2
will, as a rule, be of no interest to us.

Any subset A C £2 will be called an event (the event A occurs if any of the
elementary outcomes w € A occurs).

The union or sum of two events A and B is the event A U B (which may also be
denoted by A + B) consisting of the elementary outcomes which belong to at least
one of the events A and B. The product or intersection AB (which is often denoted
by A N B as well) is the event consisting of all elementary events belonging to both
A and B. The difference of the events A and B is the set A — B (also often denoted
by A\ B) consisting of all elements of A not belonging to B. The set £2 is called the
certain event. The empty set @ is called the impossible event. The set A = 2 — A
is called the complementary event of A. Two events A and B are mutually exclusive
if AB=0.

Let, for instance, our experiment consist in rolling a die twice. Here one can take
the space of elementary events to be the set consisting of 36 elements (i, j), where i
and j run from 1 to 6 and denote the numbers of points that show up in the first and
second roll respectively. The events A = {i + j < 3} and B = {j = 6} are mutually
exclusive. The product of the events A and C = {j is even} is the event (1, 2). Note
that if we were interested in the events related to the first roll only, we could consider
a smaller space of elementary events consisting of just 6 elements i =1, 2,...,6.

One says that the probabilities of elementary events are given if a nonnegative
real-valued function P is given on 2 such that Zwe o P(w) =1 (one also says that
the function P specifies a probability distribution on §2).

The probability of an event A is the number

P(A) := Z P(w).

weA

This definition is consistent, for the series on the right hand side is absolutely con-
vergent.

We note here that specific numerical values of the function P will also be of no
interest to us: this is just an issue of the practical value of the model. For instance,
it is clear that, in the case of a symmetric die, for the outcomes 1,2,...,6 one
should put P(1) =P(2) = --- = P(6) = 1/6; for a symmetric coin, one has to choose
the values P(h) = P(t) = 1/2 and not any others. In the experiment of tossing a
coin until heads shows for the first time, one should put P(h) =1/2, P(th) =1/ 22,
P(tth) = 1/23, .... Since Zflozl 27" =1, the function P given in this way on the
outcomes of the form (¢ ...th) will define a probability distribution on 2. For ex-
ample, to calculate the probability that the experiment stops on an even step (that is,
the probability of the event composed of the outcomes (¢4), (¢¢th), . ..), one should
consider the sum of the corresponding probabilities which is equal to

00
Z 2—211 —
n=1

1

3

X

B—
W &~



1.1 Probability Space 3

In the experiments mentioned in the Introduction, where one had to guess when
a device will break down—before a given time (the event A) or after it, quantita-
tive estimates of the probability P(A) can usually only be based on the results of the
experiments themselves. The methods of estimating unknown probabilities from ob-
servation results are studied in Mathematical Statistics, the subject-matter of which
will be exemplified somewhat later by a problem from this chapter.

Note further that by no means can one construct models with discrete spaces of
elementary events for all experiments. For example, suppose that one is measuring
the energy of particles whose possible values fill the interval [0, V], V > 0, but the
set of points of this interval (that is, the set of elementary events) is continuous.
Or suppose that the result of an experiment is a patient’s electrocardiogram. In this
case, the result of the experiment is an element of some functional space. In such
cases, more general schemes are needed.

From the above definitions, making use of the absolute convergence of the series
Y wea P(w), one can easily derive the following properties of probability:

(1) P(@)=0,P(2) = 1.

(2) P(A+B)= ZweAUB P(w) = ZweA P(w) + ZweB P(w) — Za)eAﬂB P(w) =
P(A) +P(B) — P(AB).
(3) P(A) =1—P(A).

This entails, in particular, that, for disjoint (mutually exclusive) events A and B,
P(A+ B) =P(A) + P(B).

This property of the additivity of probability continues to hold for an arbitrary
number of disjoint events Ay, As,...:if A;A; =@ fori # j, then

P(UAk> =ZP(Ak). (1.1.1)
k=1 k=1

This follows from the equality
n n
p( U Ak> =Y P(Ap
k=1 k=1

and the fact that P(U,fin +14x) — 0 as n — oo. To prove the last relation, first
enumerate the elementary events. Then we will be dealing with the sequence
o, w,...; Jor =2, P(Up~,, @) =D 4o, P(wr) = 0 as n — oo. Denote by
nj the number of events A; such that wy € A; = Ay ng =0 if wpA; = @ for
all j. If ny < N < oo for all k, then the events A; with j > N are empty and
the desired relation is obvious. If Ny := maxy<s;nx — 00 as s — 0o, then one has
Ujon Aj C Uy~ @k for n > Ny, and therefore

P(UAj>§P<Ua)k>=ZP(wk)—>O as s — 0.

j>n k>s k>s



4 1 Discrete Spaces of Elementary Events

The required relation is proved.
For arbitrary A and B, one has P(A + B) < P(A) + P(B). A similar inequality
also holds for the sum of an arbitrary number of events:

P( U Ak> <> P(Ap).
k=1 k=1

This follows from (1.1.1) and the representation of (J Ak as the union Ak_Ek of
disjoint events Ay By, where By = Aj. It remains to note that P(AyBy) <
P(Ap).

Now we will consider several important special cases.

j<k

1.2 The Classical Scheme

Let £2 consist of n elements and all the outcomes be equally likely, that is P(w) =
1/n for any w € £2. In this case, the probability of any event A is defined by the
formula

1
P(A) := —{number of elements of A}.
n

This is the so-called classical definition of probability (the term uniform discrete
distribution is also used).

Let a set {aj,as,...,a,} be given, which we will call the general popula-
tion. A sample of size k from the general population is an ordered sequence
(aj,,aj,,...,aj). One can form this sequence as follows: the first element aj, is
chosen from the whole population. The next element a ;, we choose from the general
population without the element a;, ; the element a j; is chosen from the general pop-
ulation without the elements a;, and a,, and so on. Samples obtained in such a way
are called samples without replacement. Clearly, one must have k < n in this case.
The number of such samples of size k coincides with the number of arrangements
of k elements from n:

M :=nn—1)n—-2)---(n—k+1).

Indeed, according to the sampling process, in the first position we can have any
element of the general population, in the second position any of the remaining
(n — 1) elements, and so on. We could prove this more formally by induction on k.

Assign to each of the samples without replacement the probability 1/(n)x. Such
a sample will be called random. This is clearly the classical scheme.

Calculate the probability that a;, = a1 and aj, = az. Since the remaining k — 2
positions can be occupied by any of the remaining n — 2 elements of the general
population, the number of samples without replacement having elements a; and a;
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in the first two positions equals (n — 2)x—». Therefore the probability of that event
is equal to

(n—2)r—2 _ 1
() nn—1)

One can think of a sample without replacement as the result of sequential sampling
from a collection of enumerated balls placed in an urn. Sampled balls are not re-
turned back to the urn.

However, one can form a sample in another way as well. One takes a ball out of
the urn and memorises it. Then the ball is returned to the urn, and one again picks
a ball from the urn; this ball is also memorised and put back to the urn, and so on.
The sample obtained in this way is called a sample with replacement. At each step,
one can pick any of the n balls. There are k such steps, so that the total number of
such samples will be n*. If we assign the probability of 1/1* to each sample, this
will also be a classical scheme situation.

Calculate, for instance, the probability that, in a sample with replacement of size
k < n, all the elements will be different. The number of samples of elements without
repetitions is the same as the number of samples without replacement, i.e. (n)g.
Therefore the desired probability is (1) /n*.

We now return to sampling without replacement for the general population
{ay,as, ..., a,}. We will be interested in the number of samples of size k < n which
differ from each other in their composition only. The number of samples without
replacement of size k which have the same composition and are only distinguished
by the order of their elements is k! Hence the number of samples of different com-

position equals
i _ (n
k! k)

This is the number of combinations of k items chosen from a total of n for 0 <
k < n." If the initial sample is random, we again get the classical probability scheme,
for the probability of each new sample is

k! 1

W )

Let our urn contain » balls, of which n; are black and n — n; white. We sample k
balls without replacement. What is the probability that there will be exactly k; black
balls in the sample? The total number of samples which differ in the composition
is, as was shown above, (Z) There are (’,:1') ways to choose k; black balls from the
totality of n1 black balls. The remaining k — k1 white balls can be chosen from the
totality of n — n; white balls in (} ;') ways. Note that clearly any collection of

k—k
black balls can be combined with any 1collection of white balls. Therefore the total

In what follows, we put (})=0fork <0Oand k > n.



6 1 Discrete Spaces of Elementary Events

number of samples of size k which differ in composition and contain exactly ki
black balls is (Z:) (Z:le) Thus the desired probability is equal to

ni n—ni n
Puy (k. k) = <k1> <k _k1>/(k).

The collection of numbers Py, ,(0,k), Py, ,(1,k),..., Py n(k, k) forms the so-
called hypergeometric distribution. From the derived formula it follows, in particu-
lar, that, for any 0 < n <n,

k

2 ()20 - ()

P ki) \k—k k
Example 1.2.1 In the 1980s, a version of a lottery called “Sportloto 6 out of 49”
had became rather popular in Russia. A gambler chooses six from the totality of
49 sports (designated just by numbers). The prize amount is determined by how
many sports he guesses correctly from another group of six sports, to be drawn at
random by a mechanical device in front of the public. What is the probability that
the gambler correctly guesses all six sports? A similar question could be asked about
five sports, and so on.

It is not difficult to see that this is nothing else but a problem on the hypergeo-
metric distribution where the gambler has labelled as “white” six items in a general
population consisting of 49 items. Therefore the probability that, of the six items
chosen at random, k; will turn out to be “white” (i.e. will coincide with those la-
belled by the gambler) is equal to Pg 49(k1, k), where the sample size k equals 6.
For example, the probability of guessing all six sports correctly is

49\ ! "
Pe 49(6,6) = 6 ~7.2x107°,

In connection with the hypergeometric distribution, one could comment on the
nature of problems in Probability Theory and Mathematical Statistics. Knowing the
composition of the general population, we can use the hypergeometric distribution
to find out what chances different compositions of the sample would have. This
is a typical direct problem of probability theory. However, in the natural sciences
one usually has to solve inverse problems: how to determine the nature of general
populations from the composition of random samples. Generally speaking, such
inverse problems form the subject matter of Mathematical Statistics.

1.3 The Bernoulli Scheme

Suppose one draws a sample with replacement of size r from a general population
consisting of two elements {0, 1}. There are 2" such samples. Let p be a number in
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the interval [0, 1]. Define a nonnegative function P on the set §2 of all samples in the
following way: if a sample w contains exactly k ones, then P(w) = pk(1 — p)" .
To verify that P is a probability, one has to prove the equality

P(2) = 1.

It is easy to see that k ones can be arranged in r places in (;) different ways. There-
fore there is the same number of samples containing exactly k ones. Now we can
compute the probability of £2:

r

P@2)=) (,';)p"(l =) =(p+a=-p) =1

k=0

The second equality here is just the binomial formula. At the same time we have
found that the probability P (k, r) that the sample contains exactly k ones is:

Pk, r) = <,’;)pk(1 -p -

This is the so-called binomial distribution. It can be considered as the distribution
of the number of “successes” in a series of r trials with two possible outcomes in
each trial: 1 (“success”) and 0 (“failure”). Such a series of trials with probability
P(w) defined as pk(l -p) —k_ where k is the number of successes in o, is called
the Bernoulli scheme. It turns out that the trials in the Bernoulli scheme have the
independence property which will be discussed in the next chapter.

It is not difficult to verify that the probability of having 1 at a fixed place in
the sample (say, at position s) equals p. Indeed, having removed the item number s
from the sample, we obtain a sample from the same population, but of size r — 1. We
will find the desired probability if we multiply the probabilities of these truncated
samples by p and sum over all “short” samples. Clearly, we will get p. This is why
the number p in the Bernoulli scheme is often called the success probability.

Arguing in the same way, we find that the probability of having 1 at k fixed
positions in the sample equals p¥.

Now consider how the probabilities P (k,r) of various outcomes behave as k
varies. Let us look at the ratio

Pk,ry  p r—k+1 p (r+1 !
S Pk—1,r) 1—p k  1—-p\ k '

It clearly monotonically decreases as k increases, the value of the ratio being less
than 1 for k/(r + 1) < p and greater than 1 for k/(r + 1) > p. This means that
the probabilities P (k,r) first increase and then, for k > p(r + 1), decrease as k
increases.

The above enables one to estimate, using the quantities P (k, r), the probabilities

k
Qk,r)=>_P(j.r)

j=0
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that the number of successes in the Bernoulli scheme does not exceed k. Namely,
fork < p(r+1),

1 1
Ok, r):P(k,r)(1+ RED) + REDRE=TT) +>
R(k,r) r+1-kp
< P(k’r)iR(k,r) 1 —P(k,r)i(r_f_ Dp— k'

It is not difficult to see that this bound will be rather sharp if the numbers k and r
are large and the ratio k/(pr) is not too close to 1. In that case the sum

1 1

L+ R(k,r) + Rk, r)R(k —1,7) T

will be close to the sum of the geometric series

S Ry = &)
~ Rk, r)— 1

and we will have the approximate equality

r+1=kp

Qk,ry~ P(k,r) T Dp—k

(1.3.1)

For example, for r =30, p = 0.7 and k = 16 one has rp =21 and P(k,r) =
0.023. Here the ratio E:J_ri)_pkl’f equals 15 x 0.7/5.7 ~ 1.84. Hence the right hand
side of (1.3.1) estimating Q (k, r) is approximately equal to 0.023 x 1.84 ~ (0.042.
The true value of Q(k, r) for the given values of r, p and k is 0.040 (correct to three
decimals).

Formula (1.3.1) will be used in the example in Sect. 5.2.

Now consider a general population composed of n items, of which n; are of
the first type and no = n — ny of the second type. Draw from it a sample without

replacement of size r.

Theorem 1.3.1 Let n and n tend to infinity in such a way that ny/n — p, where
p is a number from the interval [0, 1]. Then the following relation holds true for the
hypergeometric distribution:

Pm,n(rl’r)_)P(rl’r)~

Proof Divide both the numerator and denominator in the formula for P,, ,(r1,r)
(see Sect. 1.2) by n”. Putting ry =r —ry and np :=n — ny, we get

rl(n —r)! n! ny!

Pn| a(ry,r) =
n!  ril(ng —r) rln —r)
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ny (ng 1\/n1 2 ny ri—1
rl G- =2 (G — 1)

:r]!rzl %(1_%)...(1_%)

ny(ny 1 ny r—1
X —_— —_—— - oo _
n\n n n n

— ( )Pr‘(l —p)?=P(r,r)

r
r

as n — oo. The theorem is proved. 0

For sufficiently large n, Py, ,(r1,7) is close to P(r,r) by the above theorem.
Therefore the Bernoulli scheme can be thought of as sampling without replacement
from a very large general population consisting of items of two types, the proportion
of items of the first type being p.

In conclusion we will consider two problems.

Imagine n bins in which we place at random r enumerated particles. Each particle
can be placed in any of the n bins, so that the total number of different allocations of
r particles to n bins will be n”. Allocation of particles to bins can be thought of as
drawing a sample with replacement of size » from a general population of n items.
We will assume that we are dealing with the classical scheme, where the probability
of each outcome is 1/n".

(1) What is the probability that there are exactly r; particles in the k-th bin?
The remaining r — r; particles which did not fall into bin k are allocated to the
remaining n — 1 bins. There are (n — 1)" =" different ways in which these r — r|
particles can be placed into n — 1 bins. Of the totality of r particles, one can choose
r — rq particles which did not fall into bin k in (r M r1) different ways. Therefore the
desired probability is

r (n—1)"" r 1" 1\
—_ = — 1—-— .
(r—rl) n” (r—r1>n < n)

This probability coincides with P(rq, r) in the Bernoulli scheme with p = 1/n.
(2) Now let us compute the probability that at least one bin will be empty. Denote
this event by A. Let Ay mean that the k-th bin is empty, then

A= LnJ Ag.
k=1

To find the probability of the event A, we will need a formula for the probability
of a sum (union) of events. We cannot make use of the additivity of probability, for
the events Ay are not disjoint in our case.

1.4 The Probability of the Union of Events. Examples

Let us return to an arbitrary discrete probability space.
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Theorem 1.4.1 Let Ay, Ao, ..., A, be events. Then
n n
P(U A,-) =Y P(A) - Y P(4;4))
i=1 i=1 i<j

+ Y PAAJA) =+ (=)' 'P(A - Ap).

i<j<k
Proof One has to make use of induction and the property of probability that
P(A+ B) =P(A) + P(B) — P(AB)

which we proved in Sect. 1.1. For n = 2 the assertion of the theorem is true. Suppose
it is true for any n — 1 events Ay, ..., A,—1. Then, setting B = U?;ll A;, we get

P(UA,) =P(B + A,) =P(B) + P(A,) — P(4,B).
i=1

Substituting here the known values

n—1 n—1
P(B):P(UAZ-) and P(AnB)zP(U(A,»An)),
i=1 i=1

we obtain the assertion of the theorem. O

Now we will turn to the second problem about bins (see the end of Sect. 1.3) and
find the probability of the event A that at least one bin is empty. We represented A
in the form | J;_; A, where Ay denotes the event that all the r particles miss the

k-th bin. One has
-1 1\"
pay=""D =<1——), k<n.

nr

The event A;A; means that all r particles are allocated to n — 2 bins with labels
differing from k and [/, and therefore

(n—2)" ( 2)’
P(AvA) = =(1-2), ki<n

n" n

Similarly,

n—3" 3\"
P(A](AZAWI)Z = 1__ ) kal5m§na
n" n

and so on. The probability of the event A is equal by Theorem 1.4.1 to

=12 - ((-2)
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Lo ()0-2)

Discussion of this problem will be continued in Example 4.1.5.

As an example of the use of Theorem 1.4.1 we consider one more problem having
many varied applications. This is the so-called matching problem.

Suppose n items are arranged in a certain order. They are rearranged at random
(all n! permutations are equally likely). What is the probability that at least one
element retains its position?

There are n! different permutations. Let Ay denote the event that the k-th item
retains its position. This event is composed of (n — 1)! outcomes, so its probability
equals

(n—1)!

P(Ar) = —

The event Ay A; means that the k-th and /-th items retain their positions; hence

(n—2)! n—m—1) 1
—= L PU Ay = =

P(A A =

Now | J;_ A« is precisely the event that at least one item retains its position. There-
fore we can make use of Theorem 1.4.1 to obtain

Na) = (M) (Y=t () (=3 (!
P(H%)‘(l) n! _<2) py +(3> e

1 (=Dt

=logty Tt
11 (="
_1—<1—1+2—! TR m)

The last expression in the parentheses is the first n 4 1 terms of the expansion of
¢~ 1 into a series. Therefore, as n — 00,

n
P(UAk) —1—el
k=1



Chapter 2
An Arbitrary Space of Elementary Events

Abstract The chapter begins with the axiomatic construction of the probability
space in the general case where the number of outcomes of an experiment is not
necessarily countable. The concepts of algebra and sigma-algebra of sets are intro-
duced and discussed in detail. Then the axioms of probability and, more generally,
measure are presented and illustrated by several fundamental examples of measure
spaces. The idea of extension of a measure is discussed, basing on the Carathéodory
theorem (of which the proof is given in Appendix 1). Then the general elementary
properties of probability are discussed in detail in Sect. 2.2. Conditional probability
given an event is introduced along with the concept of independence in Sect. 2.3.
The chapter concludes with Sect. 2.4 presenting the total probability formula and
the Bayes formula, the former illustrated by an example leading to the introduction
of the Poisson process.

2.1 The Axioms of Probability Theory. A Probability Space

So far we have been considering problems in which the set of outcomes had at most
countably many elements. In such a case we defined the probability P(A) using the
probabilities P(w) of elementary outcomes w. It proved to be a function defined on
all the subsets A of the space §2 of elementary events having the following proper-
ties:

(1) P(A) = 0.
2) P(2)=1.
(3) For disjoint events Ay, Ao, ...

P(UAj) =Y P4)).

However, as we have already noted, one can easily imagine a problem in which
the set of all outcomes is uncountable. For example, choosing a point at random
from the segment [#1, £2] (say, in an experiment involving measurement of tempera-
ture) has a continuum of outcomes, for any point of the segment could be the result
of the experiment. While in experiments with finite or countable sets of outcomes
any collection of outcomes was an event, this is not the case in this example. We will

A.A. Borovkov, Probability Theory, Universitext, 13
DOI 10.1007/978-1-4471-5201-9_2, © Springer-Verlag London 2013
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encounter serious difficulties if we treat any subset of the segment as an event. Here
one needs to select a special class of subsets which will be treated as events.

Let the space of elementary events £2 be an arbitrary set, and A be a system of
subsets of £2.

Definition 2.1.1 A is called an algebra if the following conditions are met:

Al. 2 € A.
A2. If A€ Aand B € A, then

AUBeA, ANBeA.

A3. If Ac Athen A e A.

It is not hard to see that in condition A2 it suffices to require that only one of the
given relations holds. The second relation will be satisfied automatically since

ANB=AUB.

An algebra A is sometimes called a ring since there are two operations defined
on A (addition and multiplication) which do not lead outside of A. An algebra A is
a ring with identity, for 22 € A and A2 = 2A = A forany A € A.

Definition 2.1.2 A class of sets § is called a sigma-algebra (o -algebra, or o -ring,
or Borel field of events) if property A2 is satisfied for any sequences of sets:

A2, If {A,} is a sequence of sets from §, then

(o) o0
U A, €5, ﬂ A, €S
n=1 n=1

Here, as was the case for A2, it suffices to require that only one of the two rela-
tions be satisfied. The second relation will follow from the equality

A=A,
n n

Thus an algebra is a class of sets which is closed under a finite number of opera-
tions of taking complements, unions and intersections; a o -algebra is a class of sets
which is closed under a countable number of such operations.

Given a set £2 and an algebra or o -algebra § of its subsets, one says that we are
given a measurable space (S2,5).

For the segment [0, 1], all the sets consisting of a finite number of segments or
intervals form an algebra, but not a o -algebra.
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Consider all the o-algebras on [0, 1] containing all intervals from that segment
(there is at least one such o -algebra, for the collection of all the subsets of a given
set clearly forms a o -algebra). It is easy to see that the intersection of all such o-
algebras (i.e. the collection of all the sets which belong simultaneously to all the o -
algebras) is again a o-algebra. It is the smallest o-algebra containing all intervals
and is called the Borel o-algebra. Roughly speaking, the Borel o -algebra could be
thought of as the collection of sets obtained from intervals by taking countably many
unions, intersections and complements. This is a rather rich class of sets which is
certainly sufficient for any practical purposes. The elements of the Borel o -algebra
are called Borel sets. Everything we have said in this paragraph equally applies to
systems of subsets of the whole real line.

Along with the intervals (a, b), the one-point sets {a} and sets of the form (a, b],
[a, b] and [a, b) (in which a and b can take infinite values) are also Borel sets. This
assertion follows, for example, from the representations of the form

fay=(N@—1/na+1/m),  (a.bl=(\@b+1/n).

n=1 n=1

Thus all countable sets and countable unions of intervals and segments are also
Borel sets.

For a given class B of subsets of £2, one can again consider the intersection of
all o-algebras containing B and obtain in this way the smallest o-algebra contain-
ing B.

Definition 2.1.3 The smallest o -algebra containing B is called the o-algebra gen-
erated by ‘B and is denoted by o (B).

In this terminology, the Borel o-algebra in the n-dimensional Euclidean space
R” is the o-algebra generated by rectangles or balls. If £2 is countable, then the
o -algebra generated by the elements w € §2 clearly coincides with the o-algebra of
all subsets of £2.

As an exercise, we suggest the reader to describe the algebra and the o -algebra
of sets in £2 = [0, 1] generated by: (a) the intervals (0, 1/3) and (1/3, 1); (b) the
semi-open intervals (a, 1], 0 < a < 1; and (c) individual points.

To formalise a probabilistic problem, one has to find an appropriate measurable
space (€2, §) for the corresponding experiment. The symbol £2 denotes the set of
elementary outcomes of the experiment, while the algebra or o-algebra § specifies a
class of events. All the remaining subsets of £2 which are not elements of § are not
events. Rather often it is convenient to define the class of events § as the o -algebra
generated by a certain algebra A.

Selecting a specific algebra or o-algebra § depends, on the one hand, on the
nature of the problem in question and, on the other hand, on that of the set £2. As
we will see, one cannot always define probability in such a way that it would make
sense for any subset of £2.
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We have already noted in Chap. 1 that, in probability theory, one uses, along
with the usual set theory terminology, a somewhat different terminology related to
the fact that the subsets of £2 (belonging to §) are interpreted as events. The set 2
itself is often called the certain event. By axioms Al and A2, the empty set @ also
belongs to F; it is called the impossible event. The event A is called the complement
event or simply the complement of A. If AN B = &, then the events A and B are
called mutually exclusive or disjoint.

Now it remains to introduce the notion of probability. Consider a space §2 and a
system A of its subsets which forms an algebra of events.

Definition 2.1.4 A probability on (£2, A) is a real-valued function defined on the
sets from A and having the following properties:

P1. P(A) >0 forany A € A.

P2. P(£2)=1.

P3. If a sequence of events {A,} is such that A;A; = @ fori # j and | J{° A, € A,

then
P(UAn) =ZP(A,,). 2.1.1)
n=1 n=1

These properties can be considered as an axiomatic definition of probability.
An equivalent to axiom P3 is the requirement of additivity (2.1.1) for finite col-
lections of events A plus the following continuity axiom.

P3'. Let {By} be a sequence of events such that By+1 C B, and (o, B, = B € A.
Then P(B,)) — P(B) as n — o0.

Proof of the equivalence Assume P3 is satisfied and let B,y1 C B,, (), Bn =
B € A. Then the sequence of the events B, Cy = BkEkJr], k=1,2,..., consists
of disjoint events and B, = B + |z, Cx for any n. Now making use of property
P3 we see that the series P(B1) = P(B) + Z,fin P(Cy) is convergent, which means
that

P(B,) =P(B) + ZP(Ck) — P(B)

k=n

as n — oo. This is just the property P3’.
Conversely, if A, is a sequence of disjoint events, then

o0 n o0
P(UAk> =P<UAk> +P( U Ak>
k=1 k=1 k=n+1
and one has

o0 n n
;Pmk) = lim ,;P(Ak) = lim_ P<kL_J1 Ak>
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The last equality follows from P3’. g

Definition 2.1.5 A triple (§2, A, P) is called a wide-sense probability space. If an
algebra § is a o-algebra (§ = o (§)), then condition UZO=1 A, € § in axiom P3 (for
a probability on (£2, §)) will be automatically satisfied.

Definition 2.1.6 A triple (£2, §, P), where § is a o-algebra, is called a probability

space.

A probability P on (£2, §) is also sometimes called a probability distribution on
£2 or just a distribution on §2 (on (£2, F)).

Thus defining a probability space means defining a countably additive nonneg-
ative measure on a measurable space such that the measure of §2 is equal to one.
In this form the axiomatics of Probability Theory was formulated by A.N. Kol-
mogorov. The system of axioms we introduced is incomplete and consistent.

Constructing a probability space (§2, §, P) is the basic stage in creating a math-
ematical model (formalisation) of an experiment.

Discussions on what should one understand by probability have a long history
and are related to the desire to connect the definition of probability with its “phys-
ical” nature. However, because of the complexity of the latter, such attempts have
always encountered difficulties not only of mathematical, but also of philosophical
character (see the Introduction). The most important stages in this discussion are re-
lated to the names of Borel, von Mises, Bernstein and Kolmogorov. The emergence
of Kolmogorov’s axiomatics separated, in a sense, the mathematical aspect of the
problem from all the rest. With this approach, the “physical interpretation” of the
notion of probability appears in the form of a theorem (the strong law of large num-
bers, see Chaps. 5 and 7), by virtue of which the relative frequency of the occurrence
of a certain event in an increasingly long series of independent trials approaches (in
a strictly defined sense) the probability of this event.

We now consider examples of the most commonly used measurable and proba-
bility spaces.

1. Discrete measurable spaces. These are spaces (§2, §) where §2 is a finite or
countably infinite collection of elements, and the o -algebra § usually consists of
all the subsets of §2. Discrete probability spaces constructed on discrete measurable
spaces were studied, with concrete examples, in Chap. 1.

2. The measurable space (R, *8), where R is the real line(or a part of it) and B
is the o-algebra of Borel sets. The necessity of considering such spaces arises in
situations where the results of observations of interest may assume any values in R.

Example 2.1.1 Consider an experiment consisting of choosing a point “at random”
from the interval [0, 1]. By this we will understand the following. The set of elemen-
tary outcomes §2 is the interval [0, 1]. The o -algebra § will be taken to be the class
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of subsets B for which the notion of length (Lebesgue measure) w(B) is defined—
for example, the o -algebra 5 of Borel measurable sets. To “conduct a trial” means
to choose a point w € £2 = [0, 1], the probability of the event w € B being i (B). All
the axioms are clearly satisfied for the probability space ([0, 1], B, u). We obtain
the so-called uniform distribution on [0, 1].

Why did we take the o -algebra of Borel sets B to be our § in this example? If we
considered on §2 = [0, 1] the o -algebra generated by “individual” points of the in-
terval, we would get the sets of which the Lebesgue measure is either O or 1. In other
words, the obtained sets would be either very “dense” or very “thin” (countable), so
that the intervals (a, b) for 0 < b — a < 1 do not belong to this o -algebra.

On the other hand, if we considered on §2 = [0, 1] the o -algebra of all subsets of
£2, it would be impossible to define a probability measure on it in such a way that
P([a, b]) = b — a (i.e. to get the uniform distribution).!

Turning back to the uniform distribution P on £2 = [0, 1], it is easy to see that
it is impossible to define this distribution using the same approach as we used to
define a probability on a discrete space of elementary events (i.e. by defining the
probabilities of elementary outcomes w). Since in this example the ws are individual
points from [0, 1], we clearly have P(w) = 0 for any w.

3. The measurable space (R",B") is used in the cases when observations are
vectors. Here R” is the n-dimensional Euclidean space(R” =R x --- x R”, where
Ry, ...,R, are n copies of the real line), B" is the o-algebra of Borel sets in R”,
i.e. the o -algebra generated by the sets B = Bj x --- X B", where B; C R; are Borel
sets on the line. Instead of R” we could also consider some measurable part £2 € B"
(for example a cube or ball), and instead of B" the restriction of 8" onto £2. Thus,
similarly to the last example one can construct a probability space for choosing a
point at random from the cube £2 = [0, 1]". We put here P(w € B) = u(B), where
w(B) is the Lebesgue measure (volume) of the set B. Instead of the cube [0, 1]" we
could consider any other cube, for example [a, b]", but in this case we would have
to put

P(w € B) = u(B)/1u(2) = w(B) /(b — a)".

This is the uniform distribution on a cube.

In Probability Theory one also needs to deal with more complex probability
spaces. What to do if the result of the experiment is an infinite random sequence? In
this case the space (R°°, 6>°) is often the most appropriate one.

4. The measurable space (R, B°°), where

ISee e.g. [28], p. 80.
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is the space of all sequences (x1, x2, ...) (the direct product of the spaces IR ), and
B> the o-algebra generated by the sets of the form

N
(HBjk) X ( I1 Rj>: Bj €Bjy,
k=1 J#J
k<N
forany N, ji, ..., jn, where ‘B is the o-algebra of Borel sets from R ;.

5. If an experiment results, say, in a continuous function on the interval [a, b]
(a trajectory of a moving particle, a cardiogram of a patient, etc.), then the probabil-
ity spaces considered above turn out to be inappropriate. In such a case one should
take £2 to be the space C(a, b) of all continuous functions on [a, b] or the space
RI-41 of all functions on [a, b]. The problem of choosing a suitable o -algebra here
becomes somewhat more complicated and we will discuss it later in Chap. 18.

Now let us return to the definition of a probability space.

Let a triple (£2, A, P) be a wide-sense probability space (A is an algebra). As
we have already seen, to each algebra A there corresponds a o -algebra § = o (A)
generated by A. The following question is of substantial interest: does the proba-
bility measure P on A define a measure on § = o (A)? And if so, does it define
it in a unique way? In other words, to construct a probability space (§2, A, P), is
it sufficient to define the probability just on some algebra A generating § (i.e. to
construct a wide-sense probability space (§2, A, P), where o (A) = §)? An answer
to this important question is given by the Carathéodory theorem.

The measure extension theorem Let (§2, A, P) be a wide-sense probability space.
Then there exists a unique probability measure Q defined on § = o (A) such that

Q(A)=P(A) forall A cA.

Corollary 2.1.1 Any wide-sense probability space ($2, A, P) automatically defines
a probability space ($2,§,P) with § = o (A).

We will make extensive use of this fact in what follows. In particular, it implies
that to define a probability measure on the measurable space (R, 8B), it suffices to
define the probability on intervals.

The proof of the Carathéodory theorem is given in Appendix 1.

In conclusion of this section we will make a general comment. Mathematics dif-
fers qualitatively from such sciences as physics, chemistry, etc. in that it does not
always base its conclusions on empirical data with the help of which a naturalist
tries to answer his questions. Mathematics develops in the framework of an initial
construction or system of axioms with which one describes an object under study.
Thus mathematics and, in particular, Probability Theory, studies the nature of the
phenomena around us in a methodologically different way: one studies not the phe-
nomena themselves, but rather the models of these phenomena that have been cre-
ated based on human experience. The value of a particular model is determined by
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the agreement of the conclusions of the theory with our observations and therefore
depends on the choice of the axioms characterising the object.

In this sense axioms P1, P2, and the additivity of probability look indisputable
and natural (see the remarks in the Introduction on desirable properties of probabil-
ity). Countable additivity of probability and the property A2’ of o -algebras are more
delicate and less easy to intuit (as incidentally are a lot of other things related to the
notion of infinity). Introducing the last two properties was essentially brought about
by the possibility of constructing a meaningful mathematical theory. Numerous ap-
plications of Probability Theory developed from the system of axioms formulated
in the present section demonstrate its high efficiency and purposefulness.

2.2 Properties of Probability

1. P(@) = 0. This follows from the equality @ + §2 = §2 and properties P2 and P3
of probability.

2.P(A)=1—P(A),since A+ A=Rand ANA=0.

3.1f A C B, then P(A) < P(B). This follows from the relation P(A) + P(AB) =
P(B).

4.P(A) <1 (by properties 3 and P2).

5.P(AUB)=P(A)+P(B)—P(AB),sincc AUB=A+ (B—AB) and P(B —
AB) =P(B) —P(AB).

6. P(AU B) <P(A) + P(B) follows from the previous property.

7. The formula

P( U A,-) = P(A) = Y _P(4A)
j=1 k=1

k<l

+ ) PARAIAR) — -+ (—D)"P(A; L Ay

k<l<m

has already been proved and used for discrete spaces §2. Here the reader can prove
it in exactly the same way, using induction and property 5.

Denote the sums on the right hand side of the last formula by Z1, Z,, ..., Z,,
respectively. Then statement 7 for the event B, = (J}_; A, can be rewritten as

P(B,)=)i_(=1)/7'z;.
8. An important addition to property 7 is that the sequence Zﬁzl(—l)j -1z |
approximates P(B,,) by turns from above and from below as k grows, i.e.

2k—1
P(B,) - Y (-1)/7'z; <0,
j=1
' 2.2.1)
2k .
P(B,)— Y (-1))7'Z;>0, k=12,

j=1
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This property can also be proved by induction on n. For n = 2 this property is
ascertained in 5. Let (2.2.1) be valid for any events Ay, ..., A,—_1 (i.e. for any B, _1).
Then by 5 we have

k—1
P(B,) =P(By—1 U Ay) =P(B,—1) + P(Ay) —P( U A,-An),
j=1
where, in view of (2.2.1) fork =1,

n=1 n—1 n—1
D P(A) =Y P(AA) <P(B,_) <Y _P(4)),

j=1 i<j j=1

n—1 n—1
P( U AjAn) < ZP(AjAn).
j=1 j=1

Hence, for B, = B,—1 U A,,, we get

P(B,) <) P(A)),
j=1
P(Bn) = P(Bn—l) + P(An) - P(Bn—lAn)

n—1 n

n n—1 n
=D P(A) =D P(AiA) — ) P(AiA) =) P(Ay) — ) P(AA)).
j=1 i=1 j=1

i<j i<j

This proves (2.2.1) for k = 1. For k =2, 3, ... the proof is similar.
9. If A, is a monotonically increasing sequence of sets (i.e. A, C A,4+1) and
A=J02, Ay, then

P(A) = lim P(4,). (2.2.2)

This is a different form of the continuity axiom equivalent to P3'.
Indeed, introducing the sets B, = A — A,, we get B,,+1 C By, and ﬂ;’li 1By =2.
Therefore, by the continuity axiom,

P(A — A,) =P(A) — P(A,) —> 0

as n — 00. The converse assertion that (2.2.2) implies the continuity axiom can be
obtained in a similar way. O

2.3 Conditional Probability. Independence of Events and Trials

We will start with examples. Let an experiment consist of three tosses of a fair
coin. The probability that heads shows up only once, i.e. that one of the elementary
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events htt, tht, or tth occurs, is equal in the classical scheme to 3/8. Denote
this event by A. Now assume that we know in addition that the event B =
{the number of heads is odd} has occurred.

What is the probability of the event A given this additional information? The
event B consists of four elementary outcomes. The event A is constituted by three
outcomes from the event B. In the framework of the classical scheme, it is natural
to define the new probability of the event A to be 3/4.

Consider a more general example. Let a classical scheme with n outcomes be
given. An event A consists of » outcomes, an event B of m outcomes, and let the
event AB have k outcomes. Similarly to the previous example, it is natural to define
the probability of the event A given the event B has occurred as

k  k/n
P(A|B)= — = —.
m m/n
The ratio is equal to P(AB)/P(B), for
k m
P(A|B) = —, P(B)=—.
n n
Now we can give a general definition.

Definition 2.3.1 Let (£2, §,P) be a probability space and A and B be arbitrary
events. If P(B) > 0, the conditional probability of the event A given B has occurred
is denoted by P(A|B) and is defined by

P(AB)
P(B)

P(A|B) :=

Definition 2.3.2 Events A and B are called independent if
P(AB) =P(A)P(B).

Below we list several properties of independent events.
1. If P(B) > 0, then the independence of A and B is equivalent to the equality

P(A|B) =P(A).

The proof is obvious. _
2.If A and B are independent, then A and B are also independent.
Indeed,

P(AB) =P(B — AB)
=P(B) — P(AB) =P(B)(1 — P(A)) =P(A)P(B).

3. Let the events A and B; and the events A and B, each be independent, and
assume BjB; = &. Then the events A and B + B; are independent.
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Fig. 2.1 Illustration to
Example 2.3.2: the dashed
rectangles represent the 1 ¢
events A and B b
F D

The property is proved by the following chain of equalities:

P(A(B| + By)) =P(AB; + ABy) =P(AB)) + P(AB>)
=P(A)(P(B)) + P(By)) =P(A)P(B| + By).

As we will see below, the requirement B; B, = & is essential here.

Example 2.3.1 Let event A mean that heads shows up in the first of two tosses of a
fair coin, and event B that tails shows up in the second toss. The probability of each
of these events is 1/2. The probability of the intersection AB is

P(AB):%: .~ =P(A)P(B).

N =
N =

Therefore the events A and B are independent.

Example 2.3.2 Consider the uniform distribution on the square [0, 172 (see Sect. 2.1).
Let A be the event that a point chosen at random is in the region on the right of an
abscissa a and B the event that the point is in the region above an ordinate b.

Both regions are hatched in Fig. 2.1. The event AB is squared in the figure.
Clearly, P(AB) = P(A)P(B), and hence the events A and B are independent.

It is also easy to verify that if B is the event that the chosen point is inside the
triangle FCD (see Fig. 2.1), then the events A and B will already be dependent.

Definition 2.3.3 Events B1, Ba, ..., By are jointly independent if, for any 1 < i <
h<---<i,<n,r=273,...,n,

P( ﬂ Bjk) = HP(Bik).
k=1 k=1

Pairwise independence is not sufficient for joint independence of n events, as one
can see from the following example.
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Example 2.3.3 (Bernstein’s example) Consider the following experiment. We roll a
symmetric tetrahedron of which three faces are painted red, blue and green respec-
tively, and the fourth is painted in all three colours. Event R means that when the
tetrahedron stops, the bottom face has the red colour on it, event B that it has the
blue colour, and G the green. Since each of the three colours is present on two faces,
P(R) =P(B) =P(G) = 1/2. For any two of the introduced events, the probability
of the intersection is 1/4, since any two colours are present on one face only. Since

% = % x %, this implies the pairwise independence of all three events. However,

P(RGB) = % £P(R)P(B)P(G)=1/8. O

Now it is easy to construct an example in which property 3 of independent events
does not hold when B| B, # &.

An example of a sequence of jointly independent events is given by the series of
outcomes of trials in the Bernoulli scheme.

If we assume that each outcome was obtained as a result of a separate trial, then
we will find that any event related to a fixed trial will be independent of any event
related to other trials. In such cases one speaks of a sequence of independent trials.

To give a general definition, consider two arbitrary experiments G and G, and
denote by (£21, §1, P1) and (£2;, §2, P») the respective probability spaces. Consider
also the “compound” experiment G with the probability space (£2,§, P), where
£2 = §21 x §2; is the direct product of the spaces §2; and £2,, and the o -algebra § is
generated by the direct product §1 x §2 (i.e. by the events B = By x By, By € §1,
By € §2).

Definition 2.3.4 We will say that the trials G| and G, are independent if, for any
B =B x By, B € §1, By € §> one has

P(B) =P1(B1)P2(B2) =P(B; x §£22)P(£21 x By).

Independence of n trials G1, ..., G, is defined in a similar way, using the equal-
ity
P(B) =P(B1) - Pn(Bn),

where B = By X --- X By, Br € §k, and {2k, $k, Pr) is the probability space corre-
sponding to the experiment G4, k=1, ...,n.

In the Bernoulli scheme, the probability of any sequence of outcomes consisting
of r zeros and ones and containing k ones is equal to p*(1 — p)"~%. Therefore the
Bernoulli scheme may be considered as a result of r independent trials in each of
which one has 1 (success) with probability p and O (failure) with probability 1 — p.
Thus, the probability of k successes in r independent trials equals (2) pk1 — py k.

The following assertion, which is in a sense converse to the last one, is also
true: any sequence of identical independent trials with two outcomes makes up a
Bernoulli scheme.

In Chap. 3 several remarks will be given on the relationship between the notions
of independence we introduced here and the common notion of causality.



2.4 The Total Probability Formula. The Bayes Formula 25

2.4 The Total Probability Formula. The Bayes Formula

Let A be an event and By, Bs, ..., B, be mutually exclusive events having positive
probabilities such that

n
Acl s,
j=1

The sequence of events By, By, ... can be infinite, in which case we put n = co. The
following fotal probability formula holds true:

P(B) = P(B;)P(A|B)).
j=1

Proof It follows from the assumptions that

A= Lnj BjA.
j=1

Moreover, the events ABy, AB», ..., AB, are disjoint, and hence

P(A) = ZP(AB]-) = ZP(BJ-)P(A|BJ-).

j=1 j=1 0

Example 2.4.1 In experiments with colliding electron-positron beams, the probabil-
ity that during a time unit there will occur j collisions leading to the birth of new
elementary particles is equal to

_e_)‘kj 01
p]_ ]! E) ]_ £l 9 ey

where A is a positive parameter (this is the so-called Poisson distribution, to be con-
sidered in more detail in Chaps. 3, 5 and 19). In each collision, different groups of
elementary particles can appear as a result of the interaction, and the probability of
each group is fixed and does not depend on the outcomes of other collisions. Con-
sider one such group, consisting of two p-mesons, and denote by p the probability
of its appearance in a collision. What is the probability of the event Ay that, during
a time unit, k pairs of pw-mesons will be born?

Assume that the event B; that there were j collisions during the time unit has
occurred. Given this condition, we will have a sequence of j independent trials, and
the probability of having k pairs of p-mesons will be (i) p*(1 — p)/~*. Therefore
by the total probability formula,

e ¢]

- eyt k i—k
P(Ay) = P(B;)P(Ak|B;) = — Pl - p)’
(Ax) Jgk(])(u j) ; FRCTTET LA
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et S = p) e op)t

Koo k!

Thus we again obtain a Poisson distribution, but this time with parameter Ap.

The solution above was not formalised. A formal solution would first of all
require the construction of a probability space. The space turns out to be rather
complex in this example. Denote by §2; the space of elementary outcomes in the
Bernoulli scheme corresponding to j trials, and let w; denote an element of £2;.
Then one could take §2 to be the collection of all pairs {(j, w j)}j.’io, where the
number j indicates the number of collisions, and w; is a sequence of “successes”
and “failures” of length j (“success” stands for the birth of two p-mesons). If w;
contains k “successes”, one has to put

P((j,w))) =p;p"(1 - p)y*.

To get P(Ay), it remains to sum up these probabilities over all w; containing k
successes and all j > k (the idea of the total probability formula is used here tacitly
when splitting Ay into the events (j, w;)).

The fact that the number of collisions is described here by a Poisson distribution
could be understood from the following circumstances related to the nature of the
physical process. Let Bj(t, u) be the event that there were j collisions during the
time interval [z, t + u). Then it turns out that:

(a) the pairs of events B;(v,t) and By (v + t, u) related to non-overlapping time
intervals are independent for all v, ¢, u, j, and k;
(b) for small A the probability of a collision during the time A is proportional to A:

P(Bi(1, A)) =LA+ 0(A),

and, moreover, P(Bi(t, A)) = o(A) for k > 2.

Again using the total probability formula with the hypotheses B; (v, t), we obtain
for the probabilities py (1) = P(By (v, t)) the following relations:

k
prt+2)=Y " pi(O)P(Bi(v, 1+ A) | B;j(v,1))
j=0
k
=Y piOP(Bi_j(v+1, 4)) =0(A) + pr_1()(2A + 0(A))
j=0

=p@)(1 =24 —0(4)), k=1;
po(t + A) = po(t) (1 — LA — 0(2)).
Transforming the last equation, we find that

A —
polt + A> PoO _ 5 o) +o(1).
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Therefore the derivative of pg exists and is given by

Po(t) = =apo(0).

In a similar way we establish the existence of

pr(®) = Ape—1(t) = Apr(0), k=1 (24.1)

Now note that since the functions py () are continuous, one should put po(0) =1,
pr(0) =0 for k > 1. Hence

po(t) =e ™.

k—1 ,—A
Using induction and substituting into (2.4.1) the function py_1(t) = %, we

establish (it is convenient to make the substitution py = e Muy, which turns (2.4.1)

k—1
into u) = %) that

(X[)ke_)‘t

, k=0,1,...
k!

P(t) =
This is the Poisson distribution with parameter Az.

To understand the construction of the probability space in this problem, one
should consider the set §2 of all non-decreasing step-functions x(¢) > 0, t > 0, tak-
ing values 0, 1,2, .... Any such function can play the role of an elementary out-
come: its jump points indicate the collision times, the value x(¢) itself will be the
number of collisions during the time interval (0, ¢). To avoid a tedious argument re-
lated to introducing an appropriate o -algebra, for the purposes of our computations
we could treat the probability as given on the algebra A (see Sect. 2.1) generated
by the sets {x(t) =k}, >0; k=0, 1, ... (note that all the events considered in this
problem are just of such form). The above argument shows that one has to put

()Lt)ke—)»t
P(x(v +1)—x() = k) =0
(See also the treatment of Poisson processes in Chap. 19.) 0

By these examples we would like not only to illustrate the application of the total
probability formula, but also to show that the construction of probability spaces in
real problems is not always a simple task.

Of course, for each particular problem, such constructions are by no means nec-
essary, but we would recommend to carry them out until one acquires sufficient
experience.

Assume that events A and Bj, ..., B, satisfy the conditions stated at the begin-
ning of this section. If P(A) > 0, then under these conditions the following Bayes’
formula holds true:

P(B;)P(A|B))
S P(BOP(A| By)

P(B;|A) =
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This formula is simply an alternative way of writing the equality

P(B;A)
P(A) °

where in the numerator one should make use of the definition of conditional prob-
ability, and in the denominator, the total probability formula. In Bayes’ formula we
can take n = 00, just as for the total probability formula.

Example 2.4.2 An item is manufactured by two factories. The production volume
of the first factory is k times the production of the second one. The proportion of
defective items for the first factory is P, and for the second one P,. Now assume
that the items manufactured by the factories during a certain time interval were
mixed up and then sent to retailers. What is the probability that you have purchased
an item produced by the second factory given the item proved to be defective?

Let By be the event that the item you have got came from the first factory, and
B» from the second. It easy to see that

1 k
P(B) = ——, P(By)) = ——.
BU= 1% B2 =137
These are the so-called prior probabilities of the events Bj and B;. Let A be the
event that the purchased item is defective. We are given conditional probabilities
P(A|B;) = P; and P(A|B;) = P>. Now, using Bayes’ formula, we can answer the
posed question:

k
—— P kP
PBlA) = 5 =
bt Ptk
Similarly, P(B)|A) = 524 -

The probabilities P(B| A) and P(B;| A) are sometimes called posterior proba-
bilities of the events By and B, respectively, after the event A has occurred.

Example 2.4.3 A student is suggested to solve a numerical problem. The answer to
the problem is known to be one of the numbers 1, ..., k. Solving the problem, the
student can either find the correct way of reasoning or err. The training of the student
is such that he finds a correct way of solving the problem with probability p. In
that case the answer he finds coincides with the right one. With the complementary
probability 1 — p the student makes an error. In that case we will assume that the
student can give as an answer any of the numbers 1, ..., k with equal probabilities
1/k.

We know that the student gave a correct answer. What is the probability that his
solution of the problem was correct?

Let By (B) be the event that the student’s solution was correct (wrong).
Then, by our assumptions, the prior probabilities of these events are P(By) = p,



2.4 The Total Probability Formula. The Bayes Formula 29

P(B;) =1 — p. If the event A means that the student got a correct answer, then
P(A|B)) =1, P(A|By) =1/k.
By Bayes’ formula the desired posterior probability P(B;| A) is equal to

_ P(B1)P(A| B) __pr 1
P(B)P(A|B)) + P(B)P(A|By)  p4 L2 1+1,:—p”'

P(B1|A)

Clearly, P(B1|A) > P(B1) = p and P(B1|A) is close to 1 for large k.



Chapter 3
Random Variables and Distribution Functions

Abstract Section 3.1 introduces the formal definitions of random variable and its
distribution, illustrated by several examples. The main properties of distribution
functions, including a characterisation theorem for them, are presented in Sect. 3.2.
This is followed by listing and briefly discussing the key univariate distributions.
The second half of the section is devoted to considering the three types of distri-
butions on the real line and the distributions of functions of random variables. In
Sect. 3.3 multivariate random variables (random vectors) and their distributions are
introduced and discussed in detail, including the two key special cases: the multi-
nomial and the normal (Gaussian) distributions. After that, the concepts of indepen-
dence of random variables and that of classes of events are considered in Sect. 3.4,
establishing criteria for independence of random variables of different types. The
theorem on independence of sigma-algebras generated by independent algebras of
events is proved with the help of the probability approximation theorem. Then the
relationships between the introduced notions are extensively discussed. In Sect. 3.5,
the problem of existence of infinite sequences of random variables is solved with
the help of Kolmogorov’s theorem on families of consistent distributions, which is
proved in Appendix 2. Section 3.6 is devoted to discussing the concept of integral in
the context of Probability Theory (a formal introduction to Integration Theory is pre-
sented in Appendix 3). The integrals of functions of random vectors are discussed,
including the derivation of the convolution formulae for sums of independent ran-
dom variables.

3.1 Definitions and Examples

Let (£2, §, P) be an arbitrary probability space.

Definition 3.1.1 A random variable & is a measurable function £ = £ (w) mapping
(£2, ) into (R, *B), where R is the set of real numbers and ‘B is the o -algebra of all
Borel sets, i.e. a function for which the inverse image é(_l)(B) ={w:&(w) € B} of
any Borel set B € *B is a set from the o -algebra §.

A.A. Borovkov, Probability Theory, Universitext, 31
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For example, when tossing a coin once, §2 consists of two points: heads and tails.
If we put 1 in correspondence to heads and 0 to tails, we will clearly obtain a random
variable.

The number of points showed up on a die will also be a random variable.

The distance between the origin to a point chosen at random in the square [0 <
x < 1,0 <y < 1] will also be a random variable, since the set {(x, ) cx2 4 y2 <t}
is measurable. The reader might have already noticed that in these examples it is
very difficult to come up with a non-measurable function of @ which would be re-
lated to any real problem. This is often the case, but not always. In Chap. 18, devoted
to random processes, we will be interested in sets which, generally speaking, are not
events and which require special modifications to be regarded as events.

As we have already mentioned above, it follows from the definition of a random
variable that, for any set B from the o-algebra 25 of Borel sets on the real line,

£VB)={w:sw) eB}eF.

Hence one can define a probability Fz(B) = P(§ € B) on the measurable space
(R, 9B) which generates the probability space (R, B, Fg).

Definition 3.1.2 The probability F¢(B) is called the distribution of the random
variable §.

Putting B = (—00, x) one obtains the function
Fe(x) =Fg(—o0,x) =P <x)

defined on the whole real line which is called the distribution function' of the ran-
dom variable & .

We will see below that the distribution function of a random variable completely
specifies its distribution and is often used to describe the latter.

Where it leads to no confusion, we will write just F, F'(x) instead of Fg, Fg(x),
respectively. More generally, in what follows, as a rule, we will be using boldface
letters F, G, I, @, K, II, etc. to denote distributions, and the standard font letters F,
G, 1, P, ... to denote the respective distribution functions.

Since a random variable £ is a mapping of 2 into R, one has P(|§| < co) = 1.
Sometimes, it is also convenient to consider along with such random variables ran-
dom variables which can assume the values oo (they will be measurable map-
pings of £2 into R U {£o0}). If P(|€| = c0) > 0, we will call such random variables
&(w) improper. Each situation where such random variables appear will be explic-
itly noted.

Example 3.1.1 Consider the Bernoulli scheme with success probability p and sam-
ple size k (see Sect. 3.3). As we know, the set of elementary outcomes 2 in this case

'In the English language literature, the distribution function is conventionally defined as Fz (x) =
P(¢ < x). The only difference is that, with the latter definition, F* will be right-continuous, cf.
property F3 below.
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is the set of all k-tuples of zeros and ones. Take the o -algebra § to be the system of
all subsets of £2. Define a random variable on 2 as follows: to each k-tuple of zeros
and ones we relate the number of ones in this tuple.

The probability of r successes is, as we already know,

k
P(r, k) = (r)p’a -k

Therefore the distribution function F(x) of our random variable will be defined
as

F(x)= ZP(r, k).
r<x
Here the summation is over all integers » which are less than x. If x < 0 then
F(x) =0, and if x > k then F(x) = 1.

Example 3.1.2 Suppose we choose a point at random from the segment [a, b], i.e.
the probability that the chosen point is in a subset of [a, b] is taken to be proportional
to the Lebesgue measure of this subset. Here, £2 is the segment [a, b], the o -algebra
§ is the class of Borel subsets of [a, b]. Define a random variable & by

E(w)=w, wela,b],

i.e. the value of the random variable is equal to the number from [a, b] we have cho-
sen. It is a measurable function. If x < a, then F(x) =P(¢ <x) =0. Letx € (a, b].
Then {£ < x} means that the point is in the interval [a, x). The probability of this
event is proportional to the length of the interval, hence

Fo)=PE<x)="—"
b—a
If x > b, then clearly F(x) = 1. Finally, we find that
0, x<a,
Fx)=13=2, a<x=<b, 3.1.1)
1, x > b.

This distribution function defines the so-called uniform distribution on the interval
[a, b].

If w(B) is the Lebesgue measure on (R, °B), then, as we will see in the next
section, it is not hard to show that in this case F¢ (B) = w(B N [a, b]) /(b — a).

3.2 Properties of Distribution Functions. Examples

3.2.1 The Basic Properties of Distribution Functions

Let F(x) be the distribution function of a random variable £. Then F(x) has the
following properties:
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F1. Monotonicity: if x1 < x3, then F(x1) < F(x2).
F2. limy_, o F(x) =0and lim,_, F(x) = 1.
F3. Left-continuity: limyy, F'(x) = F(xo).

Proof Since for x| < x5 one has {£ < x1} C {£ < x>}, F1 immediately follows from
property 3 of probability (see Sect. 3.2.2).

To prove F2, consider two number sequences {x,} and {y,} such that {x,} is
decreasing and x,, - —oo, while {y,} is increasing and y,, — oco.Put A,, = {§ < x,,}
and B,, = {£ < y,}. Since x,, tends monotonically to —oo, the sequence of sets A,
decreases monotonically to (| A, = &. By the continuity axiom (see Sect. 3.2.1),
P(A,)) — 0 as n — oo or, which is the same, lim,,_,» F(x;) = 0. This and the
monotonicity of F(x) imply that

lim F(x)=0.

X—>—00

Since the sequence {y,} tends monotonically to oo, the sequence of sets B, in-
creases to | B, = £2, and hence (see property 9 in Sect. 3.2.2) P(B,) — 1. This
implies, as above, that

lim F(y,) =1, lim F(x)=1.
n—oo X—> 00
Property F3 is proved in a similar way. Let {x,} be an increasing sequence with
Xn 1 X0,
A ={§ <xo}, Ay ={§ < xn}.

The sequence of sets A, also increases, and | J A, = A. Therefore, P(A,) — P(A).
This means that

lim F(x) = F(xp). 0

x1xo

It is not hard to see that the function F would be right-continuous if we put
F(x) =P <x).

With our definition, the function F is generally speaking not right-continuous,
since by the continuity axiom

F(x+0)—F(x)=nli)ngo(F(x+%>—F(x)>

= lim P(x§§<x+l>:P<
n—oo n
=P =x).

Fﬂfe[nx+%)})

n=1

This means that F(x) is continuous if and only if P(§ = x) = 0 for any x. Exam-
ples 3.1.1 and 3.1.2 show that both continuous and discontinuous F(x) are quite
common.

From the above relations it also follows that

P(x <& <y)=F([x,y])=F(y+0) — F(x).
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Theorem 3.2.1 If a function F(x) has properties F1, F2 and F3, then there exist a
probability space (2,5, P) and a random variable & such that Fg(x) = F(x).

Proof First we construct a probability space (£2, §, P). Take £2 to be the real line R,
3§ the o -algebra ®B of Borel sets. As we already know (see Sect. 3.2.1), to construct
a probability space (R, ‘B, P) it suffices to define a probability on the algebra A
generated, say, by the semi-intervals of the form [-,-) (then o (A) = ‘B). An arbitrary
element of the algebra A has the form of a finite union of disjoint semi-intervals:

n
A= U[ai, bi), a; <b;

(the values of a; and b; can be infinite). We define

n

P(A) =) (F(b) — F(ap)).

i=1

It is absolutely clear that axioms P1 and P2 are satisfied by virtue of F1 and F2. It
remains to verify the countable additivity, or continuity, of P on the algebra A. Let
B, € A, By11 C By, (2 Bn = B € A. One has to show that P(B,) — P(B) as
n — oo or, which is the same, that P(B, B) — 0 (B, B € A). To this end, it suffices
to prove that, for any fixed N, P(B,BCy) — 0, where Cy = [N, N). Indeed, for
any given & > 0, by virtue of F2 we can choose an N such that P(Cy) < . Then
P(B,BCy) <P(Cy) < ¢ and

limsupP(B, B) <limsupP(B,BCy) +¢.
n— oo n—0o0
Since ¢ is arbitrary, the convergence P(B,BCy) — 0 as n — oo implies the re-
quired convergence P(B, B) — 0. It follows that we can assume that the sets B,, are
bounded (B, C [—N, N) for some N < 00). Moreover, we can assume without loss
of generality that B is the empty set.
By the above remarks, B, admits the representation

kn
Ual,bl” < 00,

where a;“, b;’ are finite. Further note that, for a given ¢ > 0 and any semi-interval
[a, b), one can always find an embedded interval [a,b — §), § > 0, such that
P([a,b — 8)) = P([a, b)) — €. This follows directly from property F3: F(b — §) —
F(b) as § | 0. Hence, for a given ¢ > 0 and set B,,, there exist 8;’ >0,i=1,...,k,,
such that

En:U[anb? 8!') C By, P(B,) > P(B,) — 27",
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Now add the right end points of the semi-intervals to the set B, and consider the
closed bounded set
kn
K=\ J[a] b} —38}].
i=1

Clearly,
o0
B, C K, C By, K=(\Ki=2.
n=1

P(B, — K;) :P(ann) <e2™".

It follows from the relation K = & that K, = & for all sufficiently large n. Indeed,
all the sets K, belong to the closure [Cy] = [N, —N] which is compact. The sets

{A, =[CN] — K, };2 | form an open covering of [Cy], since

Ja.= [CN](U E) = [CN](ﬂ K,,> =[Cn].
no

Thus, by the Heine—Borel lemma there exists a finite subcovering { A}, |, no < 00,
such that Uzozl A, = [Cy] or, which is the same, ﬂzozl K, = @. Therefore

() o )
n=1 n=1
no no no
= P( U Bnofn) < P( U B,,f,,) < 282_” <e.
n=1 n=1 n=1

Thus, for a given ¢ > 0 we found an ng (depending on ¢) such that P(B,,) < ¢.
This means that P(B,,) — 0 as n — o0o. We proved that axiom P3 holds.

So we have constructed a probability space. It remains to take & to be the identity
mapping of R onto itself. Then

Fe(x) =P <x) =P(—00,x) = F(x). O

The model of the sample probability space based on the assertion just proved is
often used in studies of distribution functions.

Definition 3.2.1 A probability space (£2, §, F) is called a sample space for a ran-
dom variable & (w) if §2 is a subset of the real line R and & (w) = w.

The probability F = F¢ is called, in accordance with Definition 3.1.1 from
Sect. 3.1, the distribution of &. We will write this as
teF. 3.2.1)

It is obvious that constructing a sample probability space is always possible. It
suffices to put 2 =R, § =B, F(B) = P(¢ € B). For integer-valued variables
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& the space (£2,F) can be chosen in a more “economical” way by taking 2 =
{....,—1,0,...}.

Since by Theorem 3.2.1 the distribution function F'(x) of a random variable &
uniquely specifies the distribution F of this random variable, along with (3.2.1) we
will also write £ € F.

Now we will give examples of some of the most common distributions.

3.2.2 The Most Common Distributions

1. The degenerate distribution 1,. The distribution I, is defined by
0 ifaeB,
1 ifa¢B.

This distribution is concentrated at the point a: if £ €1, then P(§ =a) = 1. The
distribution function of I, has the form

L.(B) ={

f
F(x)={0 orx <a,

1 forx >a.

The next two distributions were described in Examples 3.1.1 and 3.1.2 of
Sect. 3.1.
2. The binomial distribution B’,. By the definition, § € B}, (n > 0 is an integer,

p € (0, 1) if Pt =k) = () p*(1 — p)" ¥, 0 < k < n. The distribution B}, will be

denoted by B,.
3. The uniform distribution U, 5. If £ € U, p, then
BNla,b
P e 5y = MBOb)
u(la, b])

where u is the Lebesgue measure. We saw that this distribution has distribution
function (3.1.1).

The next distribution plays a special role in probability theory, and we will en-
counter it many times.

4. The normal distribution ®,, ,» (the normal or Gaussian law). We will write
Eed, 2 if

PEcB) =9, 2(B)= e—("—“>2/ @™ gy, (3.2.2)

1
o 2w
The distribution @, > depends on two parameters: « and o > 0.If ¢ = 0,0 =1, the
normal distribution is called standard. The distribution function of ® ; is equal to

2
@ (x) = ®,1((—00, %)) = f e
( V2
The distribution function of @, ;2 is obviously equal to @ ((x — «)/0), so that the
parameters o and o have the meaning of the “location” and “scale” of the distribu-
tion.
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The fact that formula (3.2.2) defines a distribution follows from Theorem 3.2.1
and the observation that the function @ (x) (or @ ((x — a)/o)) satisfies properties
F1-F3, since @ (—00) =0, ®(oc0) =1, and @ (x) is continuous and monotone. One
could also directly use the fact that the integral in (3.2.2) is a countably additive set
function (see Sect. 3.6 and Appendix 3).

5. The exponential distribution T',,. The relation § € I', means that £ is nonneg-
ative and

PE e B):I’a(B):a/ e “du.
BN(0,00)

The distribution function of & & I'y, clearly has the form

‘l _ p,—ox f >
P(§<x)={ e orx >0,
0 for x < 0.
The exponential distribution is a special case of the gamma distribution I'y, ;, to be
considered in more detail in Sect. 7.7.
6. A discrete analogue of the exponential distribution is called the geometric

distribution. It has the form
PE=k=1-p)p~, pe@© 1), k=0,1,...

7. The Cauchy distribution K, . As was the case with the normal distribution,
this distribution depends on two parameters « and ¢ which are also location and
scale parameters. If £ € K, then

1 du
PG eB)= E/B 1+ ((u—a)/o)?

The distribution function K (x) of Ko 1 is

1 [ du
K(x):—/

7)o 1+u?

The distribution function of K, » is equal to K ((x — «)o). All the remarks made
for the normal distribution continue to hold here.

Example 3.2.1 Suppose that there is a source of radiation at a point (¢, o), o > 0,
on the plane. The radiation is registered by a detector whose position coincides with
the x-axis. An emitted particle moves in a random direction distributed uniformly
over the circle. In other words, the angle 1 between this direction and the vector
(0, —1) has the uniform distribution U_5 ; on the interval [—m, 7r]. Observation
results are the coordinates &1, &>, ... of the points on the x-axis where the particles
interacted with the detector. What is the distribution of the random variable & = & ?

To find this distribution, consider a particle emitted at the point («, o) given
that the particle hit the detector (i.e. given that n € [—m/2, w/2]). It is clear that
the conditional distribution of n given the last event (of which the probability is
P(n € [-m/2,7m/2]) = 1/2) coincides with U_y /2 /2. Since (§ — «a)/o = tanp,
one obtains that
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P <x)=P(a+otann < x)

n 1 X —a 1 1 X—a
=P| — < —arctan = — + — arctan
T o 2 7 o

Recalling that (arctanu) = 1/(1 + u?), we have
/" du /)‘ du g
arctanx = — = _—— =,
o 1+u? oo 1 4+uz 2

1 [e—o/e qy X—a
P =— =K .
¢ <x) b4 /_oo 1 +u? < o )

Thus the coordinates of the traces on the x-axis of the particles emitted from the
point («, o) have the Cauchy distribution K, 4.

8. The Poisson distribution I1,. We will write £ € IT, if £ assumes nonnegative
integer values with probabilities

m

Y
P(S:m):—'e , A>0 m=0,1,2,...
m!

The distribution function, as in Example 3.1.1, has the form of a sum:

* forx >0,

for x <O.

A
F — Zm<x €
(x) {0

3.2.3 The Three Distribution Types

All the distributions considered in the above examples can be divided into two types.

1. Discrete Distributions

Definition 3.2.2 The distribution of a random variable £ is called discrete if & can
assume only finitely or countably many values x1, x2, ... so that

pk=PE =x) >0, Zpk=1-
A discrete distribution { px} can obviously always be defined on a discrete prob-
ability space. It is often convenient to characterise such a distribution by a table:

Values |xi x x3
Probabilities | p1  p2  p3

The distributions I, B’I',, IT,, and the geometric distribution are discrete. The
derivative of the distribution function of such a distribution is equal to zero every-
where except at the points xp, x2, ... where F(x) is discontinuous, the jumps being

F(xx +0) — F(xp) = pr.

An important class of discrete distributions is formed by lattice distributions.
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Definition 3.2.3 We say that random variable & has a lattice distribution with span
h if there exist @ and & such that

o

> PE=a+kh)=1. (3.2.3)

k=—o00

If £ is the greatest number satisfying (3.2.3) and the number a lies in the interval
[0, i) then these numbers are called the span and the shift, respectively, of the lattice.

If a =0 and & = 1 then the distribution is called arithmetic. The same terms will
be used for random variables.

Obviously the greatest common divisor (g.c.d.) of all possible values of an arith-
metic random variable equals 1.

I1. Absolutely Continuous Distributions

Definition 3.2.4 The distribution F of a random variable £ is said to be absolutely
continuous® if, for any Borel set B,

P =PEeB)= [ fear (3.2.4)
B
where f(x) >0, ffooo f(x)dx =1.
The function f(x) in (3.2.4) is called the density of the distribution.
It is not hard to derive from the proof of Theorem 3.2.1 (to be more precise, from

the theorem on uniqueness of the extension of a measure) that the above definition
of absolute continuity is equivalent to the representation

Fg(x):/ f(u)du

for all x € R. Distribution functions with this property are also called absolutely
continuous.

2The definition refers to absolute continuity with respect to the Lebesgue measure. Given a measure
won (R, B) (see Appendix 3), a distribution F is called absolutely continuous with respect to |1
if, for any B € 98, one has

F(B) = /B FEOud).

In this sense discrete distributions are also absolutely continuous, but with respect to the count-
ing measure m. Indeed, if one puts f(xx) = pr, m(B) = {the number of points from the set
(x1, X2, ...) which are in B}, then

FB =Y p= Y St = [ fwman

X EB xXy€B

(see Appendix 3).
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The function f(x) is determined by the above equalities up to its values on a set
of Lebesgue measure 0. For this function, the relation f(x) = % holds? almost
everywhere (with respect to the Lebesgue measure).

The distributions U, p, <I>a7 +2» Ky o and I'y, are absolutely continuous. The den-
sity of the normal distribution with parameters ovand o is equal to

o~ (—0)?/(207)

P02 (x) =
’ \/E o

From their definitions, one could easily derive the densities of the distributions U, p,
Ky s and Iy, as well. The density of K, » has a shape resembling that of the normal
density, but with “thicker tails” (it vanishes more slowly as |x| — o0).

We will say that a distribution F has an atom at point x; if F({x1}) > 0. We saw
that any discrete distribution consists of atoms but, for an absolutely continuous
distribution, the probability of hitting a set of zero Lebesgue measure is zero. It
turns out that there exists yet a third class of distributions which is characterised
by the negation of both mentioned properties of discrete and absolutely continuous
distributions.

I11. Singular Distributions

Definition 3.2.5 A distribution F is said to be singular (with respect to Lebesgue
measure) if it has no atoms and is concentrated on a set of zero Lebesgue measure.

Because a singular distribution has no atoms, its distribution function is continu-
ous. An example of such a distribution function is given by the famous Cantor func-
tion of which the whole variation is concentrated on the interval [0, 1]: F(x) =0
for x <0, F(x) =1 for x > 1. It can be constructed as follows (the construction
process is shown in Fig. 3.1).

3The assertion about the “almost everywhere” uniqueness of the function f follows from the
Radon-Nikodym theorem (see Appendix 3).
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Divide the segment [0, 1] into three equal parts [0, 1/3], [1/3,2/3], and [2/3, 1].
On the inner segment put F(x) = 1/2. The remaining two segments are again di-
vided into three equal parts each, and on the inner parts one sets F'(x) to be 1/4 and
3/4, respectively. Each of the remaining segments is divided in turn into three parts,
and F(x) is defined on the inner parts as the arithmetic mean of the two already
defined neighbouring values of F(x), and so on. At the points which do not belong
to such inner segments F(x) is defined by continuity. It is not hard to see that the
total length of such “inner” segments on which F'(x) is constant is equal to

12 4 T2\ 11
3Toty ™ _3]§<3) 3 1—2/3_1’
so that the function F(x) grows on a set of measure zero but has no jumps.

From the construction of the Cantor distribution we see that d F (x)/dx = 0 al-
most everywhere.

It turns out that these three types of distribution exhaust all possibilities.

More precisely, there is a theorem belonging to Lebesgue® stating that any distri-
bution function F(x) can be represented in a unique way as a sum of three compo-
nents: discrete, absolutely continuous, and singular. Hence an arbitrary distribution
function cannot have more than a countable number of jumps (which can also be
observed directly: we will count all the jumps if we first enumerate all the jumps
which are greater than 1/2, then the jumps greater than 1/3, then greater than 1/4,
etc.). This means, in particular, that F(x) is everywhere continuous except perhaps
at a countable or finite set of points.

In conclusion of this section we will list several properties of distribution func-
tions and densities that arise when forming new random variables.

3.2.4 Distributions of Functions of Random Variables

For a given function g(x), to find the distribution of g(&) we have to impose some
measurability requirements on the function. The function g(x) is called Borel if the
inverse image

g_l(B) = {x 1gx) e B}

of any Borel set B is again a Borel set. For such a function g the distribution function
of the random variable n = g(£) equals

Foe)(x) =P(g(§) <x) =P(£ € g7 (—00,x)).

If g(x) is continuous and strictly increasing on an interval (a, b) then, on the
interval (g(a), g(b)), the inverse function y = g~ (x) is defined as the solution to

4See Sect. 3.5 in Appendix 3.
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the equation g(y) = x.° Since g is a monotone mapping we have

fs@ <x}={e <"} forxe(g@),g®).
Thus we get the following representation for Fy) in terms of Fg: for x €

(g(a), g(b)),
Foey(1) =P(& < g7' (1)) = Fe (g7 (). (3.2.5)

Putting g = F¢ we obtain, in particular, that if F is continuous and strictly increas-
ing on (a,b) and F(a) =0, F(b) =1 (—a and b may be c0) then

F (g(_l)(x)) =x

for x € [0, 1] and therefore the random variable n = Fg (&) is uniformly distributed
over [0, 1].

Definition 3.2.6 The quantile transform F~V(f) of an arbitrary distribution F
with the distribution function F(x) is the “generalised” inverse of the function F

F(_l)(y) = sup{x F(x) < y} for y € (0, 1];
FED(0) :=inf{x : F(x) > 0}.

In mathematical statistics, the number F (1 (y) is called the quantile of order y
of the distribution F. The function F(~! has a discontinuity of size b — a at a point
y if (a, b) is the interval on which F is constant and such that F(x) =y € [0, 1).

Roughly speaking, the plot of the function F(~1 can be obtained from that of the
function F(x) on the (x, y) plane in the following way: rotate the (x, y) plane in
the counter clockwise direction by 90°, so that the x-axis becomes the ordinate axis,
but the y-axis becomes the abscissa axis directed to the left. To switch to normal
coordinates, we have to reverse the direction of the new x-axis.

Further, if x is a point of continuity and a point of growth of the function F (i.e.,
F(x) is a point of continuity of F(~1) then F(~1(y) is the unique solution of the
equation F(x) =y and the equality F(F“D(y)) =y holds.

In some cases the following statement proves to be useful.

Theorem 3.2.2 Let n € Up 1. Then, for any distribution F,
f P eF.
Proof If F(x) > y then F©D(y) = sup{v : F(v) < y} < x, and vice versa: if

F(x) <y then F©"V(y) > x (recall that F(x) is left-continuous). Therefore the
following inclusions are valid for the sets in the (x, y) plane:

{y < F(x)} C {F(_l)(y) <x} C {y < F(x)}.

SFor an arbitrary non-decreasing function g, the inverse function g~ (x) is defined by the equa-
tion

g<7')(y) = inf{x 1g(x) > y} = sup{x gx) < y}.
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Substituting n € Up 1 in place of y in these relations yields that, for any x, such
inclusions hold for the respective events, and hence

P(F(_l)(rl) < x) — P(n < F(x)) = F(x).

The theorem is proved. 0

Thus we have obtained an important method for constructing random variables
with prescribed distributions from uniformly distributed random variables. For in-
stance, if n € Up,; then & = —(1/a)Inn € Ty.

In another special case, when g(x) = a + bx, b > 0, from (3.2.5) we get Fyz) =
Fe((x —a)/b). We have already used this relation to some extent when considering
the distributions ® and Ky .

If a function g is strictly increasing and differentiable (the inverse function g(=1
is defined in this case), and & has a density f(x), then there exists a density for g(§)
which is equal to

a,02

12 d
Feo M=) (VM) = f@) ﬁ

where x = g~V (y), y = g(x). A similar argument for decreasing g leads to the
general formula

feery(¥) = f(x)

dx
dy|
For g(x) =a + bx, b # 0, one obtains

1 y—a
fa+bE(Y)—mf< b )

3.3 Multivariate Random Variables

Let &,&,...,&, be random variables given on a common probability space
(£2,5,P). To each w, these random variables put into correspondence an n-
dimensional vector & (w) = (§1(w), &2(w), ..., & (w)).

Definition 3.3.1 A mapping §2 — R” given by random variables &1, &, ..., &, is
called a random vector or multivariate random variable.

Such a mapping £2 — R” is a measurable mapping of the space (£2, F) into the
space (R", B"), where 8" is the o -algebra of Borel sets in R". Therefore, for Borel
sets B, the function P¢ (B) =P(§ € B) is defined.

Definition 3.3.2 The function F¢ (B) is called the distribution of the vector &.
The function

Fe, g,(x1, .., x0) =P <x1,..., 8 <x,)
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is called the distribution function of the random vector (&1, ..., &,) or joint distri-
bution function of the random variables &1, ..., &,.

The following properties of the distribution functions of random vectors, analo-
gous to properties F1-F3 in Sect. 3.2, hold true.

FF1. Monotonicity: “Multiple” differences of the values of the function Fg, ¢,,
which correspond to probabilities of hitting arbitrary “open at the right” paral-
lelepipeds, are nonnegative. For instance, in the two-dimensional case this means
that, for any x; < x2, y1 < y2 (the points (x1, y1) and (x2, y2) being the “extreme”
vertices of the parallelepiped),

Fr, 5, (X2, y2) — Fry 5, (x2, y1) — (Fe, 6 (%1, ¥2) — Fg, 5, (x1, y1)) = 0.

This double difference is nothing else but the probability of hitting the “semi-open”

parallelepiped [x1, x2) X [y1, y2) by &.
In other words, the differences

Fe 6, (t, y2) — Fg (2, y1) foryp <y

must be monotone in f. (For this to hold, the monotonicity of the function
Ft, & (t, y1) is not sufficient.)
FF2. The second property can be called consistency.

x}i_l)noo Fe o g,(x1, .00 x0) = Fe g, (X1, .0, Xp—1),

lim  Fe g, (x1,..., %) =0.

Xn—™>—

FF3. Left-continuity:

lim Fg, g, (xl, e x,/l) =Fg g, (X1, ..., Xp).
x,too
That the limits in properties FF2 and FF3 are taken in the last variable is inessential,
for one can always renumber the components of the vectors.

One can prove these properties in the same way as in the one-dimensional case.
As above, any function F(xi,...,X,) possessing this collection of properties will
be the distribution function of a (multivariate) random variable.

As in the one-dimensional case, when considering random vectors & =
(&1, ..., &), we can make use of the simplest sample model of the probability space
(£2,F, P). Namely, let £2 coincide with R” and F = 5" be the o-algebra of Borel
sets. We will complete the construction of the required probability space if we put
F(B) =F:(B) =P(¢ € B) for any B € 5" It remains to define the random vari-
able as the value of the elementary event itself, i.e. to put £(w) = w, where w is a
point in R".

It is not hard to see that the distribution function F, g, uniquely determines the
distribution Fg (B). Indeed, Fy, ¢, defines a probability on the o -algebra A gener-
ated by rectangles {a; < x; < b;; i =1, ..., n}. For example, in the two-dimensional
case



46 3 Random Variables and Distribution Functions

Pla; <& <bi,a0 <& < by)
=P¢ 1 <br,ap <& <by) —P¢1 <ar, a2 <& < by)
= [Fe1.6 (b1, b2) = Fy, 5, (b1, a2) | = [F, 5 (a1, b2) — Fyy g5 (a1, a2)]-

But 8" = ¢ (A), and it remains to make use of the measure extension theorem (see
Sect. 3.2.1).

Thus from a distribution function Fy, g, = I one can always construct a sample
probability space (R", 8", F¢) and a random variable &(w) = w on it so that the
latter will have the prescribed distribution F.

As in the one-dimensional case, we say that the distribution of a random vector
is discrete if the random vector assumes at most a countable set of values.

The distribution of a random vector will be absolutely continuous if, for any
Borel set B C R”,

Fg(B)=P($€B)=fo(x)dx,

where clearly f(x) > 0 and fg fx)dx =1.
This definition can be replaced with an equivalent one requiring that

X1 Xn
Fep . g5,(x1,...,%n) 2/ f f(t, ..., ty)dty - --dty. 3.3.1)
—00 —00

Indeed, if (3.3.1) holds, we define a countably additive set function

Q(B)=/Bf(X)dx

(see properties of integrals in Appendix 3), which will coincide on rectangles
with Fg. Consequently, F¢ (B) = Q(B).

The function f(x) is called the density of the distribution of & or density of the
Jjoint distribution of &1, ..., &,. The equality

n

mFSLHSn(xl”"’x”) = f(x1,...,%n)

holds for this function almost everywhere.

If a random vector £ has density f(xi,...,x;,), then clearly any “subvector”
(&, . .- &k,), ki <n, also has a density equal (let for the sake of simplicity k; =i,
i=1,...,5)to

f(xl,...,xs):/f(xl,...,x,l)dxs+1---dxn.

Let continuously differentiable functions y; = g;(x1, ..., x,) be given in a region
A C R". Suppose they are univalently resolvable for x1, .. ., x,: there exist functions
xi =g (1, ..., yn), and the Jacobian J = [3x; /dy;| # 0 in A. Denote by B the
image of A in the range of (yi, ..., y,). Suppose further that a random vector £ =
(61, ...,&,) has a density f;(x). Then n; = g;(§1,...,&,) will be random variables
with a joint density which, at a point (y1, ..., y,) € B, is equal to

Jats oo yn) = fe (e, xa) I (3.3.2)
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moreover
P("?EA):/fs(x17-~~,xn)dx1---dxn=/fg(xl,...,xn)IJldyl---dyn
A B

= /B SoOt, .oy dyr---dy, =P(n € B). (3.3.3)

This is clearly an extension to the multi-dimensional case of the property of densities
discussed at the end of Sect. 3.2. Formula (3.3.3) for integrals is well-known in
calculus as the change of variables formula and could serve as a proof of (3.3.2).

The distribution F¢ of a random vector £ is called singular if the distribution has
no atoms (F¢ ({x}) = 0 for any x € R") and is concentrated on a set of zero Lebesgue
measure.

Consider the following two important examples of multivariate distributions (we
continue the list of the most common distribution from Sect. 3.2).

9. The multinomial distribution B),. We use here the same symbol B, as we used
for the binomial distribution. The only difference is that now by p we understand a
vector p = (p1,..., pr), pj =0, Z;-Zl pj =1, which could be interpreted as the
collection of probabilities of disjoint events A, | JA; = §2. For an integer-valued
random vector v = (vy, ..., V), we will write v € B if for k = (k1, ..., k), k; >0,
>i—1kj =n one has

Pr=k)=—— pi... phr (3.3.4)

Jl - dt PV P e
On the right-hand side we have a term from the expansion of the polynomial (p; +
-+- 4+ py)"* into powers of pi, ..., p,. This explains the name of the distribution. If

p is a number, then evidently B, = B?p’lfp), so that the binomial distribution is a
multinomial distribution with r = 2.

The numbers v; could be interpreted as the frequencies of the occurrence of
events A; in n independent trials, the probability of occurrence of A; in a trial
being p;. Indeed, the probability of any fixed sequence of outcomes containing
ki, ...,k outcomes Ay, ..., A, respectively, is equal to p]f‘ e pf", and the number
of different sequences of this kind is equal to n!/k;!---k,! (of n! permutations we
leave only those which differ by more than merely permutations of elements inside
the groups of k1, ..., k, elements). The result will be the probability (3.3.4).

Example 3.3.1 The simplest model of a chess tournament with two players could
be as follows. In each game, independently of the outcomes of the past games, the
1st player wins with probability p, loses with probability g, and makes a draw with
probability 1 — p — g. In that case the probability that, in n games, the Ist player
wins i and loses j games (i + j <n), is
n! o .
pnii, j)=m————=p'qg/A=p—q)""/.
iljln—1i—j)!
Suppose that the tournament goes on until one of the players wins N games (and
thereby wins the tournament). If we denote by 7 the duration of the tournament (the
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number of games played before its end) then

N-1 N-1
P(r;:n):Zp(n—l;N—l,i)p+Zp(n—l;i,N—l)q.
i=0 i=0

10. The multivariate normal (or Gaussian) distribution ®, ,>. Let o = (a1,
...,a,) be a vector and ol = lloijll, i, j =1,...,r, a symmetric positive definite
matrix, and A = ||a;;|| the matrix inverse to o2 =A"1 We will say that a vector
& = (&1, ...,&/) has the normal distribution: § € ®,, 2, if it has the density

A 1
Vg 2(X) = % exp{—i(x —a)A(x — a)T}.

Here T denotes transposition:

xAxT = Zaijxixj.

It is not hard to verify that

/(pa’gz(x)dxl cedxp =1

(see also Sect. 7.6).

3.4 Independence of Random Variables and Classes of Events

3.4.1 Independence of Random Vectors

Definition 3.4.1 Random variables &1, ..., &, are said to be independent if
P €By,....6n€ By) =P € By)---P§, € By) (3.4.1)
for any Borel sets B, ..., B, on the real line.

One can introduce the notion of a sequence of independent random variables. The
random variables from the sequence {&,}7° | given on a probability space (£2, 5, P),
are independent if (3.4.1) holds for any integer n so that the independence of a
sequence of random variables reduces to that of any finite collection of random
variable from this sequence. As we will see below, for a sequence of independent
random variables, any two events related to disjoint groups of random variables
from the sequence are independent.

Another possible definition of independence of random variables follows from
the assertion below.

Theorem 3.4.1 Random variables &1, ..., &, are independent if and only if
Fey . g,(x1, ..., xp) = Fg (x1) -+ Fg, (xn).

The proof of the theorem is given in the third part of the present section.
An important criterion of independence in the case when the distribution of £ =
(&1, ..., &) is absolutely continuous is given in the following theorem.
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Theorem 3.4.2 Let random variables &1, ..., &, have densities f1(x),..., fn(x),
respectively. Then for the independence of &1, ..., &, it is necessary and sufficient
that the vector & = (&1, ..., &,) has a density f(x1,...,x,) which is equal to

FOr, o x0) = filx) - fulxn).

Thus, if it turns out that the density of & equals the product of densities of &;, that
will mean that the random variables &; are independent.

We leave it to the reader to verify, using this theorem, that the components of a
normal vector (&1, ..., &,) are independent if and only if a;; =0, 0;; =0 fori # j.

Proof of Theorem 3.4.2 1f the distribution function of the random variable &; is given
by

ngm):/l fitydn

and §; are independent, then the joint distribution function will be defined by the
formula

Fe e, (x1, ..., x0) = Fg (x1) -+ Fg, (xp)
X1 Xn
= fl(tl)dtl"'/ Ju(ty) dty,
o0 o0

X1 Xn
=/ / fi(t) - futy) dty - - - dty.

Conversely, assuming that

X1 Xn
FS]...S,l(xl’---»xn)zf / fl(tl)"'fn(tn)dtl"'dtns
—00 —00
we come to the equality

Fe g, (x1, .., x0) = Fg (x1) -+ Fg, (xpn).

The theorem is proved. g

Now consider the discrete case. Assume for the sake of simplicity that the com-
ponents of & may assume only integral values. Then for the independence of &; it is
necessary and sufficient that, for all kq, ..., k,,

P =ki,....60=kn) =PE1=k1)--- P&y =ky).

Verifying this assertion causes no difficulties, and we leave it to the reader.

The notion of independence is very important for Probability Theory and will be
used throughout the entire book. Assume that we are formalising a practical problem
(constructing an appropriate probability model in which various random variables
are to be present). How can one find out whether the random variables (or events)
to appear in the model are independent? In such situations it is a justified rule to
consider events and random variables with no causal connection as independent.
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The detection of “probabilistic” independence in a mathematical model of a
random phenomenon is often connected with a deep understanding of its physical
essence.

Consider some simple examples. For instance, it is known that the probability
of a new-born child to be a boy (event A) has a rather stable value P(A) = 22/43.
If B denotes the condition that the child is born on the day of the conjunction of
Jupiter and Mars, then, under the assumption that the position of the planets does not
determine individual fates of humans, the conditional probability P(A|B) will have
the same value: P(A|B) = 22/43. That is, the actual counting of the frequency of
births of boys under these specific astrological conditions would give just the value
22/43. Although such a counting might never have been carried out at a sufficiently
large scale, we have no grounds to doubt its results.

Nevertheless, one should not treat the connection between “mathematical” and
causal independence as an absolute one. For instance, by Newton’s law of gravita-
tion the flight of a missile undoubtedly influences the simultaneous flight of another
missile. But it is evident that in practice one can ignore this influence. This example
also shows that independence of events and variables in the concrete and relative
meaning of this term does not contradict the principle of the universal interdepen-
dence of all events.

It is also interesting to note that the formal definition of independence of events or
random variables is much wider than the notion of real independence in the sense of
affiliation to causally unrelated phenomena. This follows from the fact that “math-
ematical” independence can take place in such cases when one has no reason for
assuming no causal relation. We illustrate this statement by the following example.
Let n be a random variable uniformly distributed over [0, 1]. Then in the expansion
of n into a binary fraction

the random variables &; will be independent (see Example 11.3.1), although they all
have a related origin.

One can see that this circumstance only enlarges the area of applicability of all
the assertions we obtain below under the formal condition of independence.®

The notion of independence of random variables is closely connected with that
of independence of o-algebras.

3.4.2 Independence of Classes of Events

Let (£2, 5, P) be a probability space and A; and A, classes of events from the o -
algebra §.

SFor a more detailed discussion of connections between causal and probabilistic independence, see
[24], from where we borrowed the above examples.
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Definition 3.4.2 The classes of events A and A, are said to be independent if, for
any events A and A; such that A| € A and A, € A», one has

P(A1A2) =P(ADP(A2).

The following definition introduces the notion of independence of a sequence of
classes of events.

Definition 3.4.3 Classes of events {A,,} 7 | are independent if, for any collection of
integers ny, ..., ng,

k k
P< ﬂ A,,J.) =[[Pn)
j=1 =1

for any Anj € .Anj.

For instance, in a sequence of independent trials, the sub-o-algebras of events
related to different trials will be independent. The independence of a sequence of
algebras of events also reduces to the independence of any finite collection of alge-
bras from the sequence. It is clear that subalgebras of events of independent algebras
are also independent.

Theorem 3.4.3 o-algebras | and 21, generated, respectively, by independent al-
gebras of events Ay and Aj are independent.

Before proving this assertion we will obtain an approximation theorem which
will be useful for the sequel. By virtue of the theorem, any event A from the o -
algebra 2( generated by an algebra A can, in a sense, be approximated by events
from A. To be more precise, we introduce the “distance” between events defined by

d(A,B)=P(ABUAB)=P(AB)+P(AB) =P(A — B) + P(B — A).
This distance possesses the following properties:
d(A,B)=d(A,B),

d(A,C)<d(A,B)+d(B, (),

d(AB,CD) <d(A,C)+d(B, D),
|P(A) —P(B)| <d(A, B).

(3.4.2)

The first relation is obvious. The triangle inequality follows from the fact that
d(A,C)=P(AC)+P(AC) =P(ACB) + P(ACB) + P(ACB) + P(ACB)
<P(CB)+P(AB)+P(AB) +P(CB)=d(A, B) +d(B, C).

The third relation in (3.4.2) can be obtained in a similar way by enlarging events
under the probability sign. Finally, the last inequality in (3.4.2) is a consequence of
the relations

P(A) =P(AB) + P(AB) =P(B) — P(BA) + P(AB).
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Theorem 3.4.4 (The approximation theorem) Let (§2,§, P) be a probability space
and U the o-algebra generated by an algebra A of events from §. Then, for any
A €, there exists a sequence A,, € A such that

lim d(A, A,) =0. (3.4.3)
n—oo

By the last inequality from (3.4.2), the assertion of the theorem means that
P(A) =1lim,_, o, P(A,) and that each event A € 2 can be represented, up to a set of
zero probability, as a limit of a sequence of events from the generating algebra A
(see also Appendix 1).

Proof’ We will call an event A € § approximable if there exists a sequence A, € A
possessing property (3.4.3),i.e. d(A,, A) — O.

Since d(A, A) = 0, the class of approximable events 20* contains A. Therefore
to prove the theorem it suffices to verify that A* is a o-algebra.

The fact that 2A* is an algebra is obvious, for the relations A € 2A* and
B € 21* imply that A, AUB, AN B e Q. (For instance, if d(A, A,) — 0 and
d(B, B,) — 0, then by the third inequality in (3.4.2) one has d(AB, A,B,) <
d(A, A,)+d(B, B,) — 0, so that AB € A*.)

Now let C = (7= Cx where Ci € 2*. Since 2* is an algebra, we have D, =
Ui~ Ck € A*; moreover,

d(D,,C)=P(C — D,)=P(C)—-P(D,)— 0.

Therefore one can choose A, € A so that d(D,, A,) < 1/n, and consequently by
virtue of (3.4.2) we have

d(C, Ap) =d(C, Dp) +d(Dy, Ap) — 0.

Thus C € A* and hence A* forms a o-algebra. The theorem is proved. g

Proof of Theorem 3.4.3 isnow easy. If A; € 2| and A, € 2y, then by Theorem 3.4.4
there exist sequences A, € A and Ay, € A; such that d(A;, Aj,) — 0asn — oo,
i =1, 2. Putting B= AA> and B, = A1, A2,, We obtain that

d(B, By) <d(A1, A1) +d(A2, A2p) = 0
as n — oo and

P(A1Az) = lim P(B,) = lim P(A1,)P(A2,) =P(A])P(A2). O

3.4.3 Relations Between the Introduced Notions

We will need one more definition. Let £ be a random variable (or vector) given on a
probability space (£2, 5, P).

"The theorem is also a direct consequence of the lemma from Appendix 1.
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Definition 3.4.4 The class §¢ of events from § of the form A =& -I(B) =
{w: &(w) € B}, where B are Borel sets, is called the o-algebra generated by the
random variable & .

It is evident that §¢ is a o-algebra since to each operation on sets A there corre-
sponds the same operation on the sets B = £(A) forming a o -algebra.

The o-algebra §¢ generated by the random variable & will also be denoted by
o(é).

Consider, for instance, a probability space (£2, 8, P), where 2 = R is the real
line and ‘B is the o -algebra of Borel sets. If

0, w<0,

I, w>0,

$=$(w)={

then §¢ clearly consists of four sets: R, &, {® < 0} and {w > 0}. Such a random
variable £ cannot distinguish “finer” sets from 3. On the other hand, it is obvious
that £ will be measurable ({£ € B} € ®81) with respect to any other “richer” sub-o -
algebra B, such that o (§) C 8| C ‘B.

If £ = £(w) = |w] is the integral part of w, then §¢ will be the o-algebra of sets
composed of theevents {k <w<k+ 1}, k=...,—-1,0,1,...

Finally, if £(w) = ¢(w) where ¢ is continuous and monotone, ¢ (00) = oo and
@(—00) = —oo, then §¢ coincides with the o -algebra of Borel sets 5.

Lemma 3.4.1 Let & and n be two random variables given on ($2, §, P), the variable
& being measurable with respect to o (). Then & and n are functionally related, i.e.
there exists a Borel function g such that &€ = g(n).

Proof By assumption,

k k+1
Ak,n={$€|:2—nvz—n>} €a(n).

Denote by By, = {n(w) : w € At ,} the images of the sets A; , on the line R under
the mapping n(w) and put g,(x) = k/2" for x € By ,. Then g,(n) =[2"¢]/2" and
because Ag,, € o(n), Bi.n €5 and g, is a Borel function. Since g, (x) 1 for any x,
the limit lim,— o0 gn(x) = g(x) exists and is also a Borel function. It remains to
observe that ¢ = lim,_, 5, g,(7) = g(n) by the very construction. Il

Now we formulate an evident proposition relating independence of random vari-
ables and o -algebras.

Random variables &1, ...,&, are independent if and only if the o-algebras
o(&1),...,0(&,) are independent.

This is a direct consequence of the definitions of independence of random vari-
ables and o -algebras.

Now we can prove Theorem 3.4.1. First note that finite unions of semi-intervals
[-,-) (perhaps with infinite end points) form a o -algebra generating the Borel o -alge-
bra on the line: B = o (A).
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Proof of Theorem 3.4.1 Since in one direction the assertion of the theorem is ob-
vious, it suffices to verify that the equality F (x1,...,x,) = Fg (x1) - - Fg, (x,) for
the joint distribution function implies the independence of o (1), ..., 0 (&§,). Put for
simplicity n = 2 and denote by A and A the semi-intervals [x1, x2) and [y, y2),
respectively. The following equalities hold:

P51 € A & € A)=P(§1 € [x1,x2), & € [y1. y2))
= F(x2, y2)F(x1,y2) — F(x2, y1) + F(x1, y1)
= (Fg, (x2) — Fz, (x1)) (F&, (2) — F&, (1))
=P{§ € A}P{§ € A}

Consequently, if A;, i =1,...,n,and Aj, j=1,...,m, are two systems of
disjoint semi-intervals, then

P(El € UAi,éz € UAj> =ZP(§1 €A, &reAj)
i=1 j=1

ij
=Y P € A)PE € A))
ij

=P(S1 cU Ai)P(éz e /\,-). (3.4.4)
i=l1 j=1

But the class of events {w : £(w) € A} = £ 1 (A), where A € A, forms, along with A,
an algebra (we will denote it by «(§)), and one has o (¢(§)) = o(§). In (3.4.4)
we proved that (&) and (&) are independent. Therefore by Theorem 3.4.3 the
o-algebras o (&) = o (x(£1)) and 0 (§&2) = o (x(&1)) are also independent. The the-
orem is proved. g

It is convenient to state the following fact as a theorem.

Theorem 3.4.5 Let @1 and ¢ be Borel functions and & and &, be independent
random variables. Then n = ¢1(&1) and 12 = 2(&2) are also independent random
variables.

Proof We have to verify that, for any Borel sets By and B,
P(p1(&1) € Bl, ¢2(52) € By) =P(¢1(&1) € B))P(p2(&2) € By). (3.4.5)

But the sets {x : ¢; (x) € B;} = <p‘1(B,-) = Bi*, i =1, 2, are again Borel sets. There-
fore

{w: i) e B} ={w:& € B}},

and the required multiplicativity of probability (3.4.5) follows from the indepen-
dence of &;. The theorem is proved. g
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Let {£,}7 | be a sequence of independent random variables. Consider the random
variables &, &1, ..., &y Where k <m < oco. Denote by o (&, ..., &,) (form = oo
we will write o (&k, &k+1,...)) the o-algebra generated by the events ﬂ;":k A;,
where A; € 0 (§;).

Definition 3.4.5 The o-algebra o (&, ..., &) is said to be generated by the random
variables &, ..., &y.

In the sequel we will need the following proposition.

Theorem 3.4.6 For any k > 1, the o-algebra o(&,4r) is independent of
a(glv R gﬂ)

Proof To prove the assertion, we make use of Theorem 3.4.3. To this end we have
to verify that the algebra A generated by sets of the form B = [)/_, A;, where
A; € 0(&), is independent of o (§,4+1). Let A € o(&,+k), then it follows from the
independence of the o-algebras o (£1), 0(&2), ...,0(&,), o (€y+k) that

P(AB) =P(A)P(A)---P(A,) =P(A) - P(B).

In a similar way we verify that

P(QAM) =P(0Ai>P(A)

i=1

(one just has to represent | J'_; A; as a union of disjoint events from A). Thus the
] p i=1 J

algebra A is independent of o (§,4+4). Hence o (&1, ...,&,) and o (&,4) are inde-
pendent. The theorem is proved. d

It is not hard to see that similar conclusions can be made about vector-valued
random variables &1, &, ... defining their independence using the relation

P €Bi,....& € B) =] [P €B)),

where B; are Borel sets in spaces of respective dimensions.

In conclusion of this section note that one can always construct a probability
space (2,5, P) ((R",‘B", P¢)) on which independent random variables &1, ..., &,
with prescribed distribution functions Fg; are given whenever these distributions
Fg; are known. This follows immediately from Sect. 3.3, since in our case the joint
distribution function F¢ (xy, ..., x,) of the vector § = (&1, ..., &,) is uniquely deter-
mined by the distribution functions Fg; (x) of the variables §;:

n
Fs(xl,...,xn) :anj(Xj).
1
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3.5* On Infinite Sequences of Random Variables

We have already mentioned infinite sequences of random variables. Such sequences
will repeatedly be objects of our studies below. However, there arises the question
of whether one can define an infinite sequence on a probability space in such a way
that its components possess certain prescribed properties (for instance, that they will
be independent and identically distributed).

As we saw, one can always define a finite sequence of independent random vari-
ables by choosing for the “compound” random variable (&1, ...,&,) the sample
space Ry x Ry x --- x R, =R" and o-algebra B x B x --- x B, =‘B" gener-
ated by sets of the form B; x By x --- x B, C R", B; being Borel sets. It suffices
to define probability on the algebra of these sets. In the infinite-dimensional case,
however, the situation is more complicated. Theorem 3.2.1 and its extensions to the
multivariate case are insufficient here. One should define probability on an algebra
of events from R> = [];2, Ry so that its closure under countably many operations
U and N form the o-algebra B°° generated by the products () Bj,, Bj, € B,.

Let N be a subset of integers. Denote by RN = [ Txen Ri the direct product of
the spaces Ry over k € N, BN = [ Txen Br. We say that distributions Py and Py~
on (RN ", BN ,) and (RN " BN ”), respectively, are consistent if the measures induced
by Py’ and Py~ on the intersection RY =RN NRY” (here N = N’ N N”') coincide
with each other. The measures on RY are said to be the projections of Py, and Py»,
respectively, on RY. An answer to the above question about the existence of an
infinite sequence of random variables is given by the following theorem (the proof
of which is given in Appendix 2).

Theorem 3.5.1 (Kolmogorov) Specifying a family of consistent distributions Py
on finite-dimensional spaces RN defines a unique probability measure Psy on
(R, B°°) such that each probability Py is the projection of Ps, onto RN .

It follows from this theorem, in particular, that one can always define on an appro-
priate space an infinite sequence of arbitrary independent random variables. Indeed,
direct products of measures given on Ry, Ry, ... for different products RN and RN
are always consistent.

3.6 Integrals

3.6.1 Integral with Respect to Measure

As we have already noted, defining a probability space includes specifying a finite
countably additive measure. This enables one to consider integrals with respect to
the measure,

/ g(6(w))P(dw) (3.6.1)
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over the set £2 for a Borel function g and any random variable £ on (£2, §, P) (recall
that g(x) is said to be Borel if, for any ¢, {x : g(x) < ¢} is a Borel set on the real
line).

The definition, construction and basic properties of the integral with respect to a
measure are assumed to be familiar to the reader. If the reader feels his or her back-
ground is insufficient in this aspect, we recommend Appendix 3 which contains all
the necessary information. However, the reader could skip this material if he/she is
willing to restrict him/herself to considering only discrete or absolutely continuous
distributions for which integrals with respect to a measure become sums or conven-
tional Riemann integrals. It would also be useful for the sequel to know the Stieltjes
integral; see the comments in the next subsection.

We already know that a random variable &£ (w) induces a measure F¢ on the real
line which is specified by the equality

F: ([x, ) =P(x <& <y) = Fe(y) — Fg(x).
Using this measure, one can write the integral (3.6.1) as

/ g(E(w))P(dw) = / g(x)F¢ (dx).

This is just the result of the substitution x = £(w). It can be proved simply by
writing down the definitions of both integrals. The integral on the right hand side
is called the Lebesgue—Stieltjes integral of the function g(x) with respect to the
measure Pg and can also be written as

/g(x)ng (x). (3.6.2)

3.6.2 The Stieltjes Integral

The integral (3.6.2) is often just called the Stieltjes integral, or the Riemann—Stieltjes
integral which is defined in a somewhat different way and for a narrower class of
functions.

If g(x) is a continuous function, then the Lebesgue—Stieltjes integral coincides
with the Riemann—Stieltjes integral which is equal by definition to

N
/ gWdF = lim  lim 3" g@[F () - Fow)].  (363)
a—>—00 k=0

where the limit on the right-hand side does not depend on the choice of parti-
tions xg, x1, ..., xy of the semi-intervals [a, b) and points Xy € Ax = [xg, Xk+1).
Partitions xo, x1, ..., xy are different for different N’s and have the property that
maxg (Xg+1 — xx) = 0as N — oo.

Indeed, as we know (see Appendix 3), the Lebesgue—Stieltjes integral is

b
/ g()dF(@x) = lim  lim / gn (0)Fz (dx), (3.6.4)

a——00
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where gy is any sequence of simple functions (assuming finitely many values) con-
verging monotonically to g(x). We see from these definitions that it suffices to show
that the integrals [ ab with finite integration limits coincide. Since the Lebesgue—
Stieltjes integral f ab g dF of a continuous function g always exists, we could obtain
its value by taking the sequence gy to be any of the two sequences of simple func-
tions g and gy which are constant on the semi-intervals A and equal on them to
gy (k) = sup g(x) and gy (xx) = inf g(x),
xE€A xeAg

respectively. Both sequences in (3.6.4) constructed from gy and gy will clearly

converge monotonically from different sides to the same limit equal to the
Lebesgue—Stieltjes integral

b
/ g(x)dF(x).
a
But for any X € A, one has

gn () < g(Xk) < gy (xx),

and therefore the integral sum in (3.6.3) will be between the bounds

b N b
/ gV dF(x) <Y g(X[Fq1) — Fla)] < / gy dF (x).

k=0

These inequalities prove the required assertion about the coincidence of the inte-
grals.

It is not hard to verify that (3.6.3) and (3.6.4) will also coincide when F(x) is
continuous and g(x) is a function of bounded variation. In that case,

b b
/g(X)dF(X)=g(X)F(X)IZ—/ F(x)dg(x).

a

Making use of this fact, we can extend the definition of the Riemann—Stieltjes in-
tegral to the case when g(x) is a function of bounded variation and F(x) is an
arbitrary distribution function. Indeed, let F(x) = F.(x) + F4(x) be a representa-
tion of F(x) as a sum of its continuous and discrete components, and y1, y3, ... be
the jump points of Fy(x):

Pk = Fa(Qyk +0) — Fa(yr) > 0.
Then one has to put by definition

[ewdrw =3 meoo+ [ swar.o.

where the Riemann-Stieltjes integral f gdF.(x) can be understood, as we have
already noted, in the sense of definition (3.6.3).

We will say, as is generally accepted, that [ gdF exists if the integral [ |g|dF
is finite. It is easy to see from the definition of the Stieltjes integral that, for step
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functions F(x) (the distribution is discrete), the integral becomes the sum
/ g dF(x) =Y g (F(xx +0) — F(xp)) = Y _ g(i)P(E =x1),
k k
where x1, x3, ... are jump points of F(x). If

Fx)= /X px)dx

is absolutely continuous and p(x) and g(x) are Riemann integrable, then the Stielt-
jes integral

/g(X)dF(X)=/g(X)p(X)dx

becomes a conventional Riemann integral.

We again note that for a reader who is not familiar with Stieltjes integral tech-
niques and integration with respect to measures, it is possible to continue reading
the book keeping in mind only the last two interpretations of the integral. This would
be quite sufficient for an understanding of the exposition. Moreover, most of the
distributions which are important from the practical point of view are just of one of
these types: either discrete or absolutely continuous.

We recall some other properties of the Stieltjes integral (following immediately
from definitions (3.6.4) or (3.6.3) and (3.6.5)):

b
/ dF = F(b) — F(a);
a
b c b
/ ng:/ ng+f gdF if g or F is continuous at the point c;
a a c

/(gl +g2)dF=/g1dF+/gzdF;

fcng:c/ng for ¢ = const;

b b
/ ng:gFlﬁ—/ Fdg
a a

if g is a function of bounded variation.

3.6.3 Integrals of Multivariate Random Variables.
The Distribution of the Sum of Independent
Random Variables

Integrals with respect to measure (3.6.1) make sense for multivariate variables
&(w) = (§1(w), ..., & (w)) as well (one cannot say the same about Riemann—
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Stieltjes integrals (3.6.3)). We mean here the integral

/ﬂ g(&1(®), ... & (w))P(dw), (3.6.5)

where g is a measurable function mapping R” into R, so that g(&;(w), ..., & (w))
is a measurable mapping of £2 into R.

If (R", 8", F¢) is a sample probability space for £, then the integral (3.6.5) can
be written as

/ g@Fe(dx), x=(x1,...,x,) €R".
Rl‘l

Now turn to the case when the components &1, . . ., &, of the vector £ are independent
and assume first that n = 2. For sets
B=B|; x B = {(xl,xg) :X1 € By, xp € Bz} CRZ,
where B] and B; are measurable subsets of R, one has the equality
P(§ € B) =P(§1 € B, & € By) =P(§1 € B1)P(62 € By). (3.6.6)

In that case one says that the measure Fg, ¢, (dx1,dx2) = P(&1 € dx1,& € dx2)
on R2, corresponding to (1, §2), is a direct product of the measures

Fgl (dx1) = P(éj] €dx;) and ng (dx) = P(Ez edxy).
As we already know, equality (3.6.6) uniquely specifies a measure on (R?, 52)

from the given distributions of &; and &> on (R, B). It turns out that the integral

/g(xl, x2)Fe e, (dx1, dx2) (3.6.7)

with respect to the measure Fg, ¢, can be expressed in terms of integrals with respect
to the measures F¢, and F¢,. Namely, Fubini’s theorem holds true (for the proof see
Appendix 3 or property SA in Sect. 4.8).

Theorem 3.6.1 (Theorem on iterated integration) For a Borel function g(x,y) >0
and independent &1 and &,

/g(X1,X2)F§1§2(dX1,dX2)=/[/ g(Xl,X2)Fsz(dX2)]Fsl (dx1). (3.6.8)

If g(x,y) can assume values of different signs, then the existence of the integral
on the left-hand side of (3.6.8) is required for the equality (3.6.8). The order of
integration on the right-hand side of (3.6.8) may be changed.

It is shown in Appendix 3 that the measurability of g(x, y) implies that of the
integrands on the right-hand side of (3.6.8).

Corollary 3.6.1 Let g(x1, x2) = g1(x1)g2(x2). Then, if at least one of the following
three conditions is met:

(1) g1=>0,8 =0,
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(2) [ g1(x1)g2(x2)Fg g, (dx1, dxy) exists,
&) fgj(xj)FEj (dxj), j =1,2, exist,

then

/gl(xl)g2(x2)Féléz(dxladx2):/gl(xl)Fél (dxl)/gz(xz)ng(dxz)- (3.6.9)

To avoid trivial complications, we assume that P(g;(§;) =0) # 1, j =1, 2.

Proof Under any of the first two conditions, the assertion of the corollary follows
immediately from Fubini’s theorem. For arbitrary g1, g2, put g; = g}" - gj_, gji >0,

=121 [ gjing < oo (we will use here the abridged notation for integrals),
then

fg1gzdFsl dFy, =f81+82+dFsl dFy, —/gfrgz_ dFg dFy,

- f gy 85 dFg dFg, + / 81 g, dFe, dFs,

=/g1+dFsl /gf dFg, —ngdFsl /gIdFsz
—/gf dFe, /ngFser[gf dFg, /gz_ dFs,
=/gldF§1/g2dF52' O

Corollary 3.6.2 In the special case when g(x1,x3) = Ip(x1, x2) is the indicator
of a set B € B2, we obtain the formula for sequential computation of the measure
of B:

P((£1.&) € B) =/P((X1,Ez) € B)Fz (dx)).

The probability of the event {(x;, &2) € B} could also be written as P(§; € By,) =
P:, (By,) where By, = {x2 : (x1, x2) € B} is the “section” of the set B at the point x;.
If B={(x1,x2):x1 +x2 < x}, we get

P((€1,62) € B) =P(&1 + & <) = Fry 45, (1)
:fP(xl + & < x)Fg (dx1)
=/ng(x—x1)ngl(x1). (3.6.10)
We have obtained a formula for the distribution function of the sum of independent

random variables expressing Fg, 1¢, in terms of Fg and Fg,. The integral on the
right-hand side of (3.6.10) is called the convolution of the distribution functions
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Fg, (x) and Fg, (x) and is denoted by Fg, * Fg,(x). In the same way one can obtain
the equality

o0

P¢ 4+ & <x) =/ Fe, (x — 1) dFg, (7).

Observe that the right-hand side here could also be considered as a result of inte-
grating

defl () Fe,(x — 1)

by parts.

If at least one of the distribution functions has a density, the convolution also
has a density. This follows immediately from the formulas for convolution. Let, for
instance,

Fe, (x) =/ fe,(u)du.

Then

:/ </ Fgl(dt)fgz(u—t)>du,

so that the density of the sum & + &> equals

Fe e, (x) = / F;, (d1) f fer u — 1) du

forser () = / Fi, (d1) fey (x — 1) = / for (x = 1) dFs, (1),

Example 3.6.1 Let &1,&,... be independent random variables uniformly dis-
tributed over [0, 1], i.e. £1, &>, ... have the same distribution function with density
f(x)={1’ relodl (3.6.11)
0, x¢l0,1].
Then the density of the sum & + &> is
| 0, x ¢ [0, 2],
f§,+52(x)=/0 fx—1)dt={ x, x €10, 1], (3.6.12)

2—x, xe[l,2].
The integral present here is clearly the length of the intersection of the segments

[0, 1] and [x — 1, x]. The graph of the density of the sum &; + &, 4 &3 will consist
of three pieces of parabolas:

0, x ¢1[0,3],
| =3 x €0, 11,
Jer+er+£,(X) 2[) Jfa+e,(x —t)dr = 1— (2—2x)2 _ (x—21)27 xell,2],

ex? x€[2,3].
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0% 1 0 1 X 0 1 2x
a
fe () fere (@)
I 1
| 1
0 1 o 1 2

Fig. 3.2 Illustration to Example 3.6.1. The upper row visualizes the computation of the convolu-
tion integral for the density of & + & + &3. The lower row displays the densities of &1, & + &,
and & + & + &3, respectively

The computation of this integral is visualised in Fig. 3.2, where the shaded areas
correspond to the values of f¢ 1¢,4¢, (x) for different x. The shape of the densities
of &1, &1 + & and &1 + & + &3 is shown in Fig. 3.2b. The graph of the density of the
sum &1 + & + &3 + &4 will consist of four pieces of cubic parabolas and so on. If
we shift the origin to the point n/2, then, as n increases, the shape (up to a scaling
transformation) of the density of the sum &1 + - - - 4+ &, will be closer and closer to
that of the function e=*". We will see below that this is not due to chance.

In connection with this example we could note that if £ and » are two independent
random variables, £ having the distribution function F(x) and 5 being uniformly
distributed over [0, 1], then the density of the sum & 4 5 at the point x is equal to

X

f$+n(x)=/dF(t)f,7(x—t):/

xX—

dF(t) = F(x) — F(x — 1).
1



Chapter 4
Numerical Characteristics of Random Variables

Abstract This chapter opens with Sect. 4.1 introducing the concept of the expec-
tation of random variable as the respective Lebesgue integral and deriving its key
properties, illustrated by a number of examples. Then the concepts of conditional
distribution functions and conditional expectations given an event are presented and
discussed in detail in Sect. 4.2, one of the illustrations introducing the ruin problem
for the simple random walk. In the Sects. 4.3 and 4.4, expectations of independent
random variables and those of sums of random numbers of random variables are
considered. In Sect. 4.5, Kolmogorov—Prokhorov’s theorem is proved for the case
when the number of random terms in the sum is independent of the future, fol-
lowed by the derivation of Wald’s identity. After that, moments of higher orders
are introduced and discussed, starting with the variance in Sect. 4.5 and proceeding
to covariance and correlation coefficient and their key properties in Sect. 4.6. Sec-
tion 4.7 is devoted to the fundamental moment inequalities: Cauchy—Bunjakovsky’s
inequality (a.k.a. Cauchy—Schwarz inequality), Holder’s and Jensen’s inequalities,
followed by inequalities for probabilities (Markov’s and Chebyshev’s inequalities).
Section 4.8 extends the concept of conditional expectation (given a random variable
or sigma-algebra), starting with the discrete case, then turning to square-integrable
random variables and using projections, and finally considering the general case
basing on the Radon—Nykodim theorem (proved in Appendix 3). The properties of
the conditional expectation are studied, following by introducing the concept of con-
ditional distribution given a random variable and illustrating it by several examples
in Sect. 4.9.

4.1 Expectation

Definition 4.1.1 The (mathematical) expectation, or mean value, of a random vari-
able & given on a probability space (£2, §, P) is defined as the quantity

Ef = / £(@)P(dw).
2

Let £¥ = max(0, 2£). The values EE* > 0 are always well defined (see Ap-
pendix 3). We will say that E£ exists if max(EET, E€™) < oo.
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We will say that E¢ is well defined if min(E€T, E£€~) < oo. In this case the
difference EET — E£ ™~ is always well defined, but E£€ = E€™ — E£~ may be c0.

By virtue of the above remarks (see Sect. 3.6) one can also define E£ as

E¢ :=/xF,g(dx)=/xdF(x), “4.1.1)

where F'(x) is the distribution function of &. It follows from the definition that E&
exists if E|€| < oo. It is not hard to see that E£ does not exist if, for instance,
1 — F(x) > 1/x for all sufficiently large x.

We already know that if F'(x) is a step function then the Stieltjes integral (4.1.1)
becomes the sum

Et = Zxkp(s = xp).
k
If F(x) has a density f(x), then

E& ::/xf(x)dx,

so that E& is the point of the “centre of gravity” of the distribution F of the unit
mass on the real line and corresponds to the natural interpretation of the mean value
of the distribution.

If g(x) is a Borel function, then n = g(&) is again a random variable and

Eg(t) = / ¢(E(@))P(dw) = / g dF(x) = / X dFy(e(0).

The last equality follows from definition (4.1.1).
The basic properties of expectations coincide with those of the integral:

El. If a and b are constants, then E(a 4+ b&) = a 4+ DE§.

E2. E(§1 + &) = E(1) + E(&), if any two of the expectations appearing in the
formula exist.

E3. Ifa <& < b, then a <E& <b. The inequality E§ < E|&| always holds.

E4. If &€ > 0 and E§ =0, then & = 0 with probability 1.

ES. The probability of an event A can be expressed in terms of expectations as

P(A) = EI(A),

where 1(A) is the random variable equal to the indicator of the event A:
I(A) =1ifw e A and 1(A) = 0 otherwise.

For further properties of expectations, see Appendix 3.

We consider several examples.

Example 4.1.1 Expectations related to the Bernoulli scheme. Let &£ € By, ie. &
assumes two values: 0 with probability g and 1 with probability p, where p+¢q = 1.
Then

EE=0xPE=0)+1xPE=1)=p.
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Now consider a sequence of trials in the Bernoulli scheme until the time of
the first “success”. In other words, consider a sequence of independent variables
&1, &, ... distributed as & until the time

n:=min{k >1:& =1}.
It is evident that 5 is a random variable,
PO =k =¢""p, k=1,
so that  — 1 has the geometric distribution. Consequently,
)4 1
En= kgt 'p= ——=—.
Z T d-9? p

If we put S, := Z 1 &k, then clearly ES,, = np. Now define, for an integer N > 1,
the random variable n = min{k > 1 : Sy = N} as the “first passage time” of level N
by the sequence S,,. One has

P(n=k) =P(Si-1=N—1)p,
o (K=1\ Nt e A k=N
En=p) k N = N k(k— 1) (k= N+ 1g* V.
U pN (N_1>p q (N_l)!k=N( ) ( + Dg

The sum here is equal to the N-th derivative of the function ¥ (z) = > 0°zF =
1/(1 — z) at the point z = g, i.e. it equals N!/pN*!. Thus En = N/p. As we will
see below, this equality could be obtained as an obvious consequence of the results
of Sect. 4.4.

Example4.1.2 1f § € @, ;2 then

1 _(t—a)?
Eé:/td)a’oz(t)dt:/t \/_e 202 dt

o2

u)2
/(t—a)e 262 dt 4

Gx/_ a\/_

ze 202 dz+a=a.

ar

Thus the parameter a of the normal law is equal to the expectation of the latter.

Example 4.1.3 1f ¢ €1, then E§ = 1. Indeed,
ok o k-
B =Y ket = e = .
d g k! He g(k—n! ’

Example 4.1.4 It £ € Up 1, then
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It follows from property E1 that, for § € U, j, one has
b—a a+ b
2 2

If £ € Ko, then the expectation E§ does not exist. That follows from the fact

that the integral | 1)(4:1;2 diverges.

Eé=a+

Example 4.1.5 We now consider an example that is, in a sense, close to Exam-
ple 4.1.1 on the computation of En, but which is more complex and corresponds
to computing the mean value of the duration of a chess tournament in a real-life
situation. In Sect. 3.4 we described a simple probabilistic model of a chess tourna-
ment. The first player wins in a given game, independently of the outcomes of the
previous games, with probability p, loses with probability g, p + ¢ < 1, and makes
a tie with probability 1 — p — g. Of course, this is a rather rough first approximation
since in a real-life tournament there is apparently no independence. On the other
hand, it is rather unlikely that, for balanced high level players, the above probabili-
ties would substantially vary from game to game or depend on the outcomes of their
previous results. A more complex model incorporating dependence of p and g of
the outcomes of previous games will be considered in Example 13.4.2.

Assume that the tournament continues until one of the two participants wins N
games (then this player will be declared the winner). For instance, the 1984 individ-
ual World Championship match between A. Karpov and G. Kasparov was organised
just according to this scheme with N = 6. What can one say about the expectation
En of the duration 7, of the tournament?

As was shown in Example 3.3.1,

N-1 N-1
Plr=m=p) pli—LiN—=1,0+q ) pn—1LiN-1),
i=0 i=0
where
o n! . e
pni, j)=-—————=p'¢(I—p—q@)"".
iljlin—i— j)!

Therefore, under obvious conventions on the summation indices,

pVq' +pq
En= (N—l)'z Zn(n—l)x

Xx(m—i—N+1(1-p— q)” i=N,

The sum over n was calculated in Example 4.1.1 to be (N +i)!/(p + q)N‘H“.
Consequently,

N—1
N (PNg' + p'g™)(N +)!
En= E

p+q = iNp+qtV
N-—1
N N+i\r y o
—_— N —ri+ria=-nN],
p+q ( i )[ ( ) ( "]

where r = p/(p +q).



4.1 Expectation 69

In his interview of 3 March 1985 to the newspaper “Izvestija”, Karpov said
that in qualifying tournaments he would lose, on average, 1 game out of 20, and
that Kasparov’s results were similar. If we put in our simple model p =g = 1/20
(strictly speaking, one cannot make such a conclusion from the given data; the rela-
tion p = g = 1/20 should be considered rather as one of many possible hypotheses)
then, for N = 6, direct calculations show that (r = 1/2)

En= 2 1a01(142+ 1Y ~o3
=7 8 16/ |7

Thus, provided that our simplest model is adequate, the expected duration of
a tournament turns out to be very large. The fact that the match between Karpov
and Kasparov was interrupted by the decision of the chairman of the World Chess
Federation after 48 games because the match had dragged on, might serve as a
confirmation of the correctness of the assumptions we made.

Taking into account the results of the match and consequent games between Kar-
pov and Kasparov could lead to estimates (approximate values) for the quantities p
and ¢ that would differ from 1/20.

For our model, one also has the following simple inequality:

It follows from the relation ny < n < nay—1, where ny is the number of games until
the time when the total of the points gained by both players reaches N. By virtue of
Example 4.1.1, Eny = N/(p + q).

Example 4.1.6 In the problem on cells in Sects. 1.3 and 1.4, we considered the
probability that at least one of the n cells in which r particles are placed at random
is empty. Find the expectation of the number S, , of empty cells after r particles
have been placed. If Ay denotes the event that the k-th cell is empty and I(Ay) is the
indicator of this event then

n n 1 r
Sur= 1AW,  ES,, =) P(A)= n(l - ;) :
1 1

Note now that ES,, , is close to 0 if (1 — 1/nr)" is small compared with 1/n, i.e.
when —rIn(1 — 1/n) — Inn is large. For large n,

1 1 1
n(1-2) =L vo(X)
n n n

and the required relation will hold if (r — nlnn)/n is large. In our case (cf. prop-
erty E4), the smallness of ES,, , will clearly imply that of P(A) =P(S,., > 0).
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4.2 Conditional Distribution Functions and Conditional
Expectations

Let (£2, §, P) be a probability space and B € § be an event with P(B) > 0. Form a
new probability space (2, §, Pg), where Pp is defined for A € § by the equality
Pp(A) :=P(A|B).

It is easy to verify that the probability properties P1, P2 and P3 hold for Pp. Let
& be a random variable on (£2, §, P). It is clearly a random variable on the space
(2,5, Pp) as well.

Definition 4.2.1 The expectation of £ in the space (§2, §, Pp) is called the condi-
tional expectation of & given B and is denoted by E(§|B):

E(SIB)=/QE(0))PB(dw)-

By the definition of the measure Pp,

E(EIB)=fQE(w)P(dw|B)— /S(w)P(dwﬂB) /E(w)P(dw)

P(B) P(B)

The last integral differs from E£ in that the integration in it is carried over the set B
only. We will denote this integral by

E(¢: B) = /B E(@)P(dw).
so that

1
E¢|B) = ﬁE(S B).

It is not hard to see that the function
F(x|B) :=Pp(§ <x) =P <x|B)

is the distribution function of the random variable & on (£2, §, Pp).

Definition 4.2.2 The function F (x|B) is called the conditional distribution function
of £ (in the “conditional” space (£2, §, Pp)) given B.

The quantity E(£|B) can evidently be rewritten as

/xdF(x|B).

If the o-algebra o (§) generated by the random variable & does not depend on the
event B, then Pp(A) =P(A) for any A € o(§). Therefore, in that case

F(x|B) = F(x), E¢|B) =E§, E¢; B)=P(B)E;.  (4.2.1)
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Let {B,} be a (possibly finite) sequence of disjoint events such that |_J B, = §2 and
P(B;,) > 0 for any n. Then

Eé = /Q E@Pw) =Y /B £(@P(do)
=K B =Y P(BOEEIB,). (422)

We have obtained the toral probability formula for expectations. This formula can
be rather useful.

Example 4.2.1 Let the lifetime of a device be a random variable £ with a distribution
function F(x). We know that the device has already worked for a units of time.
What is the distribution of the residual lifetime? What is the expectation of the
latter?

Clearly, in this problem we have to find P(§ —a > x|§ > a) and E(§ —al§ > a).
Of course, it is assumed that

P(a) :=P¢ >a) > 0.
By the above formulae,
P(x+a)
Pa)

It is interesting to note the following. In many applied problems, especially when
one deals with the operation of complex devices consisting of a large number of
reliable parts, the distribution of £ can be assumed to be exponential:

Px)=PE>x)=e ™, u>0.

Pt —a>xlE>a)= E(é—aléza)=ﬁ/0mxdF(x+a).

(The reason for this will become clear later, when considering the Poisson theorem
and Poisson process. Computers could serve as examples of such devices.) But, for
the exponential distribution, it turns out that the residual lifetime distribution

P(x+a) oux
7})(‘1) =e = P(x) “4.2.3)

coincides with the lifetime distribution of a new device. In other words, a new de-
vice and a device which has already worked without malfunction for some time
a are, from the viewpoint of their future failure-free operation time distributions,
equivalent.

It is not hard to understand that the exponential distribution (along with its dis-
crete analogue P(§ = k) = ¢¥(1 — ¢), k=0,1,...) is the only distribution pos-
sessing the above remarkable property. One can see that, from equality (4.2.3), we
necessarily have

P& —a>xlf>a)=

P(x+a)=Px)P(a).

Example 4.2.2 Assume that n machines are positioned so that the distance between
the i-th and j-th machines is g; ;, 1 <1i, j < n. Each machine requires service from
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time to time (tuning, repair, etc.). Assume that the service is to be done by a single
worker and that the probability that a given new call for service comes from the
J-th machine is p; (27:1 pj = 1). If, for instance, the worker has just completed
servicing the i-th machine, then with probability p; (not depending on i) the next
machine to be served will be the j-th machine; the worker will then need to go to it
and cover a distance of a;; units. What is the mean length of such a passage?

Let B; denote the event that the i-th machine was serviced immediately before a
given passage. Then P(B;) = p;, and the probability that the worker will move from
the i-th machine to the j-th machine, j =1,...,n,is equal to p;. The length & of
the passage is a;;. Hence

EGE|B) =) pjai,

j=1

and by the total probability formula

Bt =) PB)HEE|B) = ) pjpiaij.

i=1 i, j=1

The obtained expression enables one to compare different variants of positioning
machines from the point of view of minimisation of the quantity E§£ under given
restrictions on ¢;;. For instance, if a; ;> 1 and all the machines are of the same type
(p;j = 1/n) then, provided they are positioned along a straight line (with unit steps
between them), one gets a;; = |j — i| and!

1< o izt n—1 1
Es=p2|j—i|=n—2;km—k>= . (1+;),

i,j=1

so that, for large n, the value of E£ is close to n/3. Thus, if there are s calls a day
then the average total distance covered daily by the worker is approximately sn /3.
It is easy to show that positioning machines around a circle would be better but still
not optimal.

Example 4.2.3 As was already noticed, not all random variables (distributions) have
expectations. The respective examples are by no means pathological: for instance,
the Cauchy distribution K, , has this property. Now we will consider a problem on
random walks in which there also arise random variables having no expectations.
This is the problem on the so-called fair game. Two gamblers take part in the game.
The initial capital of the first gambler is z units. This gambler wins or loses each

I'To compute the sum, it suffices to note that

n—1

D kk—1)= %(n —2)(n—Dn

k=1

(compare the initial values and increments of the both sides).



4.2 Conditional Distribution Functions and Conditional Expectations 73

play of the game with probability 1/2 independently of the outcomes of the previous
plays, his capital increasing or decreasing by one unit, respectively. Let z 4 S be
the capital of the first gambler after the k-th play, n(z) is the number of steps until
his ruin in the game versus an infinitely rich adversary, i.e.

n(z) =min{k : z+ Sy =0}, 7n(0)=0.

If infy Sy > —z (i.e. the first gambler is never ruined), we put n(z) = oo.

First we show that n(z) is a proper random variable, i.e. a random variable
assuming finite values with probability 1. For the first gambler, this will mean that
he goes bankrupt with probability 1 whatever his initial capital z is. Here one could
take £2 to be the “sample” space consisting of all possible sequences made up of
1 and —1. Each such sequence @ would describe a “trajectory” of the game. (For
example, —1 in the k-th place means that the first gambler lost the k-th play.) We
leave it to the reader as an exercise to complete the construction of the probability
space (2,5, P). Clearly, one has to do this so that the probability of any first n
outcomes of the game (the first n components of w are fixed) is equal to 27",

Put

u(z) :=P(nz) <oo), u0):=1,

and denote by Bj the event that the first component of w is 1 (the gambler won in
the first play) and B> that this component is —1 (the gambler lost). Noticing that
P(n(z) < oo|B1) = u(z + 1) (if the first play is won, the capital becomes z + 1), we
obtain by the total probability formula that, for z > 1,

u(z) =P(B1)P(n(z) < 00| By) + P(B2)P(n(z) < o0|Ba)
1 1
= Ju+ 1)+ Ju = 1),
Putting 6(z) := u(z + 1) — u(z), z = 0, we conclude from here that §(z) —
6(z — 1) =0, and hence §(z) = § = const. Since

2
u(z+1)=u0)+ Y 8(k) =u(0)+2z8,
k=1
it is evident that 6 can be nothing but 0, so that u(z) = 1 for all z.

Thus, in a game against an infinitely rich adversary, the gambler will be ruined
with probability 1. This explains, to some extent, the fact that all reckless gamblers
(not stopping “at the right time”; choosing this “right time” is a separate problem)
go bankrupt sooner or later. Even if the game is fair.

We show now that although 7(z) is a proper random variable, En(z) = oco. As-
sume the contrary:

v(z) :=En(z) < oo.

Similarly to the previous argument, we notice that E(n(z)|B1) =1+ v(z + 1) (the
capital became z + 1, one play has already been played). Therefore by the total
probability formula we find for z > 1 that

1 1
v(z) = 5(1 +v@z+ 1)+ 5(1 +v@z—1), v(0)=0.



74 4 Numerical Characteristics of Random Variables

It can be seen from this formula that if v(z) < oo, then v(k) < oo for all k. Set
A(z) =v(z+ 1) — v(z). Then the last equality can be written down for z > 1 as

1 1
—1==-A(@) —=-A(-1),
> () > (z—1D
or
AR)=A(z—1)—2.
From this equality we find that A(z) = A(0) — 2z. Therefore
z—1

(@)=Y Ak) =zA0) —z(z — D =zv(1) —2(z — 1).

k=0

It follows that En(z) < 0 for sufficiently large z. But 5(z) is a positive random
variable and hence E7n(z) > 0. The contradiction shows that the assumption on the
finiteness of the expectation of n(z) is wrong.

4.3 Expectations of Functions of Independent Random Variables

Theorem 4.3.1

1. Let & and n be independent random variables and g(x,y) be a Borel function.
Then if g > 0 or Eg(&, n) is finite, then

Eg(&.n) =E[Eg(x, n)|x=¢]- (43.1)
2. Let g(x,y) = g1(x)g2(y). If g1(§) = 0 and g2(n) > 0, or both Eg(§) and
Ego(n) exist, then

Eg(é.n) =Egi(§)Eg(n). (4.3.2)

The expectation Eg(&, n) exists if and only if both Eg1(§) and Egx(n) exist. (We
exclude here the trivial cases P(g1(§) =0) = 1 and P(g2(n) =0) = 1 to avoid
trivial complications.)

Proof The first assertion of the theorem is a paraphrase of Fubini’s theorem in terms
of expectations. The first part of the second assertion follows immediately from
Corollary 3.6.1 of Fubini’s theorem. Since |g1(£)| > 0 and |g2(n)| > 0 and these
random variables are independent, one has

E|g1(6)g2(n)| =E|g1(6)|E|g2(n)|.

Now the last assertion of the theorem follows immediately, for one clearly has
Elg1(6)] #0, E[g2(m)| # 0. O

Remark 4.3.1 Formula (4.3.1) could be considered as the total probability formula
for computing the expectation Eg(&, n). Assertion (4.3.2) could be written down
without loss of generality in the form

E&n = E£Ey. (4.3.3)
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To get (4.3.2) from this, one has to take g1(§) instead of & and g»>(n) instead of
n—these will again be independent random variables.

Examples of the use of Theorem 4.3.1 were given in Sect. 3.6 and will be appear-
ing in the sequel.

The converse to (4.3.2) or (4.3.3) does not hold. There exist dependent random
variables & and 7 such that

E&n=EEEn.
Let, for instance, ¢ and & be independent and E§ = E¢ = 0. Put n = £¢. Then & and

n are clearly dependent (excluding some trivial cases when, say, & = const), but
Ein=E§’¢ =E§E¢ =0=E£En.

4.4 Expectations of Sums of a Random Number of Random
Variables

Assume that a sequence {§,};2 | of independent random variables (or random vec-

tors) and an integer-valued random variable v > 0 are given on a probability space
(Qa 35 P) .

Property E2 of expectations implies that, for sums S, =)+, &, the following
equality holds:

n
ES, =) Eg.
i=1

In particular, if ay = E& = a do not depend on & then ES,, = an.

What can be said about the expectation of the sum s, of the random number v
of random variables &1, &>, ...? To answer this question we need to introduce some
new notions.

Let §k.n := 0 (ék, ..., &) be the o-algebra generated by the n — k + 1 random
variables &, ..., &,.

Definition 4.4.1 A random variable v is said to be independent of the future if the
event {v < n} does not depend on §,+1,00-

Let, further, a family of embedded o -algebras §, : §» C §n+1 be given, such that
gl,n =o0(&1,...,5) C 8.

Definition 4.4.2 A random variable v is said to be a Markov (or stopping) time with
respect to the family {§,}, if {v <n} € §x.

Often §, istakentobe §1,, =0 (&1, ..., &,). We will call a stopping time with re-
spect to §1,, simply a stopping (or Markov) time without indicating the correspond-
ing family of o-algebras. In this case, knowing the values of &, ..., &, enables us
to say whether the event {v < n} has occurred or not.

If the &, are independent (the o -algebras §1 , and §,+1,0 are independent) then
the requirement of independence of the future is wider than the Markov property,
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because if v is a stopping time with respect to {§1.,} then, evidently, the random
variable v does not depend on the future.

As for a converse statement, one can only assert the following. If v does not
depend on the future and the & are independent then one can construct a family of
embedded o -algebras {§,}, §» D §1... such that v is a stopping time with respect
to §» ({v < n} C§,) and §, does not depend on §p+1,00- As §n, We can take the o -
algebra generated by §1,, and the events {v = k} for k < n. For instance, a random
variable v independent of {&;} clearly does not depend on the future, but is not a
stopping time. Such v will be a stopping time only with respect to the family {§,}
constructed above.

It should be noted that, formally, any random variable can be made a stopping
time using the above construction (but, generally speaking, there will be no inde-
pendence of §, and §,, ). However, such a construction is unsubstantial and not
particularly useful. In all the examples below the variables v not depending on the
future are stopping times defined in a rather natural way.

Example 4.4.1 Let v be the number of the first random variable in the sequence
{4},2, which is greater than or equal to N, i.e. v =inf{k : & > N}. Clearly, v is a
stopping time, since

weny=J& =N e

k=1

If & are independent, then evidently v is independent of the future.
The same can be said about the random variable

k
@) :=minfk: S = N}, Si=) &.
j=1

Note that the random variables v and n(¢#) may be improper (e.g., n(¢) is not defined
on the event {S := sup Sy < N}). The random variable 6 := min{k : Sy = S} isnota
stopping time and depends on the future.

The term “Markov” random variable (or Markov time) will become clearer after
introducing the notion of Markovity in Chap. 13. The term “stopping time” is related
to the nature of a large number of applied problems in which such random variables
arise. As a typical example, the following procedure could be considered. Let & be
the number of defective items in the k-th lot produced by a factory. Statistical quality
control is carried out as follows. The whole production is rejected if, in sequential
testing of the lots, it turns out that, for some 7, the value of the sum

Sy = Zék
k=1

exceeds a given admissible level a 4 bn. The lot number v for which this happens,

v:=min{n : S, >a+ bn},



4.4 Expectations of Sums of a Random Number of Random Variables 77

is a stopping time for the whole testing procedure. To avoid a lengthy testing, one
also introduces a (literal) stopping time

v:=min{n:S, < —A+bn},

where A > 0 is chosen so large as to guarantee, with a high probability, a sufficient
quality level for the whole production (assuming, say, that the & are identically dis-
tributed). It is clear that v and v* both satisfy the definition of a Markov or stopping
time.

Consider the sum S, = &; + --- + &, of a random number of random variables.
This sum is also called a sfopped sum in the case when v is a stopping time.

Theorem 4.4.1 (Kolmogorov—Prokhorov) Let an integer-valued random variable v
be independent of the future. If

ZP(V > kE|&| < o0 “4.4.1)
k=1
then
ES, = ZP(U > k)E&;. “4.4.2)
k=1

If & > 0 then condition (4.4.1) is superfluous.

Proof The summand & is present in the sum S, if and only if the event {v > k}
occurs. Thus the following representation holds for the sum S,,:

Sv=) &l =k,

k=1

where I(B) is the indicator of the event B. Put S, ,, :== > y_; &I(v > k). If § > n
then S, , 1 S, for each w as n — oo, and hence, by the monotone convergence
theorem (see Theorem A3.3.1 in Appendix 3),

n
ES, = lim ES,, = lim ZEEkI(v > k).
n—o0 n—o0 =l
But the event {v > k} complements the event {v < k — 1} and therefore does not

depend on o (&, &k+1, . - .) and, in particular, on o (§;). Hence, putting a; := E&§; we
get E& 1(v > k) = a;P(v > k), and

n o0
ES, = lim ];akP(vk >k) = ];akP(v > k). (4.4.3)

This proves (4.4.2) for & > 0.
Now assume & can take values of both signs. Put

n n
g =&l af =K.  Z,=) &.  Zua=) §lv=k).
k=1 k=1
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Applying (4.4.3), we obtain by virtue of (4.4.1) that

o0
EZ, = Za,’gP(u > k) < o0.
k=1

Since |S,.,| < Z,, < Z,, by the monotone convergence theorem (see Corol-
lary 6.1.3 or (the Fatou—Lebesgue) Theorem A3.3.2 in Appendix 3) we have

ES, = lim ES, , = ZakP(v > k),

n—o0

where the series on the right-hand side absolutely converges by virtue of (4.4.1).
The theorem is proved. O

Put
a® :=maxag, ay = minag,

where, as above, a; = E&;.
Theorem 4.4.2 Let sup, E|&| < 0o and v be a random variable which does not
depend on the future. Then the following assertions hold true.
(a) IfEv < oo (or EZ, < 00, where Z,, = 22:1 |k |) then ES,, exists and

asEv <ES, <a*Ev. (4.4.4)
(b) IfES, is well defined (and may be +00), a, > 0 and, for any N > 1,

E(Sy —asN;v>N) <c,

where ¢ does not depend on N, then (4.4.4) holds true.
(c) If & = 0 then (4.4.4) is always valid.

If S, > const a.s. then condition (¢) clearly implies (b).
The case a* < 0 in assertions (b)—(c) can be treated in exactly the same way.
If v does not depend on {&;}, a, = a* =a > 0, then E(Sy; v > N) =aNP(v >

N) and the condition in (b) holds. But the assumption a, = a* is inessential here,
and, for independent v and {£}, (4.4.4) is always true, since in this case

ES, = Zp(u —k)ES, < a* ZkP(v =k)=a*Ev.

The reverse inequality ES, > a.Ev is verified in the same way.

Proof of Theorem 4.4.2
(a) First note that
o0 (o elNe ¢ o0
ZP(\) > k)= ZZP(I) =i)= ZiP(v =i)=Ev.
k=1 k=1i=k i=1

Note also that, for E|&;| < ¢ < o0, the condition Ev < 0o (or EZ,, < 00) turns into
condition (4.4.1), and assertion (4.4.4) follows from (4.4.2). Therefore, if Ev < oo



4.4 Expectations of Sums of a Random Number of Random Variables 79

then Theorem 4.4.2 is a direct consequence of Theorem 4.4.1. The same is true in
case (d).

Consider now assertions (b) and (c).

For a fixed N > 0, introduce the random variable

vy :=min(v, N),

which, together with v, does not depend on the future. Indeed, if n < N then the
event {vy <n} = {v <n} does not depend on §,+1,00- If » > N then the event
{vn < N} is certain and hence it too does not depend on §,41,00-

(b) If Ev < oo then (4.4.4) is proved. Now let Ev = co. We have to prove that
ES, = o0. Since Evy < 00, the relations

ES,y =E(S;v<N)+ESy;v>N) > a*(E(v; v<N)+ NP > N)) “4.4.5)
are valid by (a). Together with the conditions in (b) this implies that
ES,;v<N)>a,E(v;v<N)—c—>
as N — oo. Since S, is well defined, we have
E(S,;v<N)— ES,

as N — oo (see Corollary A3.2.1 in Appendix 3). Therefore necessarily ES, = oco.
(c) Here it is again sufficient to show that ES, = oo in the case when Ev = oo. It
follows from (4.4.5) that

ES, =E(S,;v<N)4+E(S,;v>N)
ZE[SU —(Sy —axN);v > N] +a,E(v;v<N)>a,E(v;v<N)—c—

as N — o0, and thus ES,, = o0.
The theorem is proved. g

Theorem 4.4.2 implies the following famous result.

Theorem 4.4.3 (Wald’s identity) Assume a = E&. does not depend on k,
sup; E|éx| < 00, and a random variable v is independent of the future. Then, under
at least one of the conditions (a)—(d) of Theorem 4.4.2 (with a, replaced by a),

ES, =aEv. (4.4.6)

If a =0 and Ev = oo then identity (4.4.6) can hold, since there would be an
ambiguity of type 0 - co on the right-hand side of (4.4.6).

Remark 4.4.1 If there is no independence of the future then equality (4.4.6) is, gen-
erally speaking, untrue. Let, for instance, a = E&§; < 0, 6 := min{k : Sy = S} and
S := sup; Sk (see Example 4.4.1; see Chaps. 10-12 for conditions of finiteness of
ES and E). Then Sy = S > 0 and ES > 0, while aEf < 0. Hence, (4.4.6) cannot
hold true for v =6.

We saw that if there is no assumption on the finiteness of Ev then, even in the case
a > 0, in order for (4.4.6) to hold, additional conditions are needed, e.g., conditions



80 4 Numerical Characteristics of Random Variables

(b)—(d). Without these conditions identity (4.4.6) is, generally speaking, not valid,
as shown by the following example.

Example 4.4.2 Let the random variables ¢, be independent and identically dis-
tributed, and

Eg =0, E¢Z =1, E|o) = p < oo,
& =1+ ~2k, v :=min{k : S < 0}.

We will show below in Example 20.2.1 that v is a proper random variable, i.e.

P(v < 00) =P(U{S,, <0}) =1.

n=1

It is also clear that v is a Markov time independent of the future and E£§; =a = 1.
But one has ES,, < 0, while aEv > 0, and hence equality (4.4.6) cannot be valid.
(Here necessarily Ev = 00, since otherwise condition (a) would be satisfied and
(4.4.6) would hold.)

However, if the &, are independent and identically distributed and v is a stop-
ping time then statement (4.4.6) is always valid whenever its right-hand side is well
defined. We will show this below in Theorem 11.3.2 by virtue of the laws of large
numbers.

Conditions (b) and (c¢) in Theorem 4.4.2 were used in the case Ev = co. However,
in some problems these conditions can be used to prove the finiteness of Ev. The
following example confirms this observation.

Example 4.4.3 Let &1,&,, ... be independent and identically distributed and a =
E&; > 0. For a fixed ¢ > 0, consider, as a stopping time (and a variable independent
of the future), the random variable

v =n(t) :=min{k : S > t}.

Clearly, Sy <t on the set n(¢) > N and S, > t. Therefore conditions (b) and (c)
are satisfied, and hence

ES,](I) = aEn(l).

We now show that En(¢) < co. In order to do this, we consider the “trimmed”
random variables é,EN) :=min(N, &) and choose N large enough for the inequality

a®™ :=Et™) > 0 to hold true. Let S;N) and ™ (1) be defined similarly to Sy and

(). but for the sequence {EJ(-N)}‘ Then evidently S;f,{,))([) <t+N,n@) <M,
t+N
VBN N, B =S <o
a

If a = 0 then E7(¢) = oco. This can be seen from the fair game example (§; = %1
with probability 1/2; see Example 4.2.3). In the general case, this will be shown be-
low in Chap. 12. As was noted above, in this case the right-hand side of (4.4.6) turns
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into the indeterminacy 0 - co, but the left-hand side may equal any finite number, as
in the case of the fair game where Sy;) =1.
If we take v to be the Markov time

v=u(t) ::min{k: |Sk| > t},

where & may assume values of both signs, then, to prove (4.4.6), it is apparently
easier to verify the condition of assertion (a) in Theorem 4.4.2. Let us show that
Eu(t) < oo. It is clear that, for any given ¢ > 0, there exists an N such that

q:= min[P(SN > 21),P(Sy < —2t)] > 0.
(N =1 if the & are bounded from below.) For such N,

\illlf P(|v + Syl > t) >2gq.
v|<t

Hence, in each N steps, the random walk { Sk} has a chance to leave the strip |v| <¢
with probability greater than 2¢, whatever point v, |v| <1, it starts from. Therefore,

k
P(/,L(t)>kN)=P(jI_I<12.;(v|Sj| <t) (ﬂ IS;n] <1 ) H < a—29)%

This implies that P(u(#) > kN) decreases exponentially as k grows and that Eu(¢)
is finite.

Example 4.4.4 A chain reaction scheme. Suppose we have a single initial particle
which either disappears with probability g or turns into m similar particles with
probability p = 1 — g. Each particle from the new generation behaves in the same
way independently of the fortunes of the other particles. What is the expectation of
the number ¢, of particles in the n-th generation?

Consider the “double sequence” {é,g")},fil’g‘;l of independent identically dis-
tributed random variables assuming the values m and O with probabilities p and ¢,
respectively. The sequences {é,gl)},‘:il, {E,fz) Yoy - -~ will clearly be mutually inde-
pendent. Using these sequences, one can represent the variables &, (o = 1) as

1 1
E() 5( )’

2 2
§2=$1()+ &)

& = é(’” o gL

where the number of summands in the equation for ¢, is ,—1, the number of “parent
particles”. Since the sequence {Sk")} is independent of ¢,_1, gk > 0, and E&; ) —

pm, by virtue of Wald’s identity we have

Eg, = K&V Eg, 1 = pmBg,_ = (pm)".
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Example 4.4.5 We return to the fair game of two gamblers described in Exam-
ple 4.2.3, but now assume that the respective capitals z; > 0 and zo > 0 of the
gamblers are finite. Introduce random variables &; representing the gains of the first
gambler in the respective (k-th) play. The variables & are obviously independent,
and

. 1 with probability 1/2,
*Z1 =1 with probability 1,2.

The quantity z1 + Sy =z1 + Z];: 1 &; will be the capital of the first gambler and
72 — Sk the capital of the second gambler after k plays. The quantity

n:=min{k:z; + Sy =0or z, — S = 0}

is the time until the end of the game, i.e. until the ruin of one of the gamblers. The
question is what is the probability P; that the i-th gambler wins (for i =1, 2)?

Clearly, n is a Markov time, S, = —z; with probability P, and S, = zo with
probability P; = 1 — P,. Therefore,

ES; = Piz2 — P2z1.
If En < oo, then by Wald’s identity we have
Pizo — Prz1 =EnE§ =0.

From this we find that P; = z; /(z1 + 22).

It remains to verify that En is finite. Let, for the sake of simplicity, z; + z2 =
27z be even. With probability 2~ ™n(z1:22) > 2=% the game can be completed in
min(zy, z2) < z plays. Since the total capital of both players remains unchanged
during the game,

Pp>2<1-27% ..., P(n>Nz<(1-279)"

This evidently implies the finiteness of

En= ZP(n > k).

k=0

We will now give a less trivial example of a random variable v which is indepen-
dent of the future, but is not a stopping time.

Example 4.4.6 Consider two mutually independent sequences of independent posi-
tive random variables &1, &>, ... and {1, &2, ..., such that§; € F and {; € G. Further,
consider a system consisting of two devices. After starting the system, the first de-
vice operates for a random time &; after which it breaks down. Then the second
device replaces the first one and works for & time units (over the time interval
(&1, &1 + &)). Immediately after the first device’s breakdown, one starts repairing it,
and the repair time is 3. If ¢» > &, then at the time & + &, of the second device’s
failure both devices are faulty and the system fails. If {; < &, then at the time & +&;
the first device starts working again and works for &3 time units, while the second
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device will be under repair for ¢3 time units. If {3 > &3, the system fails. If {3 < &3,
the second device will start working, etc. What is the expectation of the failure-free
operation time 7 of the system?

Let v :=min{k > 2 : {¢ > &}. Then clearly T = & + --- + §,, where the §;

are independent and identically distributed and {v <n} e o (&1,...,&:;¢1,..., ).
This means that v is independent of the future. At the same time, if ¢; # const, then
{v<n}¢3i1,=0(1,...,&) and v is not a Markov time with respect to §1 5.
Since & > 0, by Wald’s identity Er = Ev E&;. Since
k—1
== =gInm>a) k=2
j=2

one has P(v = k) = g 2(1 — ¢), k > 2, where

g =P(n s;k>=/dF(r>G<z+o>.

Consequently,

o0 o 1
Ev=) k¢"2(1—¢g)=1 kg*'Q—g)=1+—
v=> k¢ P —g)=1+) k¢ (1 -9 g

k=2 k=1

2 —

Er—Eg -4

l—¢q

Wald’s identity has a number of extensions (we will discuss these in more detail
in Sects. 10.3 and 15.2).

4.5 Variance
‘We introduce one more numerical characteristic for random variables.

Definition 4.5.1 The variance Var(§) of a random variable & is the quantity
Var(§) := E(§ — E§).

It is a measure of the “dispersion” or “spread” of the distribution of &. The vari-
ance is equal to the inertia moment of the distribution of unit mass along the line.
We have

Var(§) = E§? — 2E£E£ + (E§)? = E&? — (E&)”. (4.5.1)

The variance could also be defined as min, E(§ — a)?. Indeed, by that definition

Var(¢) = E&? + min(a® — 2aE¢) = E£* — (E¢)?,
a

since the minimum of a2 — 2aEE is attained at the point a = E£. This remark shows
that the quantity a = E£ is the best mean square estimate (approximation) of the
random variable &.

The quantity /Var(£) is called the standard deviation of &.
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Example 4.5.1 Let§ € @, ;2. As we saw in Example 4.1.2, a = E§. Therefore,

Var(§) =/(x —a)2—1 e~ G=a?/20% gy ‘02 /lzeﬁzﬂdt.
o2 N2

The last equality was obtained by the variable change (x — a)/o = t. Integrating by
parts, one gets
P /2

o2y 2

dt=0".

Var(§) =

=L

Example 4.5.2 Leté €I1,,. In Example 4.1.3 we computed the expectation E§ = .
Hence

[e¢) /Lke_“
Var(¢) = E&% — (E£)? = § :k2 —u?
o o0 k
k(k — l)u _ kpk
:Z M+276”_“2=M2+M—M2=M.

k=2 k=0

Example 4.5.3 For & € Uy 1, one has
2 ! 2 1 1
E£ :/xdx:—, Et&=—.
0 3
By (4.5.1) we obtain Var(§) = 5.

Example 4.5.4 For &£ € B,,, by virtue of the relations £2 = £ and E§? = E£ = p we
obtain Var(¢) = p — p? = p(1 — p).
Consider now some properties of the variance.

D1. Var(&¢) > 0, with Var(§) = 0 if and only if P(§ = ¢) = 1, where c is a constant
(not depending on w).
The first assertion is obvious, for Var(§) = E(¢ — E& )2 > 0. Let
P& =¢) =1, then (E£)? = E£2 = ¢2 and hence

Var(¢) = 2 —c*=0.

If Var(¢) = E(€ — E&)% =0 then (since (¢ —E£)2>0)P(¢ —EE =0)=1, or
P(& = E£) =1 (see property E4).
D2. If a and b are constants then

Var(a + bg) = b* Var(€).

This property follows immediately from the definition of Var(£).
D3. If random variables & and n are independent then

Var(& + n) = Var(¢) + Var(n).
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Indeed,

Var(§ + 1) = E( + ) — (B¢ +En)?
=E§* +2E£En +En’ — (E)” — (E)* — 2E£En
=E£* — (E§)” + En® — (En)* = Var(§) + Var().
It is seen from the computations that the variance will be additive not only for inde-

pendent & and n, but also whenever

E&n=EEEn.

Example 4.5.5 Let v > 0 be an integer-valued random variable independent of a
sequence {&;} of independent identically distributed random variables, Ev < 0o and
E&; = a. Then, as we know, ES,, = aEv. What is the variance of §,?

By the total probability formula,

Var(S,) = E(S, —ES,)? = ZP(U =kE(S; — ES,)?
- ZP(V = k)[E(Sk — ak)? + (ak — aEv)?]
= Z P(v = k)k Var(&)) + a*E(v — Ev)? = Var(&))Ev + a® Var(v).
This equality is equivalent to the relation
E(S, — va)> =Ev - Var(§)).

In this form, the relation remains valid for any stopping time v (see Chap. 15).
Making use of it, one can find in Example 4.4.5 the expectation of the time 7 until
the end of the fair game, when the initial capitals z; and z, of the players are finite.
Indeed, in that case a =0, Var(&;) = 1 and

ES2 = Var(§) En=2iP, + 3 Py.
We find from this that En = z;z».

4.6 The Correlation Coefficient and Other Numerical
Characteristics

Two random variables £ and 7 could be functionally (deterministically) dependent:
& = g(n); they could be dependent, but not in a deterministic way; finally, they could
be independent. The correlation coefficient of random variables is a quantity which
can be used to quantify the degree of dependence of the variables on each other.

All the random variables to appear in the present section are assumed to have
finite non-zero variances.

A random variable £ is said to be standardised if E€ = 0 and Var(§) = 1. Any
random variable & can be reduced by a linear transformation to a standardised one
by putting &1 := (§ — E§)//Var(§). Let £ and n be two random variables and &
and 71 the respective standardised random variables.
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Definition 4.6.1 The correlation coefficient of the random variables & and 7 is the
quantity p(§, n) = E&in.

Properties of the correlation coefficient.
LipE ml =1

Proof Indeed,
0 < Var(¢; £ 1) =E& £ 1) =2+2p(, ).
It follows that [p (&, )| < 1. O

2. If & and n are independent then p(€,n) = 0.
This follows from the fact that £; and #n; are also independent in this case. O

The converse assertion is not true, of course. In Sect. 4.3 we gave an example of
dependent random variables £ and n such that E€ = 0, En =0 and E&n = 0. The
correlation coefficient of these variables is equal to 0, yet they are dependent. How-
ever, as we will see in Chap. 7, for a normally distributed vector (&, 1) the equality
p(&,n) =0 is necessary and sufficient for the independence of its components.

Another example where the non-correlation of random variables implies their
independence is given by the Bernoulli scheme. Let P(§ = 1) = p, P(§ =0) =
1-p,Ph=1)=qgand P(n=0) =1 —g¢q. Then

E§ =p, En=p, Var(§) = p(1 — p), Var(n) =q(1 —q),
_ EE-p—q)
PN = T T
The equality p(&, n) = 0 means that E£€n = pg, or, which is the same,
PE=1n=1)=PE=DP(n=1),
PE=1n=0=PE=1)-PE=1,1=1)=p—pg=PE=1DP(y=0),

and so on.
One can easily obtain from this that, in the general case, £ and n are independent
if

p(f(€).8()) =0

for any bounded measurable functions f and g. It suffices to take f = I(—co x),
g = I(—0,y), then derive that P(§ < x,n <y) =P < x)P(n < y), and make use
of the results of the previous chapter.

3. |p&,n)| =1 if and only if there exist numbers a and b # 0 such that P(n =
a+b&)=1.

Proof Let P(n =a + b&) = 1. Set E€ = « and /Var(¢) = o; then
E—a a+bE—a—ba

p&,m=E blo

=signb.



4.7 Inequalities 87

Assume now that |p (&€, n)| = 1. Let, for instance, p (£, n) = 1. Then
Var(€1 —m) =2(1 = p(§,m) =0.
By property D1 of the variance, this can be the case if and only if
PG —m=c=1
If p(&, n) = —1 then we get Var(&; 4+ 1) =0, and hence

Pé +m=0=1L1 O

If p > 0O then the random variables & and n are said to be positively correlated; if
o < 0 then & and n are said to be negatively correlated.

Example 4.6.1 Consider a transmitting device. A random variable £ denotes the
magnitude of the transmitted signal. Because of interference, a receiver gets the
variable n = a& + A (« is the amplification coefficient, A is the noise). Assume that
the random variables A and £ are independent. Let E£€ = a, Var(§) =1, EA =0
and Var(A) = o2. Compute the correlation coefficient of & and #:

_E af+A—aa o
P = <(5_“) Jalio? )Wm'

If o is a large number compared to the amplification «, then p is close to 0 and n
essentially does not depend on . If o is small compared to «, then p is close to 1,
and one can easily reconstruct & from 7.

We consider some further numerical characteristics of random variables. One
often uses the so-called higher order moments.

Definition 4.6.2 The k-th order moment of a random variable £ is the quantity E£X.
The quantity E(§ — E&)F is called the k-th order central moment, so the variance is
the second central moment of &.

Given a random vector (&1, ..., &,), the quantity Eéf‘ .- -E,lf" is called the mixed
moment of order ky + - - - + k. Similarly, E(&; — E£) - .. (&, — E&,)* is said to
be the central mixed moment of the same order.

For independent random variables, mixed moments are evidently equal to the
products of the respective usual moments.

4.7 Inequalities
4.7.1 Moment Inequalities

Theorem 4.7.1 (Cauchy—Bunjakovsky’s inequality) If & and &, are arbitrary ran-
dom variables, then

El516)| < [Ee2EE2]).
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This inequality is also sometimes called the Schwarz inequality.

Proof The required relation follows from the inequality 2|ab| < a® + b if one puts
a’=¢& 12 JEE& 12 b= 522 /E*;‘z2 and takes the expectations of the both sides. O

The Cauchy—Bunjakovsky inequality is a special case of more general inequali-
ties.

Theorem 4.7.2 Forr > 1, % + % =1, one has Holder’s inequality:

Bl < [ElE ] [ElEr]Y,

and Minkowski’s inequality:
[EBlg + &1 <[Blar] + [Ber]”

Proof Since x" is, for r > 1, a convex function in the domain x > 0, which at the
point x = 1 is equal to 1 and has derivative equal to r, one has r(x — 1) < x” — 1
for all x > 0. Putting x = (a/b)"/" (a > 0, b > 0), we obtain
a/Tp! T < a é
ror

or, which is the same, a!/"p!/s < a/r + b/r. If one puts
& &P

a:= , b=
E|& | E|&|

and takes the expectations, one gets Holder’s inequality.
To prove Minkowski’s inequality, note that, by the inequality |§1 + &| < |&1] +
|&>|, one has

El& + & <El& |16 + &I + El&|lE + &1

Applying Holder’s inequality to the terms on the right-hand side, we obtain
1 1 —1)s71/s
El& + &l < {[Ela ] + Bl ]/ [El& + &1,

Since (r —1)s =r, 1 —1/s = 1/r, and Minkowski’s inequality follows. g

It is obvious that, for r = s = 2, Holder’s inequality becomes the Schwarz in-
equality.

Theorem 4.7.3 (Jensen’s inequality) If E£ exists and g(x) is a convex function,
then g(E§) <Eg(§).

Proof If g(x) is convex then for any y there exists a number g!(y) such that, for
all x,

gx) =g+ (x —g' ().
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Putting x =&, y = E£, and taking the expectations of the both sides of this inequal-
ity, we obtain

Eg(§) = g(E§). O
The following corollary is also often useful.

Corollary 4.7.1 Forany 0 <v <u,
1 1
[Elg]']"" < [Elg[]". 4.7.1)

This inequality shows, in particular, that if the u-th order moment exists, then the
moments of any order v < u also exist.

Inequality (4.7.1) follows from Holder’s inequality, if one puts & := |£],
& =1, r :=u/v, or from Jensen’s inequality with g(x) = |x[*/ and |£|" in place
of £.

4.7.2 Inequalities for Probabilities

Theorem 4.7.4 Let & > 0 with probability 1. Then, for any x > 0,
E¢:>x) Ef
X

P >x) < == (4.7.2)

IfEE < oo then P(§ > x) =0(1/x) as x — oo.

Proof The inequality is proved by the following relations:
E§ > E(§;§ = x) 2 xE(1;§ = x) =xP(§ = x).
If E£€ < oo then E(§; & > x) — 0 as x — oo. This proves the second statement

of the theorem. O

If a function g(x) > 0 is monotonically increasing, then clearly {& : g(§) >
g(e)} ={& : & = ¢} and, applying Theorem 4.7.4 to the random variable n = g(§),
one gets
Corollary 4.7.2 If g(x) 1, g(x) >0, then
E(g():§ >x) _Eg®)

g(x) — g

P >x) <

In particular, for g(x) = **,

P& >x) <e ™Ee, 1>0.

Corollary 4.7.3 (Chebyshev’s inequality) For an arbitrary random variable & with
a finite variance,

Var(§)
> (4.7.3)

X

P(|& —E£| >x) <
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To prove (4.7.3), it suffices to apply Theorem 4.7.4 to the random variable n =
(€ —E§)*=>0. O

The assertions of Theorem 4.7.4 and Corollary 4.7.2 are also often called Cheby-
shev’s inequalities (or Chebyshev type inequalities), since in regard to their proofs,
they are unessential generalisations of (4.7.3).

Using Chebyshev’s inequality, we can bound probabilities of various deviations
of & knowing only E£ and Var(£). As one of the first applications of this inequality,
we will derive the so-called law of large numbers in Chebyshev’s form (the law of
large numbers in a more general form will be obtained in Chap. 8).

Theorem 4.7.5 Let £1, &>, ... be independent identically distributed random vari-
ables with expectation E§; = a and finite variance o2 andlet S, = 27:1 &j. Then,

forany ¢ > 0,
#(

We will discuss this assertion in Chaps. 5, 6 and 8.

Sn
——a

o2
>¢ 5—2—>O
n ne

asn— oQ.

Proof of Theorem 4.7.5 follows from Chebyshev’s inequality, for

Sn no? o2

S,
E=Z —q, Var(
n
Now we will give a computational example of the use of Chebyshev’s inequality.

Example 4.7.1 Assume we decided to measure the diameter of the lunar disk us-
ing photographs made with a telescope. Due to atmospheric interference, measure-
ments of pictures made at different times give different results. Let £ — a denote
the deviation of the result of a measurement from the true value a, E§ = a and
o = +/Var(§) = 1 on a certain scale. Carry out a series of n independent measure-
ments and put &, := %(51 + ---+&,). Then, as we saw, E¢, = a, Var(¢,) = oz/n.
Since the variance of the average of the measurements decreases as the number of
observations increases, it is natural to estimate the quantity a by ¢,.

How many observations should be made to ensure |¢, — a| < 0.1 with a proba-
bility greater than 0.99? That is, we must have P(|¢, —a| <0.1) > 0.99, or P(|¢, —
al > 0.1) <0.01. By Chebyshev’s inequality, P(|¢, — a| > 0.1) < o2/(n-0.01).
Therefore, if n is chosen so that o2/(n - 0.01) < 0.01 then the required inequality
will be satisfied. Hence we get n > 10*.

The above example illustrates the possibility of using Chebyshev’s inequality to
bound the probabilities of the deviations of random variables. However, this exam-
ple is an even better illustration of how crude Chebyshev’s inequality is for practical
purposes. If the reader returns to Example 4.7.1 after meeting with the central limit
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theorem in Chap. 8, he/she will easily calculate that, to achieve the required accu-
racy, one actually needs to conduct not 10*, but only 670 observations.

4.8 Extension of the Notion of Conditional Expectation

In conclusion to the present chapter, we will introduce a notion which, along with
those we have already discussed, is a useful and important tool in probability theory.
Giving the reader the option to skip this section in the first reading of the book, we
avoid direct use of this notion until Chaps. 13 and 15.

4.8.1 Definition of Conditional Expectation

In Sect. 4.2 we introduced the notion of conditional expectation given an arbitrary
event B with P(B) > 0 that was defined by the equality

EE; B
E(|B) = ﬁml

4.8.1)

where
mam=/éW=mm,
B

15 = 1p(w) being the indicator of the set B. We have already seen and will see many
times in what follows that this is a very useful notion. Definition 4.8.1 introducing
this notion has, however, the deficiency that it makes no sense when P(B) = 0. How
could one overcome this deficiency?

The fact that the condition P(B) > 0 should not play any substantial role could be
illustrated by the following considerations. Assume that £ and » are independent,
B = {n =x} and P(B) > 0. Then, for any measurable function ¢(x, y), one has
according to (4.8.1) that

EpE, mIn=xy EeE, x)H=x
E[¢(g,n)|;7=x]= P(n:;n) b P(’?=§cn) }

The last equality holds because the random variables ¢(&, x) and Ij,—,) are inde-
pendent, being functions of & and n respectively, and consequently

Ep(&, M=) =Ep (¢, x)P(n =x).

Relations (4.8.2) show that the notion of conditional expectation could also retain
its meaning in the case when the probability of the condition is 0, for the equality

E[pE, n|n=x]=E¢&, x)

itself looks quite natural for independent £ and n and is by no means related to the
assumption that P(n = x) > 0.

=E¢p,x). (4.82)
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Fig. 4.1 Conditional 3
expectation as the projection
of & onto Hy

Let 2 be a sub-o-algebra of §. We will now define the notion of the conditional
expectation of a random variable & given 2(, which will be denoted by E(£|2(). First
we will give the definition in the “discrete” case, but in such a way that it can easily
be extended.

Recall that we call discrete the case when the o-algebra 2 is formed (gener-
ated) by an at most countable sequence of disjoint events Ay, Az, ..., j Aj=12,
P(A;) > 0. We will write this as 2l = 0 (A, A2, ...), which means that the elements
of 2 are all possible unions of the sets Ay, Ag, ....

Let L, be the collection of all random variables (all the measurable func-
tions &(w) defined on (£2, §, P)) for which E€2 < co. In the linear space L, one
can introduce the inner product (¢, ) = E(§n) (whereby L, becomes a Hilbert
space with the norm || £]| = (E£2)!/2; we identify two random variables & and & if
&1 — &1 =0, see also Remark 6.1.1).

Now consider the linear space Hygy of all functions of the form

E@)=)_cla, (@),

k

where 14, (w) are indicators of the sets A;. The space Hgy is clearly the space of
all 2(-measurable functions, and one could think of it as the space spanned by the
orthogonal system {I4, (w)} in L,.

We now turn to the definition of conditional expectation. We know that the con-
ventional expectation a = E£ of £ € L, can be defined as the unique point at which
the minimum value of the function ¢ (a) = E(£ —a)? is attained (see Sect. 4.5). Con-
sider now the problem of minimising the functional p(a) = E(§ — a(w))?, & € Lo,
over all 2-measurable functions a(w) from Hyy.

Definition 4.8.1 Let & € L,. The 2(-measurable function a(w) on which the mini-
mum minge gy @ (a) is attained is said to be the conditional expectation of & given
2l and is denoted by E(£]2().

Thus, unlike the conventional expectations, the conditional expectation E(£|2() is
a random variable. Let us consider it in more detail. It is evident that the minimum
of ¢(a) is attained when a(w) is the projection /E\ of the element & in the space Lj
onto Hyy, i.e. the element:;g € Hyy for which & —EJ_ Hgy (see Fig. 4.1). In that case,
for any a € Hy,
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E-aeHy, &—-E1lE-—a,
p@)=EE —E+E—a) =EE -8 +EE —a),
o(a) = 9&),

and ¢(a) = <p(§) ifa =§ a.s.

Thus, in L, the conditional expectation operation is just an orthoprojector onto
Hy (§ = E(£|20) is the projection of £ onto Hyy).

Since, for a discrete o -algebra 2, the element é , being an element of Hyy, has the
form é => ¢l A, » the orthogonality condition & — § L Hy (or, which is the same,
E¢ — é )14, = 0) determines uniquely the coefficients cy:

E(§; Ay)

E(“EIAk) =cP(Ar), o= m E(&|Ay),

so that

EE2) =% =) E|A0]a,.
k

Thus the random variable E(£|20) is constant on Ay and, on these sets, is equal
to the average value of & on Ay.

If £ and 2 are independent (i.e. P(§ € B; Ax) = P(§ € B)P(Ay)) then clearly
E(&; Ay) =EEP(Ay) and E: EE&. If 2 = § then § is also discrete, £ is constant on
the sets A and hence E =£.

Now note the following basic properties of conditional expectation which allow
one to get rid of the two special assumptions (that £ € L, and 2 is discrete), which
were introduced at first to gain a better understanding of the nature of conditional
expectation:

€))] ?is A-measurable.
(2) For any event A € 2,

EE: A) =E(; A).

The former property is obvious. The latter follows from the fact that any event
A € 2 can be represented as A € | J; A}, and hence

EE A=) EEA;)=) c;PA;)=) EEA;)=EE; A).
k k k

The meaning of this property is rather clear: averaging the variable £ over the set A
gives the same result as averaging the variable & which has already been averaged
over Aj,.

Lemma 4.8.1 Properties (1) and (2) uniquely determine the conditional expecta-
tion and are equivalent to Definition 4.8.1.

Proof In one direction the assertion of the lemma has already been proved. Assume
now that conditions (1) and (2) hold. 2-measurability of 5 means that é is constant
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on each set Ax. Denote by c; the value of é'\ on Ag. Since Ay € 2, it follows from
property (2) that

EGE; Ay) = P(Ap) = E(E; Ap),
and hence, for w € Ay,

E(; A
P(Ap)
The lemma is proved. g

S:Ckz

Now we can give the general definition of conditional expectation.

Definition 4.8.2 Let £ be a random variable on a probability space (£2, §, P) and
2l C § an arbitrary sub-o-algebra of §. The conditional expectation of § given 2 is
a random variable £ which is denoted by E(&|2() and has the following two proper-
ties:

@) é‘ is A-measurable. .
(2) Forany A €2, one has E(&; A) =E(§; A).

In this definition, the random variable & can be both scalar and vector-valued.

There immediately arises the question of whether such a random variable exists
and is unique. In the discrete case we saw that the answer to this question is positive.
In the general case, the following assertion holds true.

Theorem 4.8.1 If E|£| is finite, then the function /é‘;\ = E(& Q) in Definition 4.8.2
always exists and is unique up to its values on a set of probability 0.

Proof First assume that £ is scalar and £ > 0. Then the set function

Q(A)Z/%'dPZE(%‘;A), Ael
A

will be a measure on (£2, () which is absolutely continuous with respect to P, for
P(A) = 0 implies Q(A) = 0. Therefore, by the Radon—Nykodim theorem (see Ap-
pendix 3), there exists an 2(-measurable function E = E(£|2() which is unique up to
its values on a set of measure zero and such that

mm=/EW=m§m.

In the general case we put § = £ — &7, where £ := max(0,§) > 0, £~ :=
max(0, —§) > 0, E =& £t 5_ and & £% are conditional expectatlons of £*. This
proves the existence of the conditional expectation, since S satisfies conditions (1)
and (2) of Definition 4.8.2. This will also imply uniqueness, for the assumption
on non-uniqueness of S would imply non-uniqueness of & £t or é The proof for
vector-valued £ reduces to the one-dimensional case, since the components of 5 will
possess properties (1) and (2) and, for the components, the existence and uniqueness
have already been proved. g
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The essence of the above proof is quite transparent: by condition (2), for any
A €2 we are given the value

EE; A) = /A £dP,

i.e. the values of the integrals of £ over all sets A € 2 are given. This clearly should
define an 2-measurable function é uniquely up to its values on a set of measure
zero.

The meaning of E(£|2() remains the same: roughly speaking, this is the result of
averaging of £ over “indivisible” elements of 2.

If 2l = § then evidently E = £ satisfies properties (1) and (2) and therefore

E¢[§) =¢.

Definition 4.8.3 Let & and n be random variables on (£2, §, P) and 2 = o (n) be
the o -algebra generated by the random variable 7. Then E(£|2() is also called the
conditional expectation of & given 1.

To simplify the notation, we will sometimes write E(§|n) instead of E(¢|o ()).
This does not lead to confusion.

Since E(£|n) is, by definition, a o ()-measurable random variable, this means
(see Sect. 3.5) that there exists a measurable function g(x) for which E(&|n) =
g(n). By analogy with the discrete case, one can interpret the quantity g(x) as the
result of averaging & over the set {5 = x}. (Recall that in the discrete case g(x) =

En=x).)

Definition 4.8.4 If £ = I is the indicator of a set C € §, then E(I¢|2l) is called the
conditional probability P(C|2l) of the event C given . If A = o (1), we speak of
the conditional probability P(C|n) of the event C given 7.

4.8.2 Properties of Conditional Expectations

1. Conditional expectations have the properties of conventional expectations, the
only difference being that they hold almost surely (with probability 1):

(a) E(a +be|2) = a + bE(E|2D).
(b) E(¢1 +&I[2) =E(&|2) + E(&|2).
(c) If &1 <& a.s., then E(§1|) < E(&|2) a.s.

To prove, for instance, property (a), one needs to verify, according to Defini-
tion 4.8.2, that

(1) a+ bE(£]20) is an 2-measurable function;
(2) E(a +b&; A) =E(a + bE(&|2); A) for any A € 2.
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Here (1) is evident; (2) follows from the linearity of conventional expectation (or
integral).

Property (b) is proved in the same way.

To prove (c), put, for brevity, 5, :=E(&;|20). Then, for any A € 2,

/Aa dP—EE; A) = E(&1; A) < E(6; A)=fA§2dP, /A@z—a)szo.

This implies thatgz —El >0a.s.

2. Chebyshev’s inequality. If € > 0, x > 0, then P(§ > x|) <E(§|20)/x.

This property follows from 1(c), since P(§ > x|2) = E(Ig>}|2), where 14 is
the indicator of the event A, and one has the inequality I(>,) < &/x.

3. If A and o (n) are independent, then E(&|2l) = E£. Since E: E£ is an -
measurable function, it remains to verify the second condition from Definition 4.8.2:
forany A € 2,

EE: A) =E(: A).
This equality follows from the independence of the random variables I4 and § and
the relations E(&; A) = E(§14) = E£EI4 = E(§; A).
It follows, in particular, that if £ and 7 are independent, then E(& |n) = E&. If the
o-algebra 2 is trivial, then clearly one also has E(§|2() = E£.

4. Convergence theorems that are true for conventional expectations hold for
conditional expectations as well. For instance, the following assertion is true.

Theorem 4.8.2 (Monotone convergence theorem) If0 <&, 1 £ a.s. then
EE, 120 Y EERD)  as.

Indeed, it follows from &, 11 > §, a.s. that §n+1 z% a.s., where /5;1 =/I<\I(E,,|Ql).
Therefore there exists an 2(-measurable random variable & such that &, 1 £ a.s. By
the conventional monotone convergence theorem, for any A € 2|,

/é}dP—)/?dP, /éndP—>/§dP.
A A A A

Since the left-hand sides of these relations coincide, the same holds for the right-
hand sides. This means that £ = E(£|20).

5. If n is an A-measurable scalar random variable, E|&| < 0o, and E|&n| < oo,
then

E®§|2) = nE(&[20). (4.8.3)
If € > 0 and n > O then the moment conditions are superfluous.

In other words, in regard to the conditional expectation operation, 2(-measurable
random variables behave as constants in conventional expectations (cf. prop-
erty 1(a)).

In order to prove (4.8.3), note that if n = I (the indicator of a set B € 2l) then
the assertion holds since, for any A € 2,

/E(IB§|QL)dP=/IB§dP=/ sdpzf E($|Ql)dP=/IBE($|QI)dP.
A A AB AB A
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This together with the linearity of conditional expectations implies that the assertion
holds for all simple functions 7.

If £ > 0 and 5 > O then, taking a sequence of simple functions 0 < n, 1 n and
applying the monotone convergence theorem to the equality

E(0,&120) = n.E&2D),

we obtain (4.8.3). Transition to the case of arbitrary £ and 5 is carried out in the
standard way—by considering positive and negative parts of the random variables
& and n. In addition, to ensure that the arising differences and sums make sense, we
require the existence of the expectations E|&| and E|£7]|.

6. All the basic inequalities for conventional expectations remain true for condi-
tional expectations as well, in particular, Cauchy—Bunjakovsky’s inequality

E(|&&1[2) < [E(§12|91)E(€22|Q[)]1/2

and Jensen’s inequality: if E|&| < oo then, for any convex function g,

g(EEI0) <E(g®)). (4.8.4)

Cauchy—Bunjakovsky’s inequality can be proved in exactly the same way as for
conventional expectations, for its proof requires no properties of expectations other
than linearity.

Jensen’s inequality is a consequence of the following relation. By convexity of
g(x), for any y, there exists a number g*(y) such that g(x) > g(y) + (x — y)g*(»)
(g*(y) = g'(y) if g is differentiable at the point y). Putx =&, y =§= E(&]2), and
take conditional expectations of the both sides of the inequality. Then, assuming for
the moment that

E(|¢ -5)g*®)]) < oo (4.8.5)

(this can be proved if E|g(§)| < 00), we get

E[¢G - 95" ®)[W)] =" ©EE &) =0
by virtue of property 5. Thus we obtain (4.8.4). In the general case note that the
function g*(y) is nondecreasing. Let (y_y, yn) be the maximal interval on which
1g*(M)| < N. Put
&) if ye[y-n.ynl
gy+n) £ (y —yxn)N  if y 2 yin.

(y+n can take infinite values if ¢*(y) are bounded as y — oo. Note that the values
of g*(y) are always bounded from below as y — oo and from above as y — —oo,
hence g*(y+n) 2 0 for N large enough.) The support function gy, () corresponding
to gy (y) has the form

gn(y) = {

gy (y) = max[—N, min(N, g*(y))]

and, consequently, is bounded for each N. Therefore, condition (4.8.5) is satisfied
for g3, (y) (recall that E|&| < 00) and hence

v (@ <E(gn(®)|).
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Further, we have gy (y) 1 g(y) as N — oo for all y. Therefore the left-hand side
of this inequality converges everywhere to g(§) as N — oo, but the right-hand side
converges to E(g(£)|2) by Theorem 4.8.2. Property 6 is proved. 0

7. The total probability formula
Ef =EE(£[2)
follows immediately from property 2 of Definition 4.8.2 with A = §2.

8. Iterated averaging (an extension of property 7): if 2 C 2; C § then
E(¢[20) = E[E(|20)[21].

Indeed, for any A € 2, since A € 2(; one has

fE[E(g|m1)|m]dP:/E(gmll)dP:/gdP:/E(sm)dP.
A A A A

The properties 1, 3-5, 7 and 8 clearly hold for both scalar- and vector-valued
random variables &. The next property we will single out.

9. For & € Ly, the minimum of E(§ — a(w))? over all A-measurable functions
a(w) is attained at a(w) = E(&|2).

Indeed, E(¢§ — a(w))? = EE((¢§ — a(w))?|20), but a(w) behaves as a constant in
what concerns the operation E(-|2l) (see property 5), so that

E((£ — a(@)’|2) = E((€ — EEI)’[2) + (EED) — a(w)’

and the minimum of this expression is attained at a(w) = E(£]20).

This property proves the equivalence of Definitions 4.8.1 and 4.8.2 in the case
when & € L, (in both definitions, conditional expectation is defined up to its values
on a set of measure 0). In this connection note once again that, in L;, the operation
of taking conditional expectations is the projection onto Hy (see our comments to
Definition 4.8.1).

Property 9 can be extended to the multivariate case in the following form: for any
nonnegative definite matrix V, the minimum min(§ — a(w))V (§ — a(@)T over all
A-measurable functions a(w) is attained at a(w) = E(§]|20).

The assertions proved above in the case where £ € L, and the o-algebra 2 is
countably generated will surely hold true for an arbitrary o -algebra 2, but the sub-
stantiation of this fact requires additional work.

In conclusion we note that property 5 admits, under wide assumptions, the fol-
lowing generalisation:

SA. If n is A-measurable and g(w, n) is a measurable function of its arguments
w € 2 and n € R¥ such that E|g(w, n)|A)| < oo, then

E(g(w.n)|%) =E(g(e. y)|%)]
This implies the double expectation (or total probability) formula.

Eg(w,n) =E[E(g(w, »[A)],_, ].

(4.8.6)

y=n"
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which can be considered as an extension of Fubini’s theorem (see Sects. 4.6 and 3.6).
Indeed, if g(w, y) is independent of 2, then

E(g(@.)|A) =Eg@.y).  E(g@.n[A) =Eg(.y)],_,.
Eg(w.m =E[Eg(w. )] _, ]

In regard to its form, this is Fubini’s theorem, but here 5 is a vector-valued ran-
dom variable, while @ can be of an arbitrary nature.

We will prove property SA under the simplifying assumption that there exists
a sequence of simple functions 7, such that g(w, n,) 1 g(w,n) and h(w, n,) 1
h(w, n) a.s., where h(w,y) = E(g(w, y)|2)). Indeed, let n, = yx for w € Ay C 2.
Then

g, n) =Y (@, y0)la,.

By property 5 it follows that (4.8.6) holds for the functions 7,. It remains to
make use of the monotone convergence theorem (property 4) in the equality

E(g(@, n,)|20)) = h(w, ny).

4.9 Conditional Distributions

Along with conditional expectations, one can consider conditional distributions
given sub-o-algebras and random variables. In the present section, we turn our at-
tention to the latter.

Let & and 7 be two random variables on (£2, §, P) taking values in R® and R¥,
respectively, and let ©B° be the o-algebra of Borel sets in R®.

Definition 4.9.1 A function F(B|y) of two variables y € R¥ and B € B* is called
the conditional distribution of & given n =y if:

1. For any B, F(B|n) is the conditional probability P(§ € B|n) of the event
{& € B} given n, i.e. F(B|y) is a Borel function of y such that, for any A € Bk,

E(F(B|n);n € A) E/Al*ﬂ(Bly)P(n €dy)=PE € B, neA).
2. For any y, F(B]|y) is a probability distribution in B.

Sometimes we will write the function F(B|y) in a more “deciphered” form as
F(Bly)=P( € Bln=y).

We know that, for each B € B°, there exists a Borel function gg(y) such that
gp(n) =P(& € B|n). Thus, putting P(B|y) := gp(y), we will satisfy condition 1
of Definition 4.9.1. Condition 2, however, does not follow from the properties of
conditional expectations and by no means needs to hold: indeed, since conditional
probability P(§ € B|n) is defined for each B up to its values on a set Np of zero
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measure (so that there exist many variants of conditional expectation), and this set
can be different for each B. Therefore, if the union

N=UNB

BeBs
has a non-zero probability, it could turn out that, for instance, the equalities

P(§ € B1 U B2|n) =P(§ € Bin) + P& € By|n)

(additivity of probability) for all disjoint B; and B, from 25° hold fornow € N, i.e.
on an w-set N of positive probability, the function gg(y) will not be a distribution
as a function of B.

However, in the case when & is a random variable taking values in R® with the
o-algebra B°* of Borel sets, one can always choose gg(n) = P(& € B|n) such that
g8 (y) will be a conditional distribution.”

As one might expect, conditional probabilities possess the natural property that
conditional expectations can be expressed as integrals with respect to conditional
distributions.

Theorem 4.9.1 For any measurable function g(x) mapping R® into R such that
E|g(&)| < o0, one has

E(g(®)|n) = f g()F(dx|n). (4.9.1)

Proof Tt suffices to consider the case g(x) > 0. If g(x) = I4(x) is the indicator of
a set A, then formula (4.9.1) clearly holds. Therefore it holds for any simple (i.e.
assuming only finitely many values) function g, (x). It remains to take a sequence
gn 1 g and make use of the monotonicity of both sides of (4.9.1) and property 4
from Sect. 4.8. g

In real-life problems, to compute conditional distributions one can often use the
following simple rule which we will write in the form

P eB,ned
PEeBln=y)= @PE?Z;)”. (4.9.2)

Both conditions of Definition 4.9.1 will clearly be formally satisfied.
If £ and 7 have a joint density, this equality will have a precise meaning.

Definition 4.9.2 Assume that, for each y, the conditional distribution F(B]|y) is
absolutely continuous with respect to some measure p in R*:

Pt € Bln=y) = /B FEdx).

Then the density f(x]|y) is said to be the conditional density of & (with respect to
the measure |L) given n=y.

2For more details, see e.g. [12, 14, 26].
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In other words, a measurable function f(x|y) of two variables x and y is the
conditional density of & given n =y if:

(1) For any Borel sets A C RF and B C R,
/ Sy dx)P(nedy) =PE € B,ne A). (4.9.3)
yeA JxeB

(2) For any y, the function f(x|y) is a probability density.

It follows from Theorem 4.9.1 that if there exists a conditional density, then

E(5(6)]n) = / (o) f el (o).

If we additionally assume that the distribution of n has a density g(y) with re-
spect to some measure A in R¥, then we can re-write (4.9.3) in the form

/ f &g (y) u(dx) AMdy) =P € B,n € A). (4.9.4)
yeA JxeB

Consider now the direct product of spaces R* and R¥ and the direct product of
measures 4 X A onit (if C = B x A, B CR®, A C RF then u x A(C) = u(B)A(A)).
In the product space, relation (4.9.4) evidently means that the joint distribution of &
and 7 in R® x R¥ has a density with respect to u x A which is equal to

fx,y) = fx|y)g(y).

The converse assertion is also true.

Theorem 4.9.2 If the joint distribution of & and 1 in R® x R¥ has a density f(x,y)
with respect to i X A, then the function

Flaly) = L)
q(y)

is the conditional density of & given n =y, and the function q(y) is the density of n
with respect to the measure A.

,  where q(y)=/f(x,y)u(dx),

Proof The assertion on ¢(y) is obvious, since

/Aq(y)k(dy) =P e A).

It remains to observe that f(x|y) = f(x, y)/q(y) satisfies all the conditions from
Definition 4.9.2 of conditional density (equality (4.9.4), which is equivalent to
(4.9.3), clearly holds here). Il

Theorem 4.9.2 gives a precise meaning to (4.9.2) when & and 5 have densities.

Example4.9.1 Let&; and &, be independent random variables, §| € IT;, |, § € IT,,.
What is the distribution of & given & + & = n? We could easily compute the de-
sired conditional probability P(&§) = k|&| + & = n), k < n, without using Theo-
rem 4.9.2, for & + & & II,, 4, and the probability of the event {&§; + & =n} is
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positive. Retaining this possibility for comparison, we will still make formal use of
Theorem 4.9.2. Here &1 and n = &1 + & have densities (equal to the corresponding
probabilities) with respect to the counting measure, so that

A=A )‘]f)‘;_k
— — — — — — — — p  MTA2
fleon)=PE =k n=n)=PE =k =n—k)=e o0l
)\' )\- n
g =Py =n) = e~n - LLE 22T
n!
Therefore the required density (probability) is equal to
(k, n) n! -
£ Gelm) = P&y = k| =m) = L) P pyt,

gn) — k'(n—k)!

where p = X/(A1 + A2). Thus the conditional distribution of &; given the fixed sum
&1 + & =n is a binomial distribution. In particular, if &1, ..., & are independent,
& €10, then the conditional distribution of &1 given the fixed sum & +---+ &, =n
will be BYf /i which does not depend on A.

The next example answers the same question as in Example 4.9.1 but for nor-
mally distributed random variables.

Example 4.9.2 Let ®, ;2 be the two-dimensional joint normal distribution of ran-
dom variables & and &, where a = (a1, a2), a; = E&;, and o= lloi, ;| is the co-
variance matrix, o;; =E(§; — a;)(§; —a;), i, j =1, 2. The determinant of o?is

|02‘ =011022 — 0122 =011022(1 — pz),

where p is the correlation coefficient of &1 and &;. Thus, if |p| # 1 then the covari-
ance matrix is non-degenerate and has the inverse

1 p

o11 V011022
1

P 1

/011012 022

Therefore the joint density of & and &, (with respect to Lebesgue measure) is (see
Sect. 3.3)

—1 1
A=) =

1
=1

022 —012
—012 o011

1

2/o11022(1 — p?)

flx,y)=

Xexp{_ 1 [(x—al)z_2p(x—a1)(y—az)+(y—az)2“
2(1—p?) o11 /011022 022 '
4.9.5)
The one-dimensional densities of £; and &, are, respectively,
1 2 1 2
— —(x—a1)*/Qon,) — —(y—a2)*/(2o2) 496
X e , e . 9.
S (x) e q(y) Nerze (4.9.6)

Hence the conditional density of £; given & =y is
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Fig. 4.2 Illustration to

Example 4.9.4. Positions of Target’s centre

the target’s centre, the first - -

aimpoint, and the first hit [

b_-—
The first aimpoint
R e
The first hit
X,
faly) = L2
q(y)

1 1
e e R

which is the density of the normal distribution with mean a; + p, /2L (y — ap) and

022
variance o1 (1 — ,02).

This implies that f(x|y) coincides with the unconditional density of f(x) in
the case p = 0 (and hence & and &, are independent), and that the conditional
expectation of & given & is

E(&11&) = a1 + p/o11 /0226 — a2).

The straight line x = a; + p+/o11/022(y — a2) is called the regression line of &
on &;. It gives the best mean-square approximation for &1 given & =y

Example 4.9.3 Consider the problem of computing the density of the random vari-
able £ = ¢(¢,n) when ¢ and n are independent. It follows from formula (4.9.3)
with A = R that the density of the distribution of £ can be expressed in terms of
the conditional density f(x|y) as

F) = f FGIP( € dy).

In our problem, by f(x|y) one should understand the density of the random variable
@(¢, y), since P(§ € Bln=y) =P(p(, y) € B).

Example 4.9.4 Target shooting with adjustment. A gun fires at a target of a known
geometric form. Introduce the polar system of coordinates, of which the origin is
the position of the gun. The distance r (see Fig. 4.2) from the gun to a certain point
which is assumed to be the centre of the target is precisely known to the crew of the
gun, while the azimuth is not. However, there is a spotter who communicates to the
crew after the first trial shoot what the azimuth deviation of the hitting point from
the centre of the target is.

Suppose the scatter of the shells fired by the gun (the deviation (£, ) of the hit-
ting point from the aimpoint) is described, in the polar system of coordinates, by the
two-dimensional normal distribution with density (4.9.5) with ¢ = 0. In Sect. 8.4 we
will see why the deviation is normally distributed. Here we will neglect the circum-
stance that the azimuth deviation & cannot exceed 7 while the distance deviation &
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cannot assume values in (—oo, —r). (The standard deviations o7 and o7 are usually
very small in comparison with r and 7, so this fact is insignificant.) If the azimuth g
of the centre of the target were also exactly known along with the distance r, then
the probability of hitting the target would be equal to

/ fx,y)dxdy,
B(r.p)
where B(r, 8) = {(x,y) : (r +x, 8 + y) € B} and the set B represents the target.
However, the azimuth is communicated to the crew of the gun by the spotter based
on the result of the trial shot, i.e. the spotter reports it with an error § distributed
according to the normal law with the density g(y) (see (4.9.6)). What is the proba-
bility of the event A that, in these circumstances, the gun will hit the target from the
second shot? If § = z, then the azimuth is communicated with the error z and

P(AlS =2) = f Flroy —2dxdy = 9(2).
B(r,B)
Therefore,

1

P(A) = E[P(A|8)] = Ep(5) =
(A) =E[P(A|8)] = Ep(8) .

o 2262
/ e~ g2 dz.
—00

Example 4.9.5 The segment [0, 1] is broken “at random” (i.e. with the uniform
distribution of the breaking point) into two parts. Then the larger part is also broken
“at random” into two parts. What is the probability that one can form a triangle from
the three fragments?

The triangle can be formed if there occurs the event B that all the three fragments
have lengths smaller than 1/2. Let w; and w; be the distances from the points of the
first and second breaks to the origin. Use the complete probability formula

P(B) = EP(B|w)).

Since w; is distributed uniformly over [0, 1], one only has to calculate the con-
ditional probability P(B|w;). If w1 < 1/2 then wy is distributed uniformly over
[w1, 1]. One can construct a triangle provided that 1/2 < wy < 1/2 4 ;. Therefore
P(B|w1) = w1/(1 — w1) on the set {1 < 1/2}. We easily find from symmetry that,
for w; > 1/2,

1 —w
P(B|wy) = o

Hence

dx=—1+2In2.

2 12 gy
P(B)=2/ dx=—1+2/
o 1 o 1

—X
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One could also solve this problem using a direct “geometric” method. The den-
sity f(x, y) of the joint distribution of (w1, wy) is

L ifx<1/2, ye[x, 1],

X

]7
fx,y)=11 ifx>1/2, y €0, x],

X

0 otherwise.
It remains to compute the integral of this function over the domain corresponding
to B.

All the above examples were on conditional expectations given random variables
(not o -algebras).

The need for conditional expectations given o -algebras arises where it is diffi-
cult to manage working just with conditional expectations given random variables.
Assume, for instance, that a certain process is described by a sequence of random
variables {& j};?ozf o Which are not independent. Then the most convenient way to
describe the distribution of &; given the whole “history” (i.e. the values &g, £_1,
&_»,...) is to take the conditional distribution of &; given o (§p,&_1,...). It would
be difficult to confine oneself here to conditional distributions given random vari-
ables only. Respective examples are given in Chaps. 13, 15-22.



Chapter 5
Sequences of Independent Trials
with Two Outcomes

Abstract The weak and strong laws of large numbers are established for the
Bernoulli scheme in Sect. 5.1. Then the local limit theorem on approximation of
the binomial probabilities is proved in Sect. 5.2 using Stirling’s formula (covering
both the normal approximation zone and the large deviations zone). The same sec-
tion also contains a refinement of that result, including a bound for the relative error
of the approximation, and an extension of the local limit theorem to polynomial dis-
tributions. This is followed by the derivation of the de Moivre—Laplace theorem and
its refinements in Sect. 5.3. In Sect. 5.4, the coupling method is used to prove the
Poisson theorem for sums of non-identically distributed independent random indica-
tors, together with sharp approximation error bounds for the total variation distance.
The chapter ends with derivation of large deviation inequalities for the Bernoulli
scheme in Sect. 5.5.

5.1 Laws of Large Numbers

Suppose we have a sequence of trials in each of which a certain event A can oc-
cur with probability p independently of the outcomes of other trials. Form a se-
quence of random variables as follows. Put & = 1 if the event A has occurred in
the k-th trial, and & = O otherwise. Then (&)p2, will be a sequence of indepen-
dent random variables which are identically distributed according to the Bernoulli
law: P(§x = 1) = p, P(x =0) = ¢ =1 — p, E§ = p, Var(§) = pqg. The sum
S =&+---+§&, € B’;, is simply the number of occurrences of the event A in the
first n trials. Clearly ES,, = np and Var(S,)) =npq.

The following assertion is called the law of large numbers for the Bernoulli
scheme.

Theorem 5.1.1 Forany e >0
Sn

E

— =D

>8>—>0 asn — oo.

This assertion is a direct consequence of Theorem 4.7.5. One can also obtain the
following stronger result:

A.A. Borovkov, Probability Theory, Universitext, 107
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Theorem 5.1.2 (The Strong Law of Large Numbers for the Bernoulli Scheme) For
k
- P

any ¢ >0, as n — 00,
S
P<sup >£)—>O.
k>n k

The interpretation of this result is that the notion of probability which we intro-
duced in Chaps. 1 and 2 corresponds to the intuitive interpretation of probability
as the limiting value of the relative frequency of the occurrence of the event. In-
deed, S, /n could be considered as the relative frequency of the event A for which
P(A) = p. It turned out that, in a certain sense, S, /n converges to p.

Proof of Theorem 5.1.2 One has

Sk o Sk
P sup|— —p >£>:P {——p >s}
<k>n k <kL:Jn k
o0 [e'e) 4
Sk E(Sx — kp)
= P(|Fre) s

k=n k=n

(5.1.1)

Here we again made use of Chebyshev’s inequality but this time for the fourth mo-
ments. Expanding we find that

k 4 k
E(S; — kp)* = E(Z@j — p)) =Y EE —p)'+6) (& —p’PE —p)’

j=l1 j=l1 i<j
= k(pg* +qp*) +3k(k — D(pg)? <k +k(k—1)=k>.  (5.12)

Thus the probability we want to estimate does not exceed the sum

o0
£_4Zk_2—>0 as n — o0. 0
k=n

It is not hard to see that we would not have found the required bound if we used
Chebyshev’s inequality with second moments in (5.1.1).

We could also note that one actually has much stronger bounds for
P(|Sx — kp| > €k) than those that we made use of above. These will be derived
in Sect. 5.5.

Corollary 5.1.1 If f(x) is a continuous function on [0, 1] then, as n — 0o,

Sn
Ef(;) — f(p) (5.1.3)

uniformly in p.
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o{[1(2) - o} 2 - o]

Proof For any ¢ > 0,
Sn
E’f(—) - fp)
n

Sn
— =D
n

S, Sn
+E<‘f<7)—f(p); o P >8)
< sup |f(p+x)— f(p)|+8a(e),

|x|<e
where the quantity §(¢) is independent of p by virtue of (5.1.1), (5.1.2), and since

Sn(e) > 0asn — oo. O

Corollary 5.1.2 If f(x) is continuous on [0, 1], then, as n — o0,

> ! (5> (”)xka — 0" F > f)
—\n k

uniformly in x € [0, 1].
This relation is just a different form of (5.1.3) since

P(S, = k) = (Z) pha—py*

(see Chap. 1). This relation implies the well-known Weierstrass theorem on approxi-
mation of continuous functions by polynomials. Moreover, the required polynomials
are given here explicitly—they are Bernstein polynomials.

5.2 The Local Limit Theorem and Its Refinements

5.2.1 The Local Limit Theorem

We know that P(S, = k) = (}) p*¢"*, g = 1 — p. However, this formula becomes
very inconvenient for computations with large n and k, which raises the question
about the asymptotic behaviour of the probability P(S, = k) as n — oo.
In the sequel, we will write a, ~ b,for two number sequences {a,} and {b,} if
an/b, — 1 as n — oo. Such sequences {a,} and {b,} will be said to be equivalent.
Set
I—x

k
Hx)=xInZ 4+ —x)n . pr==. (5.2.1)
p 1—p n

Theorem 5.2.1 As k — oo and n — k — o0,
1

Tmra e ool e} 622)

P(S, = k) =P<& - p*) ~
n
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Proof We will make use of Stirling’s formula according to which n! ~ /2wnn"e™"
as n — 00. One has

oy [Tk kL n n" ko o\n—k
P8 =4) = (k)p T ok =t o — kP D)

1
V21— po)
k
X exp{—kln ——m—k)In
n

n—k

+klnp+(n—k)ln(1—p)}

1 %k
=—— exp|-n[p*Inp*+ (1 - p*)In(1 — p*
/Zﬂnp*(l _p*) P{ [[) p ( p ) ( p )
—p*Inp—(1-p*)In(l - p)]}
1
=——exp{nH(p*)}].
2xnp*(1 — p*) p{ (p )} -
If p* =k/n is close to p, then one can find another form for the right-hand side
of (5.2.2) which is of significant interest. Note that the function H (x) is analytic on
the interval (0, 1). Since

H=ln > 1—x PN 1
(x)=In= —1n , H'(x)=—-4—, (5.2.3)
p I—p p l—x

one has H(p) = H'(p) =0 and, as p* — p — 0,!
1/1 1 2 3
Hp*=—(—+—> “—p)+O(p"—p|)
(1) =2 (54 D) =+ 0 ol
Therefore if p* ~ p and n(p* — p)> — 0 then

n

1
RS =0~ o] 5 (0 -]

Putting

1 1 29
. )= e 2
N7 V2n

one obtains the following assertion.

A=

Corollary 5.2.1 Ifz =n(p* — p) =k — np = 0o(n*?) then
P(S,=k)=P(S, —np=2)~p(A)A, (5.2.4)

where ¢ = @g.1(x) is evidently the density of the normal distribution with parame-
ters (0,1).

1According to standard conventions, we will write a(z) = o(b(z)) as z — zg if b(z) > 0 and

lim; .z, G = 0, and a(2) = O(b(2)) as 2 — 20 if b(z) > 0 and limsup, _, ,, 4@ < oo,
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This formula also enables one to estimate the probabilities of the events of the
form {S, < k}.

If p* differs substantially from p, then one could estimate the probabilities of
such events using the results of Sect. 1.3.

Example 5.2.1 In a jury consisting of an odd number n = 2m + 1 of persons, each
member makes a correct decision with probability p = 0.7 independently of the
other members. What is the minimum number of members for which the verdict
rendered by the majority of jury members will be correct with a probability of at
least 0.99?

Put &, = 1 if the k-th jury member made a correct decision and & = 0 otherwise.
We are looking for odd numbers n for which P(S,, <m) < 0.01. It is evident that
such a trustworthy decision can be achieved only for large values of n. In that case,
as we established in Sect. 1.3, the probability P(S, < m) is approximately equal to

(n+1 —m)pP(Sn —my~ L
(n+1p—m 2p—1

Using Theorem 5.2.1 and the fact that in our problem

1 1 1 1 1—p
* oy )l =_= _ " Z ) =
p okt H(2) 2ln4p(1 P, H (2) ln( » ),

P(S, =m).

_2r(T=p) . 1 y
Nm(m) ~0~915ﬁ(o.84) ,

On the right-hand side there is a monotonically decreasing function a(n). Solving
the equation a(n) = 0.01 we get the answer n = 33. The same result will be obtained
if one makes use of the explicit formulae.

5.2.2 Refinements of the Local Theorem

It is not hard to bound the error of approximation (5.2.2). If, in Stirling’s formula
n! = 2rnn"e "™ we make use of the well-known inequalities2

1
<) <—,
12n +1 12n

then the same argument will give the following refinement of Theorem 5.2.1.

2See, e.g., [12], Sect. 2.9.
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Theorem 5.2.2
1
PGS, =k)= —-—— H(p*)+6(k,n)}, 5.2.5
Sn=h) = = exp{nH (p*) +6(k,n)} (5.2.5)
where
1 1 1
|0k, n)| = |0(m) —0(K)O(n — k)| < ﬁ+ 200 = A

(5.2.6)
Relation (5.2.4) could also be refined as follows.

Theorem 5.2.3 For all k such that |p* — p| < 3 min(p, q) one has
P(S, =k) = p(zA)A(1 + &(k, n)),

2> A 1\ .,
1+ ¢e(k,n) =expy? 3 + |Z|+6 A , |9l < 1.

As one can easily see from the properties of the Taylor expansion of the func-
tion e*, the order of magnitude of the term &(k, n) in the above formulae coin-
cides with that of the argument of the exponential. Hence it follows from Theo-
rem 5.2.3 that for z = k — np = 0o(A~*/3) or, which is the same, z = 0(n?/3), one
still has (5.2.4).

where

Proof We will make use of Theorem 5.2.2. In addition to formulae (5.2.3) one can
write:

—D¥k=2)!  (k—2)!
o 2 k>2
xk—1 + (1 _x)k—l ’ -7

1
H(p*)= %(p* —p) 4Ry,

. . ) N
where we can estimate the residual Ry = ) po 4 " k!(p ) (p* — p). Taking into account

that

1 1
H®(p) s(k—2>!(—+—), k>2,
O Tt e

and letting for brevity |p* — p| = §, we get for § < % min(p, ¢q) the bounds

o
k=27 1 1 $/1 1 11
IRil<) (k_1+k_1>fg— st

k=3

213 3
p q Plpq g
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From this it follows that

(k—np)?>  lk—np®  2A% vz’ A%
- 7 =— + .l < 1.
2npq 3(npq) 2 3
(5.2.7)

—nH(p") =

We now turn to the other factors in equality (5.2.5) and consider the product
p*(1 —p*).Since —p<1—p— p*<1— p, we have

[p*(1=p") = p=p)|=|(p = p*)(1 = p = p*)| = |P" = p|max(p, ).
This implies in particular that, for |p* — p| < £ min(p, ¢), one has
1 1
p*(1=p") = pal<3pa.  P*(1=p")>5pa.

Therefore one can write along with (5.2.6) that, for the values of k indicated in
Theorem 5.2.3,

A2
|0k, n)| < == (5.2.8)
6npq 6
It remains to consider the factor [p*(1 — p*)]~1/2. Since for |y | < 1/2
I+y 1
|ln(1+y)|=‘/ —dx| <2|yl,
1 X
one has for § = |p* — p| < (1/2) min(p, g) the relations
* 1 _ kY
In(p*(1 = p*)) = In pq +1n<1 + w)
P4
9*3 .
= In(pg) +In| 1 — , |19 | <max(p, q);
pa (5.2.9)

D*68 216
In{1- = ———, |92 <max(p,q),
pPq pPq

*(] _ p* -1z _ —1/2 {?9_25}
[p*(1—p*)] [pq]l~"/*exp o

Using representations (5.2.7)—(5.2.9) and the assertion of Theorem 5.2.2 com-
pletes the proof. O

One can see from the above estimates that the bounds for ¥ in the statement
of Theorem 5.2.3 can be narrowed if we consider smaller deviations |p* — p|—if
they, say, do not exceed the value o min(p, g) where @ < 1/2.

The relations for P(S,, = k) that we found are the so-called local limit theorems
for the Bernoulli scheme and their refinements.
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5.2.3 The Local Limit Theorem for the Polynomial Distributions

The basic asymptotic formula given in Theorem 5.2.1 admits a natural extension
to the polynomial distribution Bf,’,, p=(p1,..., pr), when, in a sequence of inde-
pendent trials, in each of the trials one has not two but r > 2 possible outcomes

A1, ..., A, of which the probabilities are equal to pq, ..., p,, respectively. Let S,(,j )
be the number of occurrences of the event A; in n trials,

Sp=(S", ..., 89, k=(k, ... k), p*:;,

and put H(x) =) x;In(x;/pi), x = (x1, ..., x,). Clearly, S, € B’[’,. The following
assertion is a direct extension of Theorem 5.2.1.

Theorem 5.2.4 [f each of the r variables ki, ..., k, is either zero or tends to 0o as
n — oo then

r

—172
P(S, =k) ~ (27m)<1r°)/2( H Pj) exp{—nH (p*)},
=1
P40

where rq is the number of variables ki, ..., k. which are not equal to zero.

Proof As in the proof of Theorem 5.2.1, we will use Stirling’s formula

n!~~2mrne "n"

as n — o00. Assuming without loss of generality that all k; — oo, j=1,...,7, we
get
/2 r N\ k)
_ n np;
P(S, =k) ~ 2m)! ’>/2<7> (—)
[Tizi%; ]Ul kj
_ (1=r)/2 * p 212
=Qmn)" " (jli[lpj) exp{n; p In 3 } ¥

5.3 The de Moivre-Laplace Theorem and Its Refinements

Let a and b be two fixed numbers and ¢, = (S, — np)/./npq. Then

Pla<¢, <b)= Z P(S, —np =2).
a/npg<z<b./npq
If, instead of P(S, — np = z), we substitute here the values ¢(zA)A (see Corol-
lary 5.2.1), we will get an integral sum ) __,_, ¢(zA)A corresponding to the
integral fab o(x)dx.
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Thus relations (5.2.4) make the equality

b
lim P(a < ¢, <b) =f o(x)dx =P (b) — D(a) (5.3.1)
n—oo a
plausible, where @ (x) is the normal distribution function with parameters (0, 1):

D(x) = /2 4y

1 X
— e
kY, 2 /;oo
This is the de Moivre—Laplace theorem, which is one of the so-called integral limit
theorems that describe probabilities of the form P(S,, < x). In Chap. 8 we will derive
more general integral theorems from which (5.3.1) will follow as a special case.

Theorem 5.2.3 makes it possible to obtain (5.3.1) together with an error bound
or, in other words, with a bound for the convergence rate.
Let A and B be integers,

A—np B —np

a= , b= . (5.3.2)
</1rq W/ 1Pq
Theorem 5.3.1 Let b > a, c = max(|a|, |b|), and
3 2
¢’ +3c A
= A+ —.
pP=—3 4t

If A=1//npg <1/2and p <1/2 then
b
P(A<S,<B)=Pla<i¢ <b)= / o) dt(1+1Ac)(1 +202p), (5.3.3)
a
where |9;| <1,i=1,2.

This theorem shows that the left-hand side in (5.3.3) can be equivalent to @ (b) —
@ (a) for growing a and b as well. In that case, @ (b) — @ (a) can converge to 0, and
knowing the relative error in (5.3.1) is more convenient since its smallness enables
one to establish that of the absolute error as well, but not vice versa.

Proof First we note that, for all k£ such that |z| = |k — np| < c,/npq, the con-
ditions of Theorem 5.2.3 will hold. Indeed, to have the inequality |p* — p| <
(1/2) min(p, q) it suffices that |k — np| < npq/2 = 1/(2A%). This inequality will
hold if ¢ < 1/(24). But since p < 1/2, one has

c(c2+3)A
3

Thus, for each k such thata./npg < z < b./npq, we can make use of Theorem 5.2.3
to conclude that

< 1/2, cA < 1/2.
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P(A<S, <B)
= Z P(S, = k)
a/npq=<z<b./npq
|z]3 A% 1\ .,
= > w(zA)A[l—i—(exp{ﬁ( 3 +<|Z|+6)A )}-1)}
a<zA<b

5.3.4)
where || < 1. Since, for p <1,

el —1

<e—1<2,

the absolute value of the correction term in (5.3.4) does not exceed (substituting
there zA =c¢)

A A?
expy 9 T+CA+? —1

Therefore

A A?

PA<S,<B)= Y  ¢@A)All+201p], (5.3.5)

a<zA<b

where || < 1.
Now we transform the sum on the right-hand side of the last equality. To this end,
note that, for any smooth function ¢(x),

2
:% max |/ (1)]. (5.3.6)

x<t<x+A

x+A
‘AWC) —/ @(t)dt

But for the function ¢ (x) = (27t)’1/2e”‘2/2 one has ¢’ (x) = —x¢@(x) and the max-
imum value of ¢(¢) on the segment [x, x + A], |x| < ¢, differs from the minimum
value by not more than the factor exp{cA + A?/2}. Therefore, for |x| < ¢, one has
by virtue of (5.3.6)

x+A
‘Aw(X) —/ @(t)dt

2 x+A
< A% ear’p iy @) < AC jeava?p o(1)dt.
2 x<t<x+A 2 X

Since cA + A2/2 < 1/2+ 1/8, e“4+4%/2 <2 we have the representation
x+A
e = [ ewdi a0, i<
X
Substituting this into (5.3.5) we obtain the assertion of the theorem. O

Thus by Theorem 5.3.1 the difference
P(x < <y) = (2(y) — 2W))| (5.3.7)
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can be effectively, yet rather roughly, bounded from above by a quantity of the order
1//npq if x = a, y = b (assuming that a and b are values which can be represented
in the form (k — np)A, see (5.3.2)). If x and y do not belong to the mentioned
lattice with the span A then the error (5.3.7) will still be of the same order since,
for instance, when y varies, P(x < ¢, < y) remains constant on the semi-intervals
of the form (a + kA, a + (k + 1)A], while the function @(y) — @ (x) increases
monotonically with a bounded derivative. A similar argument holds for the left end
point x. It is important to note that the error order 1/,/npq cannot be improved, for
the jumps of the distribution function of ¢, are just of this order of magnitude by
Theorem 5.2.2.

Theorem 5.3.1 enables one to use the normal approximation for P(x < ¢, < y)
in the so-called large deviations range as well, when both x and y grow in absolute
value and are of the same sign. In that case, both @ (y) — @(x) and the probability
to be approximated tend to zero. Therefore the approximation can be considered
satisfactory only if

Plx <& <)
(@(y) — @(x))
As Theorem 5.3.1 shows, this convergence will take place if

¢ = max(|x|, |y|) = o(A~"/3)

(5.3.8)

or, which is the same, ¢ = o(n'/%). For more details about large deviation probabil-
ities, see Chap. 9.

For larger values of ¢, as one could verify using Theorem 5.2.1, relation (5.3.8)
will, generally speaking, not hold.

In conclusion we note that since

P(|¢n| > b) =0
as b — oo, it follows immediately from Theorem 5.3.1 that, for any fixed y,
lim P(, <y)=®(y).
n—>oo

Later we will show that this assertion remains true under much wider assumptions,
when ¢, is a scaled sum of arbitrary distributed random variables having finite vari-
ances.

5.4 The Poisson Theorem and Its Refinements

5.4.1 Quantifying the Closeness of Poisson Distributions to Those
of the Sums S,,

As we saw from the bounds in the last section, the de Moivre-Laplace theorem
gives a good approximation to the probabilities of interest if the number npg (the
variance of §,,) is large. This number will grow together with n if p and g are fixed
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positive numbers. But what will happen in a problem where, say, p = 0.001 and
n = 1000 so that np = 1?7 Although 7 is large here, applying the de Moivre—Laplace
theorem in such a problem would be meaningless. It turns out that in this case the
distribution P(S,, = k) can be well approximated by the Poisson distribution II,
with an appropriate parameter value p (see Sect. 5.4.2). Recall that

Mk
H;,L(B): Z e_ILF.
0<keB ’

Putnp = .
Theorem 5.4.1 For all sets B,

2
IP(S, € B) — T1,,(B)| < ’“‘7

We could prove this assertion in the same way as the local theorem, making use
of the explicit formula for P(S, = k). However, we can prove it in a simpler and
nicer way which could be called the common probability space method, or coupling
method. The method is often used in research in probability theory and consists,
in our case, of constructing on a common probability space random variables S,
and S}, the latter being as close to S, as possible and distributed according to the
Poisson distribution.

It is also important that the common probability space method admits, without
any complications, extension to the case of non-identically distributed random vari-
ables, when the probability of getting 1 in a particular trial depends on the number of
the trial. Thus we will now prove a more general assertion of which Theorem 5.4.1
is a special case.

Assume that we are given a sequence of independent random variables &1, ..., &,
such that §; € B,;. Put, as above, S, = Z;’-Zl &;. The theorem we state below is
intended for approximating the probability P(S,, = k) when p; are small and the
number = »_, p; is “comparable” with 1.

Theorem 5.4.2 For all sets B,

n
[P(S, € B)—T,(B)| <) pj.
j=1
To prove this theorem we will need an important “stability” property of the Pois-
son distribution.

Lemma 5.4.1 If ny and n; are independent, n, € I, and np € I, then?
m+me Hm+/42-

3This fact will also easily follow from the properties of characteristic functions dealt with in
Chap. 7.
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Proof By the total probability formula,

k
PO +m=hk =) Pon=jPn=k—j)
j—O
Mle M .e " e~ (1t12) J k=i
_Z j! (k_J)v _k! Z '“1“2
j=0
(1 + po)ke=(Hitu2)
= ;! ' B
Proof of Theorem 5.4.2 Let wy, ..., w, be independent random variables, each be-
ing the identity function (§(wy) = wy) on the unit interval with the uniform dis-
tribution. We can assume that the vector w = (w1, ..., ®;,) is given as the identity

function on the unit n-dimensional cube §2 with the uniform distribution.
Now construct the random variables &; and éj’.k on £2 as follows:

0 ifwj<1-pj, \ 0 ifwj<e?,
§i(w) = | i §j ()= i
ifw;>1-pj, k>1 ifwj € [m—1, ),

where 7, =), _I’f(p’, ,k=0,1,....

It is evident that the E ,(a)) are independent and §;(w) € B, ;; E (w) are also
jointly independent with &* 7 (w) €II,;. Now note that since 1 — p;j < e™ 7/ one has
&i(w) # &;(a)) onlyifw; €[1—pj, e Pi)orw;cle i+ p;jePi, 1]. Hence

P(5; #&]) = (e =14 pj) +(1=e P —pje ) = p;(1 ¢ ") < p]

and
P(S, #55) < (U|s,¢s =X

where Sy =3"_, S]* en,.
Now we can write
P(S, €B)=P(S, €B,S,=5}) +P(S, € B, S, #5})
=P(S;€B)—P(S;€B,S, #5;)+P(Sy € B, Sy #5;),

so that
|P(S, € B) —P(S; € B)|
<|P(SfeB.Syu#S;)—P(Su€B, Sy #S;)| <P(S, #55). (5.4.1)
The assertion of the theorem follows from this in an obvious way. g

Remark 5.4.1 One can give other common probability space constructions as well.
One of them will be used now to show that there exists a better Poisson approxima-
tion to the distribution of §,,.
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Namely, let E;‘ (w) be independent random variables distributed according to the
Poisson laws with parameters r; = —In(1 — p;) > p;, so that P(E* 0)=e"i =
1 — pj. Then §;(w) = min{l, é;‘(a))} e Bp and, moreover,

n n n
P( e s;w}) <Y PE@=2) =Y (1 - —rje ).
Jj=1 Jj=1 Jj=1
But for r = —In(1 — p) one has the inequality

2
1—e"—re"=p+<1—p)ln(l—p)5p+<1—p)<—p—%)

2

P
=21+ p).

2( D)

Hence for the new Poisson approximation we have
P(S; #5) < Zp,(l +pj).

Putting A = —37"_; In(1 — p;) > >7%_, pj, the same argument as above will lead
to the bound

sup!P(Sn €B) - (B)| <5 Zp](l +pj)-
j=1

This bound of the rate of approximation given by the Poisson distribution with a
“slightly shifted” parameter is better than that obtained in Theorem 5.4.2. Moreover,

one could note that, in the new construction, &; < &;‘, Sn < Sy, and consequently

P(S, = k) <P(S; = k) = I ([k, 00)).

5.4.2 The Triangular Array Scheme. The Poisson Theorem

Now we will return back to the case of identically distributed &. To obtain from
Theorem 5.4.2 a limit theorem of the type similar to that of the de Moivre—Laplace
theorem (see (5.3.1)), one needs a somewhat different setup. In fact, to ensure
that np remains bounded as n increases, p = P(&; = 1) needs to converge to zero
which cannot be the case when we consider a fixed sequence of random variables

&1,6,....

We introduce a sequence of rows (of growing length) of random variables:
1
§ 1(2); )
1(3)’ 5(3). 1
‘5( )’ S( ) ‘5( );

g(") é("), S("), ;5}«5.
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This is the so-called triangular array scheme. The superscript denotes the row num-
ber, while the subscript denotes the number of the variable in the row.

Assume that the variables ’g‘lsn) in the n-th row are independent and & k(n) €B,,.
k=1,...,n.

Corollary 5.4.1 (The Poisson theorem) If np, — > 0 as n — oo then, for each
fixed k,

P(S, = k) — T, ({k}), (5.4.2)
where S, = Sl(") o EM.

Proof This assertion is an immediate corollary of Theorem 5.4.1. It can also be
obtained directly, by noting that it follows from the equality

n _
P(S, =k = (k)pk(l -pt
that

P(S,=k+1) n—k p "
PS,=k) k+11—p k+1’

P(S, =0) = "NU=P) ~ =1 O

Theorem 5.4.2 implies an analogue of the Poisson theorem in a more general

case as well, when the S(") are not necessarily identically distributed* and can take
values different from O and 1.

Corollary 5.4.2 Assume that pj, = P(Ej(-n) =1) depend on n and j so that

n
max pj, — 0, ijn—>u>0, P(S;n)zo)zl—Pjn +o(pjn)-
J ,
j=1
Then (5.4.2) holds.

Proof To prove the corollary, one has to use Theorem 5.4.2 and the fact that
n n
P( Ufe" #0.6" # 1}) <Y o(pjn) =o(1),
j=1 j=1
which means that, with probability tending to 1, all the variables SJ(.") assume the

values 0 and 1 only. g

One can clearly obtain from Theorems 5.4.1 and 5.4.2 somewhat stronger asser-
tions than the above. In particular,

sup|P(S, € B) — M, (B)| > 0 asn— oc.
B

4 An extension of the de Moivre—Laplace theorem to the case of non-identically distributed random
variables is contained in the central limit theorem from Sect. 8.4.
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Note that under the assumptions of Theorem 5.4.1 this convergence will also
take place in the case where np — oo but only if np> — 0. At the same time, the
refinement of the de Moivre—Laplace theorem from Sect. 5.3 shows that the normal
approximation for the distribution of S,, holds if np — oo (for simplicity we assume
that p < g so that npg > %np — 00).

Thus there exist sequences p € {p : np — oo, np> — 0} such that both the
normal and the Poisson approximations are valid. In other words, the domains of
applicability of the normal and Poisson approximations overlap.

We see further from Theorem 5.4.1 that the convergence rate in Corollary 5.4.1
is determined by a quantity of the order of n~!. Since, as n — oo,

2

P(S, = 0) = I ({0)) =" 77) — et~ Tt
T

this estimate cannot be substantially improved. However, for large k (in the large
deviations range, say) such an estimate for the difference

P(S, = k) — I, ({k})

becomes rough. (This is because, in (5.4.1), we neglected not only the different signs
of the correction terms but also the rare events {S, = k} and {S = k} that appear in
the arguments of the probabilities.) Hence we see, as in Sect. 5.4, the necessity for
having approximations of which both absolute and relative errors are small.

Now we will show that the asymptotic equivalence relations

P(S, =k) ~ Hu({k})
remain valid when k and n grow (along with n) in such a way that
k=o(n®?),  p=o(n’?),  lk—pl=o(n).

Proof Indeed,

k —
— (n]f') e—pn<1 _ %) (1 _ kn_1>(1 _p)n—kepn

— H;L ({k})es(k’”).

Thus we have to prove that, for values of k and p from the indicated range,
1 k—1
elk,n) = 1n|:(1 — —) e (1 - —>(1 — p)"_ke””] =o(1). 54.3)
n n

We will obtain this relation together with the form of the correction term. Namely,
we will show that

elk,n)=

_ _ 2 3 3
k= k= +0<k e ) (5.4.4)

2n n?
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and hence

_ — )2 3 3
P(Snzk)=<1+k (k= +0<k :2“ ))l‘[u({k}).

2n

‘We make use of the fact that, as o« — O,

o2
In(l —a) =—a — > + O(a3).

Then relations (5.4.3) and (5.4.4) will follow from the equalities

k—1 . k—1 . 3 3

J J k k(k —1) k
E In[l—=)=— E “4+O0l—=)=———+0|—= |,
= n( n) o + (n2> 2n + n?

2
(n—k)ln(l—p)+pn=(n—k)(—17_%+0(l’3)>+pn
2 3
woo kp W
2n+ n + <n2> -

In conclusion we note that the approximate Poisson formula

k
P(S, = k) ~ %e_“

is widely used in various applications and has, as experience and the above estimates
show, a rather high accuracy even for moderate values of n.

Now we consider several examples of the use of the de Moivre—Laplace and
Poisson theorems for approximate computations.

Example 5.4.1 Suppose we are given 10* packets of grain. It is known that there are
5000 tagged grains in the packets. What is the probability that, in a particular fixed
packet, there is at least one tagged grain? We can assume that the tagged grains are
distributed to packets at random. Then the probability that a particular tagged grain
will be in the chosen packet is p = 10~*. Since there are 5000 such grains, this
will be the number of trials, i.e. n = 5000. Define a random variable & as follows:
&, = 1 if the k-th grain is in the chosen packet, and &, = 0 otherwise. Then

5000

S5000 = Z &k
k=1

will be the number of tagged grains in our packet. By Theorem 5.4.1, P(S5000 =
0) ~ e~ = ¢~03 50 that the desired probability is approximately equal to 1 —
¢~0-3_ The accuracy of this relation turns out to be rather high (by Theorem 5.4.1,
the error does not exceed 2~ x 10~%). If we used the Poisson theorem instead of
Theorem 5.4.1, we would have to imagine a triangular array of Bernoulli random
variables, our &; constituting the 5000-th row of the array. Moreover, we would
assume that, for the n-th row, one has np, = 0.5. Thus the conditions of the Poisson
theorem would be met and we could make use of the limit theorem to find the
approximate equality we have already obtained.
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Example 5.4.2 A similar argument can be used in the following problem. There are
n dangerous bacteria in a reservoir of capacity V from which we take a sample of
volume v < V. What is the probability that we will find the bacteria in the test
sample?

One usually assumes that the probability p that any given bacterium will be in the
test sample is equal to the ratio v/ V. Moreover, it is also assumed that the presence
of a given bacterium in the sample does not depend on whether the remaining n — 1
bacteria are in the test sample or not. In other words, one usually postulates that the
mechanism of bacterial transfer into the test sample is equivalent to a sequence of n
independent trials with “success” probability equal to p = v/V in each trial.

Introducing random variables & as above, we obtain a description of the number
of bacteria in the test sample by the sum S, =Y ;_, & in the Bernoulli scheme.
If nv is comparable in magnitude with V then by the Poisson theorem the desired
probability will be equal to

P(S,>0)~1—e ™V,

Similar models are also used to describe the number of visible stars in a certain
part of the sky far away from the Milky Way. Namely, it is assumed that if there are
n visible stars in a region R then the probability that there are k visible stars in a

subregion r C R is
Yk k
1 - )
(k)p d-p)

where p is equal to the ratio S(r)/S(R) of the areas of the regions r and R respec-
tively.

Example 5.4.3 Suppose that the probability that a newborn baby is a boy is constant
and equals 0.512 (see Sect. 3.4.1).

Consider a group of 10* newborn babies and assume that it corresponds to a
series of 10* independent trials of which the outcomes are the events that either a
boy or girl is born. What is the probability that the number of boys among these
newborn babies will be greater than the number of girls by at least 200?

Define random variables as follows: & = 1 if the k-th baby is a boy and & =0

otherwise. Then S, = Z}gl &y is the number of boys in the group. The quantity
npg ~ 2.5 x 103 is rather large here, hence applying the integral limit (de Moivre—
Laplace) theorem we obtain for the desired probability the value

Sy — 5100 — 5120
P(Sn25100)=1—P( n _ 7P )

<
V/npq /2500
~1—@(—-20/50)=1—-@(—-0.4) =0.66.

To find the numerical values of @ (x) one usually makes use of suitable statistical
computer packages or calculators.



5.5 Inequalities for Large Deviation Probabilities in the Bernoulli Scheme 125

In our example, A = 1/,/npg ~ 1/50, and a satisfactory approximation by the de
Moivre—Laplace formula will certainly be ensured (see Theorem 5.3.1) for ¢ <2.5.
If, however, we have to estimate the probability that the proportion of boys ex-
ceeds 0.55, we will be dealing with large deviation probabilities when to estimate
P(S,, > 5500) one would rather use the approximate relation obtained in Sect. 1.3
by virtue of which (k = 0.45n, g = 0.488) one has
(n+1—-k)q

P(S 5500) x ———P(S,, =5500).
(Sn > ) (n—i—l)q—k(n )

Applying Theorem 5.2.1 we find that

0.55¢ 1 —nH(0.55 1 s —11
P(S, > 5500) ~ e 035 < Z =25 071
" q —0.45 /271025 5

Thus if we assume for a moment that 100 million babies are born on this planet
each year and group them into batches of 10 thousand, then, to observe a group in
which the proportion of boys exceeds the mean value by just 3.8 % we will have to
wait, on average, 10 million years (see Example 4.1.1 in Sect. 4.1).

It is clear that the normal approximation can be used for numerical evaluation of
probabilities for the problems from Example 5.4.3 provided that the values of np
are large.

5.5 Inequalities for Large Deviation Probabilities in the
Bernoulli Scheme

In conclusion of the present chapter we will derive several useful inequalities for the
Bernoulli scheme. In Sect. 5.2 we introduced the function

l—p

’

Hx)=xInZ+(1=x)n
p

which plays an important role in Theorems 5.2.1 and 5.2.2 on the asymptotic be-
haviour of the probability P(S, = k). We also considered there the basic properties
of this function.

Theorem 5.5.1 For z >0,

P(S, —np >z) <exp{—nH(p+z/n)},

(5.5.1)
P(S, —np < —z) <exp{—nH(p —z/n)}.

Moreover, for all p,
H(p+x) > 2x2, (5.5.2)

so that each of the probabilities in (5.5.1) does not exceed exp{—2z>/n} for any p.
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To compare it with assertion (5.2.2) of Theorem 5.2.1, the first inequality from
Theorem 5.5.1 can be re-written in the form

p(S7 > p*> < exp|—nH(p")}.

The inequalities (5.5.1) are close, to some extent, to the de Moivre-Laplace theorem
since, for z = 0(n2/3),

n 2npq
The last assertion, together with (5.5.2), can be interpreted as follows: deviating by
z or more from the mean value np has the maximum probability when p = 1/2.
If z/4/n — o0, then both probabilities in (5.5.1) converge to zero as n — oo for
they correspond to large deviations of the sum S,, from the mean np. As we have
already said, they are called large deviation probabilities.

2
—nH(p—i—E): < +o(1).

Proof of Theorem 5.5.1 In Corollary 4.7.2 of the previous chapter we established
the inequality

P(§ > x) <e MEe™.
Applying it to the sum S,, we get
P(S, >np+z) < e MPTI R AS

Since Ee*" = []}_; Ee*** and the random variables ¢ are independent,

n
Ee*S" = [ [ Ee* = (pe* +¢)" = (1+ p(e* - 1))".
k=1
P(S, =np+2) <[(1+p(e" - 1))e"\(”+°‘)]n, a=z/n.
The expression in brackets is equal to

EoMe— ()] — ph(1=p=a) | (] _ )= h(pte)

Therefore, being the sum of two convex functions, it is a convex function of A. The
equation for the minimum point A () of the function has the form

—(p—a)(1+ p(e* — 1)) + pe* =0,
from which we find that
ey _ (P F a)q’
p(q—a)
(1+ p(!@ —1))e @ +o) - L[MTM

g—al(p+a)g
pp+aqq7a

T (ot -

:exp{—(p+a)lnp+a —(q—oz)lnq_a}
p q

:exp{—H(p +a)}.
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The first of the inequalities (5.5.1) is proved. The second inequality follows from
the first if we consider the latter as the inequality for the number of zeros.

It follows further from (5.2.1) that H(p) = H'(p) =0and H" (x) = 1/x(1 — x).
Since the function x(1 — x) attains its maximum value on the interval [0, 1] at the
point x = 1/2, one has H” (x) > 4 and hence

2
H > 2 42242
(P+Ol)_2 =2a”. O

For analogues of Theorem 5.5.1 for sums of arbitrary random variables, see
Chap. 9 and Appendix 8. Example 9.1.2 shows that the function H («) is the so-
called deviation function for the Bernoulli scheme. This function is important in
describing large deviation probabilities.



Chapter 6
On Convergence of Random Variables
and Distributions

Abstract In this chapter, several different types of convergence used in Probability
Theory are defined and relationships between them are elucidated. Section 6.1 deals
with convergence in probability and convergence with probability one (the almost
sure convergence), presenting some criteria for them and, in particular, discussing
the concept of Cauchy sequences (in probability and almost surely). Then the conti-
nuity theorem is established (convergence of functions of random variables) and the
concept of uniform integrability is introduced and discussed, together with its con-
sequences (in particular, for convergence in mean of suitable orders). Section 6.2
contains an extensive discussion of weak convergence of distributions. The chap-
ter ends with Sect. 6.3 presenting criteria for weak convergence of distributions,
including the concept of distribution determining classes of functions and that of
tightness.

6.1 Convergence of Random Variables
In previous chapters we have already encountered several assertions which dealt
with convergence, in some sense, of the distributions of random variables or of the

random variables themselves. Now we will give definitions of different types of
convergence and elucidate the relationships between them.

6.1.1 Types of Convergence

Let a sequence of random variables {£, } and a random variable £ be given on a prob-
ability space ($2, 5, P).

Definition 6.1.1 The sequence {£,} converges in probability' to & if, for any & > 0,

P(|&, —&|l>¢) >0 asn— oo.

!In the set-theoretic terminology, convergence in probability means convergence in measure.
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One writes this as
P
S, — & asn— oo.

In this notation, the assertion of the law of large numbers for the Bernoulli
scheme could be written as
Sn 4
— =
n

3

since S /n can be considered as a sequence of random variables given on a common
probability space.

Definition 6.1.2 We will say that the sequence &, converges to & with probability 1
(or almost surely: &, — & a.s., &, L% £),if &, (w) > &(w) asn — oo forall w € 2
except for w from a set N C §2 of null probability: P(N) = 0. This convergence can
also be called convergence almost everywhere (a.e.) with respect to the measure P.

Convergence &, L5 & implies convergence &, LS &. Indeed, if we assume that
the convergence in probability does not take place then there exist € > 0, § > 0,
and a sequence ni such that, for the sequence of events Ay = {|§,, — &| > ¢},
we have P(Ay) > § for all k. Let B consist of all elementary events belonging to
infinitely many Ag, i.e. B =(\o_; Ui, Ak. Then, clearly for w € B, the con-
vergence &, (w) — &(w) is impossible. But B = (,,_; By, where By, = (U, Ak
are decreasing events (By,+1 C By,), P(By) > P(A,,,) > § and, by the conﬁnuity
axiom, P(B,,) — P(B) as m — oo. Therefore P(B) > é and a.s. convergence is
impossible. The obtained contradiction proves the desired statement. g

The converse assertion, that convergence in probability implies a.s. convergence,
is, generally speaking, not true, as we will see below. However in one important
special case such a converse holds true.

Theorem 6.1.1 If &, is monotonically increasing or decreasing then convergence
P . . a.s.
&, — & implies that §, — &.

Proof Assume, without loss of generality, that § =0, &, >0, &, | and &, LS EIf

convergence &, L5 & did not hold, there would exist an ¢ > 0 and a set A with
P(A) > & > 0 such that sup;., § > ¢ for @ € A and all n. But sup;, § =&, and
hence we have

P¢,>e)>P(A)>6>0
for all n, which contradicts the assumed convergence &, L 0. O
Thus convergence in probability is determined by the behaviour of the numerical

sequence P(|§, — &| > ¢). Is it possible to characterise convergence with probabil-
ity 1 in a similar way? Set ¢, := supy~,, |6, — |-
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Corollary 6.1.1 &, L5 & if and only if ¢, 2 0, or, which is the same, when, for
any € > 0,

P(suplék—$|>g)—>0 asn — oo. 6.1.1)

k>n

Proof Clearly &, — & a.s. if and only if ¢, — 0 a.s. But the sequence ¢, decreases
monotonically and it remains to make use of Theorem 6.1.1, which implies that

in £ 0if and only if ¢, 2% 0. The corollary is proved. 0

In the above argument, the random variables &,, and £ could be improper, where
the random variables &, and £ are only defined on a set B and P(B) € (0, 1). (These
random variables can take infinite values on §2 \ B.) In this case, all the considera-
tions concerning convergence are carried out on the set B C §2 only.

In the introduced terminology, the assertion of the strong law of large numbers
for the Bernoulli scheme (Theorem 5.1.2) can be stated, by virtue of (6.1.1), as
convergence S, /n — p with probability 1.

We have already noted that convergence almost surely implies convergence in
probability. Now we will give an example showing that the converse assertion is,
generally speaking, not true. Let (£2, §, P) be the unit circle with the o -algebra of
Borel sets and uniform distribution. Put & (w) = 1, &, (w) = 2 on the arc [r(n), r(n) +
1/n] and &, (w) = 1 outside the arc. Here r(n) = ;_, % It is obvious that &, LS .
At the same time, r(n) — oo as n — 0o, and the set on which &, converges to & is
empty (we can find no w for which &, (w) — &(w)).

However, if P(|&, — &| > ¢) decreases as n — oo sufficiently fast, then conver-
gence in probability will also become a.s. convergence. In particular, relation (6.1.1)
gives the following sufficient condition for convergence with probability 1.

Theorem 6.1.2 If the series Y po, P(|§, — &| > &) converges for any & > 0, then
& — & as.

Proof This assertion is obvious, for

P(U{|sk—s|>s})sg;l’osn—sws). O

k>n

It is this criterion that has actually been used in proving the strong law of large
numbers for the Bernoulli scheme.

One cannot deduce a converse assertion about the convergence rate to zero of
the probability P(|§, — &| > ¢) from the a.s. convergence. The reader can easily
construct an example where &, — & a.s., while P(|§, — £| > ¢) converges to zero
arbitrarily slowly.

Theorem 6.1.2 implies the following result.

Corollary 6.1.2 If&, LS &, then there exists a subsequence {ny} such that &,, — &
a.s.as k — oo.
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Proof This assertion is also obvious since it suffices to take nj such that
P&, —&|l>¢) < 1/k? and then make use of Theorem 6.1.2. 0

There is one more important special case where convergence in probability

&n LS & implies convergence &, — £ a.s. This is the case when the &, are sums
of independent random variables. Namely, the following assertion is true. If &, =
Y %k—1 Nk, Nk are independent, then convergence of &, in probability implies conver-
gence with probability 1. This assertion will be proved in Sect. 11.2.

Finally we consider a third type of convergence of random variables.

Definition 6.1.3 We will say that &, converges to & in the r-th order mean (in mean
if r = 1; in mean square if r =2) if, as n — oo,

El§, —§|"— 0.

This convergence will be denoted by &, 0, E.

Clearly, by Chebyshev’s inequality &, 0, & implies that &, £ &. On the other

hand, convergence 0, does not follow from a.s. convergence (and all the more
from convergence in probability). Thus convergence in probability is the weakest of
the three types of convergence we have introduced.

Note that, under additional conditions, convergence &, LS & can imply that
&n Q & (see Theorem 6.1.7 below). For example, it will be shown in Corol-

lary 6.1.4 that if &, LS £ and E|&,|"T® < ¢ for some « > 0, ¢ < 0o and all n, then

£ e

Definition 6.1.4 A sequence &, is said to be a Cauchy sequence in probability (a.s.,
in mean) if, for any ¢ > 0,

P(1& —&nl >¢) = 0
(P(sup 16 — &l = &) = 0. Elgy — &ul” > 0)

n>m
asn — oo and m — o0.

Theorem 6.1.3 (Cauchy convergence test) &, — & in one of the senses —p>, 25 or

(—r)> if and only if &, is a Cauchy sequence in the respective sense.

Proof That &, is a Cauchy sequence follows from convergence by virtue of the
inequalities
|";:n _§m| = |€:n _$|+|Sm _‘i:|7
sup |§, —&m| < sup |§;, — &+ |&m — §| < 2 sup [§, — &,
n>m

|%_n _";:m|r = Cr(|‘§n _$|r + |‘§m _é|r)

for some C,.
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Now assume that &, is a Cauchy sequence in probability. Choose a sequence {rny}
such that

P(l&, — &nl >27F) <27

for n > ni, m > ny. Put
o0
o=ty Ac={Ec—Ewl =270 =) 1Ap.
k=1

Then P(A;) < 2% and Eg = 21?11 P(Ay) < 1. This means, of course, that the
number of occurrences of the events Ay is a proper random variable: P(n < o0) =1,
and hence with probability 1 finitely many events A occur. This means that, for any
o for which 5(w) < oo, there exists a ko(w) such that |&'; (w) — &'k 1(w)] <27F
for all k > ko(w). Therefore one has the inequality |§';(w) — &) (w)| < 2-k+1 for all
k > ko(w) and [ > ko(w), which means that £, (w) is a numerical Cauchy sequence
and hence there exists a value & (w) such that |£'; (@) — &(w)| — 0 as k — oo. This
means, in turn, that £ — & and hence

P(|&, — £l =€) §P<|En — &l > %) +P<|.f,,k —£|> %) -0

asn — oo and kK — oo.
Now assume that &, is a Cauchy sequence in mean. Then, by Chebyshev’s in-
equality, it will be a Cauchy sequence in probability and hence, by Corollary 6.1.2,

there will exist a random variable £ and a subsequence {n} such that &,, 25 .
Now we will show that E|&, — &|" — 0. For a given ¢ > 0, choose an n such that
E|& — &|" < e for k > n and [ > n. Then, by Fatou’s lemma (see Appendix 3),

El§, —&"=E lim [§, — &,
ni—> 00
=Eliminf|§, — &,,|" <liminfE|§, — &,,|" <e.
ng— 00 ng—> 00
This means that E|§, — &|" — 0 as n — oo.
It remains to verify the assertion of the theorem related to a.s. convergence. We

already know that if &, is a Cauchy sequence in probability (or a.s.) then there exist a

& and a subsequence &,, such that &,, 25 &. Therefore, if we put ny(,) ;= min{ny :
ny > n}, then

P(supl& — &1 > &) < P(sup & — En | = £/2) + Py, — &1 > 6/2) >0
k>n k>n
as n — 0o. The theorem is proved. 0

Remark 6.1.1 If we introduce the space L, of all random variables & on (£2, §, P)
for which E|£|" < oo and the norm ||£]| = (E|£]")"/" on it (the triangle inequal-
ity ||&1 + &Il < |&1]] + ||&2]] is then nothing else but Minkowski’s inequality, see

Theorem 4.7.2), then the assertion of Theorem 6.1.3 on convergence (—r)> (which
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is convergence in the norm of L,, for we identify random variables &; and &, if
151 — &2]| = 0) means that L, is complete and hence is a Banach space.

The space of all random variables on (£2, §§, P) can be metrised so that conver-
gence in the metric will be equivalent to convergence in probability. For instance,
one could put

1§1 — &2l
p(&1,82) '_E1+|§1—§2|'
Since
x+yl [yl
I+x+yl — 1+x| 14|y

always holds, p (&1, &) satisfies all the axioms of a metric. It is not difficult to see

that relations p(£1,&;) — 0 and &, 20 are equivalent. The assertion of Theo-

rem 6.1.3 related to convergence % means that the metric space we introduced
is complete.

6.1.2 The Continuity Theorem
Now we will derive the following “continuity theorem”.

Theorem 6.1.4 Let &, £ & (&, LS &) and H(s) be a function continuous every-
where with respect to the distribution of the random variable & (i.e. H(s) is contin-
uous at each point of a set S such that P(§é € §) = 1). Then

HE) S5 HE) (HE) S HE)).

Proof Let &, — &. Since the sets A = {w : &, (0) — £(w)} and B = {w: £(w) € S}
are both of probability 1, P(AB) = P(A) + P(B) — P(A U B) = 1. But one has
H(&,) — H(&) on the set AB. Convergence with probability 1 is proved.

Now let &, LS &. If we assume that convergence H (&,) L H (&) does not take
place then there will exist ¢ > 0, § > 0 and a subsequence {n’} such that

P(|HEy) — HE)| > ¢€) > 6.

But &, LS & and hence there exists a subsequence {n”} such that &, 25 & and

H(E,) N H (&). This contradicts the assumption we made, for the latter implies
that

P(|H (&) — HE)| > ¢e) > 6.

The theorem is proved. O

6.1.3 Uniform Integrability and Its Consequences

Now we will consider this question: in what cases does convergence in probability
imply convergence in mean?
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The main condition that ensures the transition from convergence in probability
to convergence in mean is associated with the notion of uniform integrability.
Definition 6.1.5 A sequence {&,} is said to be uniformly integrable if

supE(|&,; 16,1 > N) > 0 as N — oo.
n

A sequence of independent identically distributed random variables with finite
mean is, clearly, uniformly integrable.

If {£,} is uniformly integrable then so are {c&,} and {&, + c}, where ¢ = const.

Let us present some further, less evident, properties of uniform integrability.

Ul. If the sequences {§,} and (&)} are uniformly integrable then the sequences
defined by ¢, = max(|&, |, 1&)|) and ¢, = &, + &,/ are also uniformly integrable.

Proof Indeed, for ¢, = max(|§,], |§,|) we have

E(Cn: &y > N) =E(Cu: &0 > N, |5 > |&]) +E(Gns ¢ > N,
<E(|&[: [, > N) +E(|&/|: |6/ = N) >0

& < &])

’

as N — oo.
Since

|60 + 67| < |6 + [&7] < 2max(|&,]. [£/]).
from the above it follows that the sequence defined by the sum &, =&, + &, is also
uniformly integrable. g

U2. If{&,} is uniformly integrable then sup, E|§,| < c < oo.

Proof Indeed, choose N so that
SupE(Enl; 1l > N) <1.
n

Then
supE|£,| = sup[E(|€4[; [€4] < N) +E(|€l; |4l > N)] < N + 1. O

The converse assertion is not true. For example, for a sequence
§n :PEn=n)=1/n=1-P(,=0)

one has E|&,| = 1, but the sequence is not uniformly integrable.
If we somewhat strengthen the above statement U2, it becomes “characteristic”
for uniform integrability.

Theorem 6.1.5 For a sequence {&,} to be uniformly integrable, it is necessary and
sufficient that there exists a function ¥ (x) such that

¥ (x)
X

too asx?oo, supEy (|€,]) < ¢ < o0. (6.1.2)

In the necessity assertion one can choose a convex function V.
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Proof Without loss of generality we can assume that & > 0.

The sufficiency is evident, since, putting v(x) := ¥x)

—, We get

1
E¢,; &, > N) < —E(gnv(‘i:n); & > N)

<—.
v(N) ~ v(N)

To prove the necessity, put

e(N):=supE(¢,; & = N).

Then, by virtue of uniform integrability, e(N) | 0 as N 1 co. Choose a sequence
Nk 1 oo as k 1 oo such that

o
Z\/E(Nk) <c] <00,
k=1

and put
—1/2
g(x) =x(e(Np))~* for x € [Nx, Nt1).

Since

g(Ne—0)

_ - N,
=2 (o) = (o) = £,

Ni

we have % 1 0o as x — oo. Further,

Eg(&) =) E[g(); & € [Nk, Nis1)]
k
= E[6(eN0) % 6 € [Nk Niw)]
k

<Y () e =Y Ve <1,
k k

where the right-hand side does not depend on n. Therefore, to prove the theorem it
is sufficient to construct a function ¥ < g which is convex and such that @ 1 oo
as x 1 oo.

Define the function ¥ (x) as the continuous polygon with nodes (N, g(Nyx — 0)).
Since

g§WN —0)

(N )12
N, &(Nk-1)

monotonically increases as k grows, ¥ is a lower envelope curve for the discontinu-

ous function g(x) > v (x). The monotonicity of @ follows from the fact that, on
the interval [ N, Ni41), this function can be represented as

¥ (x) b
X

=ary ——,
v
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where by > 0, because the values 1 (Ny41 —0) and g(Ni+1 — 0) coincide, while the
angular incline ay  of the function v on the interval [Ny, Ni41) is greater than the
“radial” incline ay, , of the function g:

_ 8(Nk+1 —0) — g(Ni) - 8§WNkt1 = 0) —g(Nk —0) _

Ak,g = Ak,
¢ N1 — Ni N1 — Ni v
It is clear that @ increases unboundedly, for
Y(Nk)  g(Ng—0) ~1,2
= =€& N — (0.¢]
Ny N (Nk=1)~ 771
as k — oo. The theorem is proved. 0

In studying the mean values of sums of random variables, the following theorem
on uniform integrability of average values, following from Theorem 6.1.5, plays an
important role.

Theorem 6.1.6 Let &1, &>, ... be an arbitrary uniformly integrable sequence of ran-
dom variables,

n n
pin=0. D pia=1l =) [&lpin
i=1 k=1
Then the sequence {¢,} is uniformly integrable as well.

Proof Let ¢ (x) be the convex function from Theorem 6.1.5 satisfying proper-
ties (6.1.2). Then, by that theorem,

EY () = E¢(Zpi,n|a|> <EY piav(&l) <c.

i=1 i=1

It remains to make use of Theorem 6.1.5 again. g

Now we will show that convergence in probability together with uniform inte-
grability imply convergence in mean.

Theorem 6.1.7 Let &, 2 & and {&,} be uniformly integrable. Then E|&| exists and,
asn — oo,

E[§, — &1 = 0.

If, moreover, {|§] |} is uniformly integrable then &, ﬂ) .

Conversely, if, foranr > 1, &, ﬂ) & and E|&|" < o0, then {|&,|"} is uniformly
integrable.

In the law of large numbers for the Bernoulli scheme (see Theorem 5.1.1) we
proved that the normed sum S, /n converges to p in probability. Since 0 < §,,/n < 1,
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S,/n is clearly uniformly integrable and the convergence in mean
E|S,/n — p|” — 0 holds for any r. This fact can also be established directly.
For a more substantiative example of application of Theorems 6.1.6 and 6.1.7, see
Sect. 8.1.

Proof We show that E£ exists. By the properties of integrals (see Lemma A3.2.3 in
Appendix 3), if E|¢| < oo then E(¢; A,) — 0 as P(A,) — 0. Since E§, < oo, for
any N and ¢ one has

Emin(£], N) =nlgngo[Emin(|€|, N): & — &l <é]
< lim Emin(|§|+¢,N) <c+e.
n—>oo

It follows that E|&| < c.
Further, for brevity, put n, = |§, — &|. Then 7, £ 0and n, are uniformly inte-

grable together with &,,. For any N and ¢, one has
En, =E@u; nn <) +Emu; N=n,>¢)+EW,; 1, = N)
<&+ NP, =€) +E@n; na > N). (6.1.3)

Choose N so that sup, E(n,; n, > N) <e¢. Then, for suchan N,

limsupEn, <2e.
n—oo

Since ¢ is arbitrary, En, — 0 as n — oo.
The relation E|&, — £]" — 0 can be proved in the same way as (6.1.3), since

n, =& — &I £ 0and n;, are uniformly integrable together with |£,|".
Now we will prove the converse assertion. Let, for simplicity, 7 = 1. One has
E(I&l; 15 > N) <E(|& —&; 15 > N) +E(I£]; €] > N)
<E[§ —§| +E(I€; 1€ > N)
<El& — & +E(€]; 16 — & > 1) +E(I£]; €] > N —1).

The first term on the right-hand side tends to zero by the assumption, and the second
term, by Lemma A3.2.3 from Appendix 3, which we have just mentioned, and the
fact that P(|&, — &| > 1) — 0. The last term does not depend on n and can be made
arbitrarily small by choosing N. Theorem 6.1.7 is proved. d

Now we can derive yet another continuity theorem which has the following form.
Theorem 6.1.8 If &, LS &, H(s) satisfies the conditions of Theorem 6.1.4, and
H (&) is uniformly integrable, then, as n — 0o,

E|H () - HE)| -0
and, in particular, EH (§,) — EH (§).
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This assertion follows from Theorems 6.1.4 and 6.1.7, for H (&) 2 H (&) by
Theorem 6.1.4.

Sometimes it is convenient to distinguish between left and right uniform integra-
bility. We will say that a sequence {&,} is right (left) uniformly integrable if

SUpE: 2 N) =0 (supE(|&: & < —N) — 0)

as N — oo. It is evident that a sequence {,} is uniformly integrable if and only if
it is both right and left uniformly integrable.

Lemma 6.1.1 A sequence {&,} is right uniform integrable if at least one of the
following conditions is met:

1. For any sequence N (n) — o0 as n — 00, one has
E(é,,; & > N(n)) — 0.

(This condition is clearly also necessary for uniform integrability.)
2. &, <n, where En < o0.
3. BN < ¢ < oo for some a > 0 (here x+ = max(0, x)).

4. &, is left uniformly integrable, &, LS &, and E§, — E& < 0.

Proof

1. If the sequence {&§,} were not right uniformly integrable, there would exist
an ¢ > 0 and subsequences n’ — oo and N’ = N'(n') — oo such that E(&,;
&y > N’) > ¢. But this contradicts condition 1.

2. E¢;; 6, >N)<E(m; n>N)—0as N — oo.

. E(; & > N)<E@E! TN~ &, > N) <N % — 0as N — 0.

4. Without loss of generality, put £ := 0. Then

E; & > N) =E& —E(; & < —N) —E(&; 6] < N).

The first two terms on the right-hand side vanish as n — oo for any N =
N (n) — oo. For the last term, for any ¢ > 0, one has

w

|E(‘§n; 1§nl < N)| =< |E(%—na 16n] < 8)| + |E(§n; e <&l < N)|
<&+ NP(|&| > ¢).
For any given ¢ > 0, choose an n(¢g) such that, for all n > n(e), we would have
P(|&,| > ¢) < ¢, and put N(¢) := [1/4/¢]. This will mean that, for all n > n(e)

and N < N(¢), one has E(&,; |£,] < N) < ¢ + 4/, and therefore condition 1 of the
lemma holds for E(§,; &, > N). The lemma is proved. O

Now, based on the above, we can state three useful corollaries.

Corollary 6.1.3 (The dominated convergence theorem) If &, LS &, & < n, and
En < oo then E& exists and E§, — E£.
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Corollary 6.1.4 If&, > & and E|&, "% < ¢ < 0o for some a > 0 then &, > &.

Corollary 6.1.5 If &, 2 & and H(x) is a continuous bounded function, then
E|H(,) —EH()| — 0asn — oo.

In conclusion of the present section, we will derive one more auxiliary proposi-
tion that can be useful.

Lemma 6.1.2 (On integrals over sets of small probability) If {£,} is a uniformly in-
tegrable sequence and {A,} is an arbitrary sequence of events such that P(A,) — 0,
then E(|&,|; An) — 0asn — oo.

Proof Put B, :={|§,] < N}. Then

E(|§n|v An) =E(|‘§n|: Aan) +E(|§n|s AnEn)
< NP(A;) +E(I&; 5] > N).

For a given ¢ > 0, first choose N so that the second summand on the right-hand side
does not exceed ¢ /2 and then an » such that the first summand does not exceed /2.
We obtain that, by choosing n large enough, we can make E(|&,|; A,) less than ¢.
The lemma is proved. O

6.2 Convergence of Distributions

In Sect. 6.1 we introduced three types of convergence which can be used to charac-
terise the closeness of random variables given on a common probability space. But
what can one do if random variables are given on different probability spaces (or if
it is not known where they are given) which nevertheless have similar distributions?
(Recall, for instance, the Poisson or de Moivre—Laplace theorems.) In such cases
one should be able to characterise the closeness of the distributions themselves.
Having found an apt definition for such a closeness, in many problems we will be
able to approximate the required but hard to come by distributions by known and,
as a rule, simpler distributions.

Now what distributions should be considered as close? We are clearly looking
for a definition of convergence of a sequence of distribution functions F;(x) to a
distribution function F'(x). It would be natural, for instance, that the distributions
of the variables &, = & + 1/n should converge to that of § as n — oo. Therefore
requiring in the definition of convergence that sup, |F,(x) — F(x)| is small would
be unreasonable since this condition is not satisfied for the distributions of & + 1/n
and & if F(x) =P(§ < x) has at least one point of discontinuity.

We will define the convergence of F,, to F as that which arises when one consid-
ers convergence in probability.
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Definition 6.2.1 We will say that distribution functions F, converge weakly to a
distribution function F' as n — oo, and denote this by F,, = F if, for any continuous
bounded function f(x),

/f(x)an(x)e/f(x)dF(x). 6.2.1)

Considering the distributions F,,(B) and F(B) (B are Borel sets) corresponding to
F, and F, we say that F,, converges weakly to F and write F,, = F. One can clearly
re-write (6.2.1) as

/f(X)Fn(dX)ﬁ/f(X)F(dX) or Ef(.) —Ef() (6.2.2)

(cf. Corollary 6.1.5), where £, €F,, and £ €F.
Another possible definition of weak convergence follows from the next assertion.

Theorem 6.2.1 2 F,, = F if and only if F,(x) — F(x) at each point of continuity
xof F.

Proof Let (6.2.1) hold. Consider an ¢ > 0 and a continuous function f;(#) which is
equal to 1 for < x and to O for > x + ¢, and varies linearly on [x, x + ¢]. Since

Fn(x)=f fs(t)an(t)S/fe(t)an(t),
by virtue of (6.2.1) one has
lim sup F;; (x) §/f8(t)dF(t) <F(x+e¢).

If x is a point of continuity of F' then

limsup F, (x) < F(x)

n—oo

since ¢ is arbitrary.
In the same way, using the function f;*(t) = f(t + ¢), we obtain the inequality

liminf F,, (x) > F(x).
n—o00
We now prove the converse assertion. Let —M and N be points of continuity
of F such that F(—M) <e¢/5 and 1 — F(N) < ¢/5. Then F,(—M) < ¢/4 and

1 — F,(N) < ¢/4 for all sufficiently large n. Therefore, assuming for simplicity that
| £ <1, we obtain that

/ fdF, and / fdF 6.2.3)

2In many texts on probability theory the condition of the theorem is given as the definition of weak
convergence. However, the definition in terms of the relation (6.2.2) is apparently more appropriate
for it continues to remain valid for distributions on arbitrary topological spaces (see, e.g. [1, 25]).
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N N
/ fdF, and / fdF,
-M -M

respectively, by less than /2. Construct on the semi-interval (—M, N] a step func-
tion f, with jumps at the points of continuity of ' which differs from f by less than
g/2. Outside (—M, N] we set f, :=0. We can put, for instance,

will differ from

k
fex) =) f(x))8;(x),

j=1

where xg = —M < x] < --- < x; = N are appropriately chosen points of continu-
ity of F, and §;(x) is the indicator function of the semi-interval (x;_1, x;]. Then
[ fedF, and [ f;dF will differ from the respective integrals in (6.2.3), for suffi-
ciently large n, by less than ¢. At the same time,

k
ffngn =Y f@P[Fa)) = Falxj—n)] = /fng.
j=1
Since ¢ > 0 is arbitrary, the last relation implies (6.2.1). (Indeed, one just has to
make use of the inequality

limsup/den §8+limsup/f5an =8+ff8dF §2E+/de
and a similar inequality for liminf | f d F,,.) The theorem is proved. d

For remarks on different and, in a certain sense, simpler proofs of the second
assertion of Theorem 6.2.1, see the end of Sect. 6.3 and Sect. 7.4.

Remark 6.2.1 Repeating with obvious modifications the above-presented proof, we
can get a somewhat different equivalent of convergence (4): convergence of differ-
ences F,(y) — F,,(x) = F(y) — F(x) for any points of continuity x and y of F.

Remark 6.2.2 If F(x) is continuous then convergence F,, = F is equivalent to the
uniform convergence sup, |F,(x) — F(x)| = 0.

We leave the proof of the last assertion to the reader. It follows from the fact
that convergence F, (x) — F(x) at any x implies, by virtue of the continuity of F,
uniform convergence on any finite interval. The uniform smallness of F},(x) — F(x)
on the “tails” is ensured by the smallness of F(x) and 1 — F(x).

Remark 6.2.3 1f distributions F,, and F are discrete and have jumps at the same
points xp, x3, ... then F,, = F will clearly be equivalent to the convergence of the
probabilities of the values x1, x2, ... (F,(xx +0) — F,, (xx) = F(xx +0) — F(xx)).
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We introduce some notation which will be convenient for the sequel. Let &, and
& be some random variables (given, generally speaking, on different probability
spaces) such that§, €F,, and £ F.

Definition 6.2.2 If F, = F we will say that &, converges to & in distribution and
write &, = &.

We used here the same symbol = as for the weak convergence, but this leads to
no confusion.

It is clear that &, LS & implies &, = &, but not vice versa.

At the same time the following assertion holds true.

Lemma 6.2.1 If §, = & (F, = F) then one can construct random variables &
and &' on a common probability space so that P(§, < x) =P(&, < x) = F,(x),
PE <x)=PE <x)=F(x),and

; a.s.

£, —>¢.

Proof Define the quantile transforms (see Definition 3.2.6) by
F,' (1) == supfx: Fy(x) <t} F7' (1) :=supfx: F(x) <t}.

(If F(x) is continuous and strictly increasing then F —1(#) coincides with the solu-
tion to the equation F(v) =t.) Let n € Up 1. Put

g =F'nekF, &=F'mneF

(cf. Theorem 3.2.2), and show that &, £ &’. In order to do that, it suffices to prove
that F,"!(y) — F~!(y) for almost all y € [0, 1].

The functions F and F~! are monotone and hence each of them has at most
a countable set of discontinuity points. This means that, for all y € [0, 1] with the
possible exclusion of the points from a countable set 7', the function F~!(y) will
be continuous.

So let y be a point of continuity of F(~D and F(=D(y) = x.

For ¢t <y, choose a continuous strictly increasing function G(")(t) such that

GV =F Dy, GVae)y<F D@ forr<y.

Denote by G(v), v < x, the function inverse to G~V (r). Clearly, G (v) domi-
nates the function F(v) in the domain v < x. By virtue of the continuity and strict
monotonicity of the functions GV and G (in the domain under consideration), for
& > 0 we have

G(x—¢)=y—4é(e),

where 6(¢) > 0, §(¢) — 0 as ¢ — 0. Choose an ¢ such that x — ¢ is a point of
continuity of F. Then, for all n large enough,
(e) 5(e) (e)

F,(x—¢)< F(x — < - - - —.
n(x—&) < F(x—¢&)+ > <Gkx—¢e)+ > y >
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The opposite inequality can be proved in a similar way. Since ¢ can be arbitrarily
small, we obtain that, for almost all y,

Fn_l(y) — F(_l)(y) asn — oo.

Hence F,g_l)(n) — F=D () with probability 1 with respect to the distribution of 5.
The lemma is proved. O

Lemma 6.2.1 remains true for vector-valued random variables as well.
Sometimes it is also convenient to have a simple symbol for the relation “the
distribution of &, converges weakly to F”’. We will write this relation as

& & F, (6.2.4)

so that the symbol E>expresses the same fact as = but relates objects of a different
nature in the same way as the symbol € in the relation £ € P (on the left-hand
side in (6.2.4) we have random variables, while on the right hand side there is a
distribution).

In these terms, the assertion of the Poisson theorem could be written as S, & I1,,
while the statement of the law of large numbers for the Bernoulli scheme takes the
form S,/n & 1I,.

The coincidence of the distributions of & and 5 will be denoted by & 4 n.

Lemma 6.2.2 If§, = & and ¢, 2.0 then & +e, =&,
If & = & and yu 5> 1 then &y, = §.

Proof Let us prove the first assertion. For any ¢ and § > 0 such that # and ¢ &+ § are
points of continuity of P(¢ < ¢), one has

limsupP(&, + ¢, <t) =limsupP(&, + ¢, <t, &, > —95)

n—o00 n—o00

<limsupP(, <t +8) =P <t +96).

n—o0

Similarly,
limiorcl)fP(E,, +e,<t)>=PE <t —56).
n—

Since P(§ <t & §) can be chosen arbitrary close to P(¢ < t) by taking a sufficiently
small &, the required convergence follows.
The second assertion can be proved in the same way. The lemma is proved. [

Now we will give analogues of Theorems 6.1.4 and 6.1.7 in terms of distribu-
tions.

Theorem 6.2.2 If &, = & and a function H(s) satisfies the conditions of Theo-
rem 6.1.4 then H(&,) = H(§).
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Theorem 6.2.3 If &, = & and the sequence {£,} is uniformly integrable then E&
exists and EE,, — EE&.

Proof There are two ways of proving these theorems. One of them consists of re-
ducing them to Theorems 6.1.4 and 6.1.7. To this end, one has to construct random
variables &/, = F,gfl)(n) and £’ = F=D (1), where n € Ug 1 and F,ffl) and FC-D
are the quantile transforms of F,, and F, respectively, and prove that &', £ & (we
already know that F(~V () € F; if F is discontinuous or not strictly increasing,
then F—D should be defined as in Lemma 6.2.1).

Another approach is to prove the theorems anew using the language of distri-
butions. Under inessential additional assumptions, such proofs are sometimes even
simpler. To illustrate this, assume, for instance, in Theorem 6.2.3 that the function
H is continuous. One has to prove that Eg(H (§,)) — Eg(H (£)) for any continuous
bounded function g. But this is an immediate consequence of (6.2.1) and (6.2.2), for
f =g o H (f is the composition of the functions g and H).

In Theorem 6.2.3 assume that &, > 0 (this does not restrict the generality). Then,
integrating by parts, we get

E&, = — /ooxdp(g,, > x) = /Oop(g,, > x)dx. (6.2.5)
0 0

Since by virtue of uniform integrability

o0
SUP/ P&, > x)dx <supE(£,; §,>N)—0
n N n

as N — oo, the integral in (6.2.5) is uniformly convergent. Moreover, P(§, > x) —
P(& > x) a.s., and therefore

oo

o
lim E&, = lim P&, > x)dx :/ P > x)dx = EE&. 0

n—oo

Conditions ensuring uniform integrability are contained in Lemma 6.1.1. Now
we will give a modification of assertion 4 of this lemma for the case of weak con-
vergence.

Lemma 6.2.3 If {§,} is left uniformly integrable, &, = & and E&,, — E& then {&,}
is uniformly integrable.

We suggest to the reader to construct examples showing that all three conditions
of the lemma are essential.

Lemma 6.2.3 implies, in particular, that if §, > 0, §, = & and E§, — E£ then
{&,} is uniformly integrable.

As for Theorems 6.2.2 and 6.2.3, two alternative ways to prove the result are
possible here. One of them consists of using Lemma 6.1.1. We will present here a
different, somewhat simpler, proof.
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Proof of Lemma 6.2.3 For simplicity assume that &, > 0. Suppose that the lemma
is not valid. Then there exist an & > 0 and subsequences n’ — oo and N (n") — oo
such that

E(&; & > N(n)) > e.
Since
E&§y =E@y; &y < N) +E@E, ;60 > N),
for any N that is a point of continuity of the distribution of £, one has
E§ = lim &y > E@E; § <N) +e.

Choose an N such that the first summand on the right-hand side exceeds E¢ — ¢/2.
Then we obtain the contradiction E£ > E£ + ¢/2, which proves the lemma.

We leave it to the reader to extend the proof to the case of arbitrary left uniformly
integrable {&,}. O

The following theorem can also be useful.

Theorem 6.2.4 Suppose that &, = &, H(s) is differentiable at a point a, and
b, —> 0asn— oo. Then

1
- (H(a+bign) — H(@) = §H'(a).
If H' (a) =0 and H' (a) exists then
1 £
ﬁ(H(a + bpén) — H(a)) = ?H (@).

n

Proof Consider the function
H@a+x)—H(a)
O
H'(a) if x =0,

which is continuous at the point x = 0. Since b,,&, = 0, by Theorem 6.2.2 one has
h(b,&,) = h(0) = H'(a). Using the theorem again (this time for two-dimensional
distributions), we get
H(a + bn§,) — H(a)
by

The second assertion is proved in the same way. g

= h(bu&n)én = H'(@)§.

A multivariate analogue of this theorem will look somewhat more complicated.
The reader could obtain it himself, following the lines of the argument proving The-
orem 6.2.4.
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6.3 Conditions for Weak Convergence

Now we will return to the concept of weak convergence. We have two criteria for this
convergence: relation (6.2.1) and Theorem 6.2.1. However, from the point of view
of their possible applications (their verification in concrete problems) both these
criteria are inconvenient. For instance, proving, say, convergence E f(§,) — Ef (&)
not for all continuous bounded functions f but just for elements f of a certain rather
narrow class of functions that has a simple and clear nature would be much easier.
It is obvious, however, that such a class cannot be very narrow.

Before stating the basic assertions, we will introduce a few concepts.

Extend the class F of all distribution functions to the class G of all functions
G satisfying conditions F1 and F2 from Sect. 3.2 and conditions G(—o00) > 0,
G (00) < 1. Functions G from G could be called generalised distribution functions.
One can think of them as distribution functions of improper random variables as-
suming infinite values with positive probabilities, so that G(—o0) = P(§ = —o00)
and 1 — G(o0) = P(§ = 00). We will write G, = G for G, € G and G € G if
G, (x) = G(x) at all points of continuity of G (x).

Theorem 6.3.1 (Helly) The class G is compact with respect to convergence =,
i.e. from any sequence {G,}, G, € G, one can choose a convergent subsequence
G, = Gel.

For the proof of Theorem 6.3.1, see Appendix 4.

Corollary 6.3.1 If each convergent subsequence {G,,} of {Gp} with G, € G con-
verges to G then G, = G.

Proof If G, # G then there exists a point of continuity xo of G such that G, (xp)
G(xp). Since G,(xp) € [0, 1], there exists a convergent subsequence G,, such
that G, (xo) — g # G(xp). This, however, is impossible by our assumption, for
G, (x0) = G(xp). Il

The reason for extending the class J of all distribution functions is that it is not
compact (in the sense of Theorem 6.3.1) and convergence F,, = G, F, € J, does
not imply that G € J. For example, the sequence

0 if x < —n,
F,(x)=11/2 if —n<x<n, (6.3.1)
1 ifx>n

converges everywhere to the function G(x) = 1/2 ¢ J corresponding to an improper
random variable taking the values 00 with probabilities 1/2.

However, dealing with the class G is also not very convenient. The fact is that
convergence at points of continuity G, = G in the class G is not equivalent to

convergence
f fdG, — / fdG
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(see example (6.3.1) for f = 1), and the integrals | fdG do not specify G uniquely
(they specify the increments of G, but not the values G(—oo) and G(oc0)). Now we
will introduce two concepts that will help to avoid the above-mentioned inconve-
nience.

Definition 6.3.1 A sequence of distributions {F,} (or distribution functions {F}})
is said to be tight if, for any ¢ > 0, there exists an N such that

infF,([-N,N1) > 1 —&. 6.3.2)

Definition 6.3.2 A class £ of continuous bounded functions is said to be distribu-
tion determining if the equality

/ FdF(x) = / F()dG(). FeF. Ges.

for all f € £ implies that ' = G (or, which is the same, if the relation Ef (§) =
E f(n) for all f € £, where one of the random variables & and 7 is proper, implies

d
that & = 7).
The next theorem is the main result of the present section.

Theorem 6.3.2 Let £ be a distribution determining class and {F,} a sequence of
distributions. For the existence of a distribution F € F such that F,, = F it is nec-
essary and sufficient that:’

(1) the sequence {F,} is tight; and
(2) limy—, o [ fdFy exists forall f € L.

Proof The necessary part is obvious.

Sufficiency. By Theorem 6.3.1 there exists a subsequence F,, = F € G. But
by condition (1) one has F € &F. Indeed, if x > N is a point of continuity of F
then, by Definition 6.3.1, F(x) =lim F,,, (x) > 1 — . In a similar way we establish
that for x < —N one has F(x) < ¢. Since ¢ is arbitrary, we have F(—o0) =0 and
F(o0)=1.

Further, take another convergent subsequence F”L = G € J. Then, for any
f €L, one has

1im/denk =/de, lim/den;c =/fdG. (6.3.3)
But, by condition (2),

/de:/fdG, (6.3.4)
and hence F = G. The theorem is proved by virtue of Corollary 6.3.1. U

3In this form the theorem persists for spaces of a more general nature. The role of the segments
[N, N]in (6.3.2) is played in that case by compact sets (cf. [1, 14, 25, 31]).
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Fig. 6.1 The plot of the
function f; ¢(x) from
Example 6.3.1

1
1
1
1
1
:
1
0 a ate

If one needs to prove convergence to a “known” distribution F € J, the tightness
condition in Theorem 6.3.2 becomes redundant.

Corollary 6.3.2 Let L be a distribution determining class and

/den—>fde, Feg, (6.3.5)

for any f € L. Moreover, assume that at least one of the following three conditions
is met:

(1) the sequence {F,} is tight,
2) Fed;
3) f=1€L (ie. (6.3.5) holds for f =1).

Then F e Fand F, = F.

The proof of the corollary is almost next to obvious. Under condition (1) the as-
sertion follows immediately from Theorem 6.3.2. Condition (3) and convergence
(6.3.5) imply condition (2). If (2) holds, then F' € J in relations (6.3.3) and (6.3.4),
and therefore G = F. g

Since, as a rule, at least one of conditions (1)—(3) is satisfied (as we will see
below), the basic task is to verify convergence (6.3.5) for the class L.

Note also that, in the case where one proves convergence to a distribution F € I
“known’ in advance, the whole arrangement of the argument can be different and
simpler. One such alternative approach is presented in Sect. 7.4.

Now we will give several examples of distributions determining classes L.

Example 6.3.1 The class £ of functions having the form
1 ifx <a,
faet) = {O ifx>a+e.
On the segment [a, a + €] the functions f, . are defined to be linear and continuous

(aplotof f, (x) is given in Fig. 6.1). It is a two-parameter family of functions.
We show that £ is a distribution determining class. Let

/de:/fdG
for all f € Lo. Then

Fla) < / fundF = [ fuoedG<Gate),
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and, conversely,
G(a) < F(a+e)
for any ¢ > 0. Taking a to be a point of continuity of both F and G, we obtain that
F(a) =G(a).

Since this is valid for all points of continuity, we get F = G.

One can easily verify in a similar way that the class Z() of “trapezium-shaped”
functions f(x) =min(fs ¢, | — fp.e), a < b, is also distribution determining.

Example 6.3.2 The class £ of continuous bounded functions such that, for each
fekly(or fe Lo) there exists a sequence f, € L1, sup, | f(x)| < M < oo, for
which lim,,_, », f;; (x) = f(x) for each x € R.

Let
fde:/fdG

for all f € £;. By the dominated convergence theorem,

lim/fndF:/de, lim/f,,dG:/fdG, f e L.

Therefore

/de:/fdG, fekly, F=G

and hence £ is a distribution determining class.

Example 6.3.3 The class C of all bounded functions f(x) having bounded uni-
formly continuous k-th derivatives f ® (x) (sup, | f (k)(x)l <o0), k>1.

It is evident that Cy is a distribution determining class for it is a special case of
an £ class.

In the same way one can see that the subclass C,? C Cy of functions having fi-
nite support (vanishing outside a finite interval) is also distribution determining.
This follows from the fact that C? « 18 an Ly-class with respect to the class Lo of
trapezium-shaped (and therefore having compact support) functions.

It is clear that the class Cy satisfies condition (3) from Corollary 6.3.2 (f =
1 € Cy). Therefore, to prove convergence F, = F € J it suffices to verify conver-
gence (6.3.5) for f € Cy only.

If one takes £ to be the class C,? of differentiable functions with finite sup-
port then relation (6.3.5) together with condition (2) of Corollary 6.3.2 could be
re-written as

/an'dx—>/‘Ff’dx, FeJ. (6.3.6)

(One has to integrate (6.3.5) by parts and use the fact that f’ also has a finite sup-
port.) The convergence criterion (6.3.6) is sometimes useful. It can be used to show,
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for example, that (6.3.5) follows from convergence F,(x) — F(x) at all points of
continuity of F' (i.e. almost everywhere), since that convergence and the dominated
convergence theorem imply (6.3.6) which is equivalent to (6.3.5).

Example 6.3.4 One of the most important distribution determining classes is the
one-parameter family of complex-valued functions {e'"*}, € R.

The next chapter will be devoted to studying the properties of | e dF (x).
After obvious changes, all the material in the present chapter can be extended to
the multivariate case.



Chapter 7
Characteristic Functions

Abstract Section 7.1 begins with formal definitions and contains an extensive dis-
cussion of the basic properties of characteristic functions, including those related to
the nature of the underlying distributions. Section 7.2 presents the proofs of the in-
version formulas for both densities and distribution functions, and also in the space
of square integrable functions. Then the fundamental continuity theorem relating
pointwise convergence of characteristic functions to weak convergence of the re-
spective distributions is proved in Sect. 7.3. The result is illustrated by proving the
Poisson theorem, with a bound for the convergence rate, in Sect. 7.4. After that,
the previously presented theory is extended in Sect. 7.5 to the multivariate case.
Some applications of characteristic functions are discussed in Sect. 7.6, including
the stability properties of the normal and Cauchy distributions and an in-depth dis-
cussion of the gamma distribution and its properties. Section 7.7 introduces the
concept of generating functions and uses it to analyse the asymptotic behaviour
of a simple Markov discrete time branching process. The obtained results include
the formula for the eventual extinction probability, the asymptotic behaviour of the
non-extinction probabilities in the critical case, and convergence in that case of the
conditional distributions of the scaled population size given non-extinction to the
exponential law.

7.1 Definition and Properties of Characteristic Functions

As a preliminary remark, note that together with real-valued random variables & (w)
we could also consider complex-valued random variables, by which we mean func-
tions of the form &;(w) + ié2(w), (£1,&2) being a random vector. It is natural to
put E(&; +i&) = E&| + iE&;. Complex-valued random variables & = & + i&; and
n =mn1 + in are independent if the o-algebras o (1, &) and o (11, n2) generated
by the vectors (§1, &2) and (171, 172), respectively, are independent. It is not hard to
verify that, for such random variables,

E&n =EEEn.

Definition 7.1.1 The characteristic function (ch.f.) of a real-valued random variable
& is the complex-valued function

A.A. Borovkov, Probability Theory, Universitext, 153
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s (1) :=Ee'' =/e”x dF (x),

where ¢ is real.
If the distribution function F(x) has a density f(x) then the ch.f. is equal to
vi() = [ e fdx

and is just the Fourier transform of the function f(x).! In the general case, the ch.f.
is the Fourier—Stieltjes transform of the function F(x).

The ch.f. exists for any random variable &. This follows immediately from the
relation

A6 §/|ei’x|dF(x)§f1dF(x):1.

Ch.f.s are a powerful tool for studying properties of the sums of independent random
variables.

7.1.1 Properties of Characteristic Functions

1. For any random variable &,
@e(0)=1 and |p:(1)| <1 forallr.

This property is obvious.

2. For any random variable &,

Pas+b(1) = P (1a).
Indeed,

¢a§+b(t) — Eei[(a§+b) — eileeialf — eilb(ps (ta) 0

"More precisely, in classical mathematical analysis, the Fourier transform ¢(¢) of a function f(z)
from the space L of integrable functions is defined by the equation

o(t) = \/% / S fydi

(the difference from ch.f. consists in the factor 1/+/27). Under this definition the inversion formula
has a “symmetric” form: if ¢ € L; then

fx)= I yt) dt.

1
— | e
V2 [
This representation is more symmetric than the inversion formula for ch.f. (7.2.1) in Sect. 7.2
below.
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3. If &1,...,&, are independent random variables then the ch.f. of the sum S, =
&4+ &, is equal to

©s, (1) = @z, (1) - - g, (1).

Proof This follows from the properties of the expectation of the product of inde-
pendent random variables. Indeed,

05, (1) = Bei! €16 _ it gitkr .. itk
— R 61 Rel52 .. . Reltén — @g, (Dpe, (1) - 96, (). [

Thus to the convolution Fg, * Fg, there corresponds the product ¢g, @, .

4. The ch.f. ¢ (t) is a uniformly continuous function.
Indeed, as h — O,

by the dominated convergence theorem (see Corollary 6.1.2) since |¢/ — 1| 20
as h — 0, and |e'"¢ — 1] < 2. O

5. If the k-th moment exists: E|& |k < 00, k > 1, then there exists a continuous k-th
derivative of the function ¢g (t), and (p(k) 0) = ikEEk.

Proof Indeed, since

‘ / ixe™ dF (v < / x| dF(x) = E[£] < oo,

the integral [ i xe!™ d F (x) converges uniformly in 7. Therefore one can differentiate
under the integral sign:

o) =i / xe'™ dF(x), ¢'(0) = iEE.
Further, one can argue by induction. If, for [ < k,
<p(1)(t) =il/xleitx dF (%),
then
oD () = 1+ /xl+leitx dF ()
by the uniform convergence of the integral on the right-hand side. Therefore

(p(l+1)(0) — ilHEng. 0
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Property 5 implies that if E|£|% < oo then, in a neighbourhood of the point 7 = 0,
one has the expansion

k N '
w(t)=1+Z%Es~’+o(\zk\). (7.1.1)

j=1

The converse assertion is only partially true:

If a derivative of an even order ®*) exists then
Ei* <co,  ¢00) = (~D'EE™.

We will prove the property for k =1 (for k > 1 one can employ induction). It
suffices to verify that E|&|? is finite. One has

20(0) —9h) —9(=2h) _ o elhE — e=ThENZ Esin2 he
4h2 B 2h SR

Since h~2sin? hé — £% as h — 0, by Fatou’s lemma

20(0) — @(2h) — p(—2h in2h
" (0) = lim 90) —¢Qh) —¢(=2n)\ _ . gSin"hé
=0 4h2 h—0 h?
i .2
. sin“h§ 5
2B lim =7 =K -

6. If £ > 0 then @¢ (M) is defined in the complex plane for ImA > 0. Moreover,
lps (M)| < 1 for such A, and in the domain ImA > 0, @ (A) is analytic and con-
tinuous including on the boundary Im A = 0.

Proof That ¢()) is analytic follows from the fact that, for Im A > 0, one can differ-
entiate under the integral sign the right-hand side of

o .
(M) = f e dF (x).
0
(For Im A > O the integrand decreases exponentially fast as x — 00.) O

Continuity is proved in the same way as in property 4. This means that for non-
negative & the ch.f. ¢¢ (1) uniquely determines the function

¥ (s) = e (is) = Ee™**

of real variable s > 0, which is called the Laplace (or Laplace—Stieltjes) transform
of the distribution of &.

The converse assertion also follows from properties of analytic functions: the
Laplace transform s (s) on the half-line s > 0 uniquely determines the ch.f. pg (1).

7. 9 (1) = gz (—1) = ¢_¢ (1), where the bar denotes the complex conjugate.
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Proof The relations follow from the equalities

(1) = Eei’§ = Eeit§ = Ee™'15. 0
This implies the following property.

TA.If & is symmetric (has the same distribution as —§&) then its ch.f. is real (pg (1) =
we (—1)).

One can show that the converse is also true; to this end one has to make use of
the uniqueness theorem to be discussed below.

Now we will find the ch.f.s of the basic probability laws.

Example 7.1.1 If &€ = a with probability 1, i.e. § €1, then ¢ (f) = el
Example 7.1.2 1f £ € B,, then ¢¢ (1) = pe'’ + (1 — p) =1+ p(e'' — 1).

Example 7.1.3 Tf £ & ®q,; then @z (1) = ¢~"/2.
Indeed,

1 /Oo eitx7x2/2dx'
vV 21 J-o0
Differentiating with respect to ¢ and integrating by parts (xe_xz/ 2dx = —de™*"/ 2),
we get

pt) = ¢s(t) =

1 , 1 .
(p/(t) = E/ixe’tx_xz/zdx = —\/T_n / teltx—xz/de = —f(ﬂ(f),
’ 12
(ln<p(t)) =—t, Inp(t) = — +c.
Since ¢(0) = 1, one has ¢ =0 and ¢ () —e 2, O

Now let n be a normal random variable with parameters (a, o). Then it can be
represented as n = 0§ + a, where £ is normally distributed with parameters (0, 1).
The ch.f. of  can be found using Property 2:

on(t) = eime—(m)z/z _ eita—t202/2_

Differentiating ¢, (¢) for n € ® ,2, we will obtain that En* = 0 for odd k, and
Enf=o*(k —1)(k—3)---1fork=2.4,....

Example 7.1.4 If £ € I1, then

k it\k
pe(1) =B = Y o 3 (1)
k ) k

0= etk = exp[u(e” —1)].
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Example 7.1.5 If & has the exponential distribution I';, with density ae™** for
x >0, then

o

a—it

0 .
§0S(t) — C{/ ell‘X7O(x dx =
0

Therefore, if £ has the “double” exponential distribution with density %e“”, —00 <
X < 00, then

(t)—l 1 . 1 1
=\ T v ) T
If £ has the geometric distribution P(é:k):(l—p)pk,k=0,1,...,then
l-p
)= ———.
@z (1) 1= pei

Example 7.1.6 If € € Ko | (has the density [7(1 +x%)]7") then ¢ (t) = eI, The
reader will easily be able to prove this somewhat later, using the inversion formula
and Example 7.1.5.

Example 7.1.7 If £ € Uy 1, then

el —1

it

1
e (1) = / e dx =
0

By virtue of Property 3, the ch.f.s of the sums & + &, & + & + &3, ... that we
considered in Example 3.6.1 will be equal to

(eit_])2 (eit_1)3
Ve +6, (1) = T Pg 45, (1) = 5

We return to the general case. How can one verify whether one or another func-
tion ¢ is characteristic or not? Sometimes one can do this using the above properties.
We suggest the reader to determine whether the functions (1 + t)_1 ,141¢,sint, cost
are characteristic, and if so, to which distributions they correspond.

In the general case the posed question is a difficult one. We state without proof
one of the known results.

Bochner—Khinchin’s Theorem A necessary and sufficient condition for a con-
tinuous function ¢(t) with ¢(0) = 1 to be characteristic is that it is nonnegatively
defined, i.e., for any real t1, ..., t, and complex 11, ..., Ay, one has

n

D el — 1Mk =0
k,j=1

(X is the complex conjugate of A).
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Note that the necessity of this condition is almost obvious, for if ¢(t) = Eeité
then
2

>0.

n n
D ot —tpnhj=E Y " n5; =E
k,j=1 k. j=1

i )\.keitk'é

k=1

7.1.2 The Properties of Ch.F.s Related to the Structure of the
Distribution of &

8. If the distribution of § has a density then @g (t) — 0 as |t| — oo.

This is a direct consequence of the Lebesgue theorem on Fourier transforms. The
converse assertion is false.

In general, the smoother F(x) is the faster g (f) vanishes as |¢| — oo. The for-
mulas in Example 7.1.7 are typical in this respect. If the density f(x) has an inte-
grable k-th derivative then, by integrating by parts, we get

o= [ fdr = [ pan == o [P,

which implies that
c
pe (1) < W
8A. If the distribution of & has a density of bounded variation then

Cc
< —.
o ()| < i

This property is also validated by integration by parts:
1

< —/}dfm\.

!(r)!—l A f (x)
v ‘Efe FOI=

9. A random variable & has a lattice distribution with span h > 0 (see Defini-
tion 3.2.3) if and only if

(F)= JeG)

if v is not a multiple of 2.
Clearly, without loss of generality we can assume & = 1. Moreover, since

<1 (7.1.2)

)

|0e—a®)] = e (1)| = |z ()

the properties (7.1.2) are invariant with respect to the shift by a. Thus we can as-
sume the shift a is equal to zero and thus change the lattice distribution condition
in Property 9 to the arithmeticity condition (see Definition 3.2.3). Since ¢¢(7) is a
periodic function, Property 9 can be rewritten in the following equivalent form:
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The distribution of a random variable & is arithmetic if and only if

@ 2m) =1, lps()| <1 forallt € (0,2m). (7.1.3)

Proof If & has an arithmetic distribution then

pe) =) PE=he" =1
k

for t = 2. Now let us prove the second relation in (7.1.3). Assume the contrary:
for some v € (0, 27), we have |¢g (v)| = 1 or, which is the same,

(ps (U) — eibv
for some real b. The last relation implies that
@e—p(v) =1 =Ecosv(§ —b) +iEsinv(§ — b), E[1 —cosv(§ —b)] =0.

Hence, by Property E4 in Sect. 4.1, cosv(§ — b) = 1 and v(§ — b) = 2w k(w) with
probability 1, where k(w) is an integer. Thus & — b is a multiple of 27 /v > 1.
This contradicts the assumption that the span of the lattice equals 1, and hence
proves (7.1.3).

Conversely, let (7.1.3) hold. As we saw, the first relation in (7.1.3) implies that
& takes only integer values. If we assume that the lattice span equals & > 1 then,
by the first part of the proof and the first relation in (7.1.2), we get |27/ h)| =1,
which contradicts the first relation in (7.1.3). Property 9 is proved. O

The next definition looks like a tautology.

Definition 7.1.2 The distribution of & is called non-lattice if it is not a lattice distri-
bution.

10. If the distribution of & is non-lattice then
log ()| <1 forallt #0.

Proof Indeed, if we assume the contrary, i.e. that |¢(u)| = 1 for some u 5 0, then,
by Property 9, we conclude that the distribution of £ is a lattice with span h =27 /u
or with a lesser span. 0

11. If the distribution of & has an absolutely continuous component of a positive
mass p > 0, then it is clearly non-lattice and, moreover,
limsup|¢g(t)| <1-—p.
[t]—o00
This assertion follows from Property 8.
Arithmetic distributions occupy an important place in the class of lattice distri-
butions.
For arithmetic distributions, the ch.f. g (¢) is a function of the variable z = ¢' !
and is periodic in ¢ with period 27. Hence, in this case it is sufficient to know the
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behaviour of the ch.f. on the interval [—m, ] or, which is the same, to know the
behaviour of the function

pe(2):=Ef =) ZPE=h

on the unit circle |z| = 1.

Definition 7.1.3 The function pe (z) is called the generating function of the random
variable & (or of the distribution of &).

Since pg (e = @¢ (¢) is a ch.f., all the properties of ch.f.s remain valid for gener-

ating functions, with the only changes corresponding to the change of variable. For
more on applications of generating functions, see Sect. 7.7.

7.2 Inversion Formulas
Thus for any random variable there exists a corresponding ch.f. We will now show
that the set £ of functions e'’* is a distribution determining class, i.e. that the dis-

tribution can be uniquely reconstructed from its ch.f. This is proved using inversion
formulas.

7.2.1 The Inversion Formula for Densities

Theorem 7.2.1 Ifthe ch.f. ¢(t) of a random variable & is integrable then the distri-
bution of & has the bounded density

fx)= Lfe—"”‘go(r)arz. (7.2.1)
2

This fact is known from classical Fourier analysis, but we shall give a proof of a
probabilistic character.

Proof First we will establish the following (Parseval’s) identity: for any fixed ¢ > 0,

1 ,
pe(t) = —/e_””go(u)e_‘sz"z/2 du

27
1 (u—1)?
= mg/exp{—T}F(du), (7.2.2)

where F is the distribution of £. We begin with the equality

1 L E—t X & —1?
E/exp{le—E}dxzexp{— ¥ } (7.2.3)
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both sides of which being the value of the ch.f. of the normal distribution with
parameters (0, 1) at the point (§ —r)/e. After changing the variable x = su, the
left-hand side of this equality can be rewritten as

2.2
L\/z_/exp{iu(é—t)—gTu}du.
V1

If we take expectations of both sides of (7.2.3), we obtain

£ f ity (p)e= A g / =07
gy e u)e u = €X — u).
2 ¢ P 2¢2
This proves (7.2.2).

To prove the theorem first consider the left-hand side of the equality (7.2.2). Since

2.2 €2M2 . .
e E U/ 5 lase — 0, le” 27| <1 and ¢(u) is integrable, as ¢ — 0 one has

1 .
Pe(t) — g/e_””w(u)du = po(?) (7.2.4)

uniformly in 7, because the integral on the left-hand side of (7.2.2) is uniformly
continuous in ¢. This implies, in particular, that

b b
/ pe(t)dt — / po(t). (7.2.5)

Now consider the right-hand side of (7.2.2). It represents the density of the sum
& + en, where & and n are independent and n € @ 1. Therefore

b
/ pe(t)dt =P(a <& +en<b). (7.2.6)

Since & +¢n LS & as ¢ — 0 and the limit fab pe(t) dt exists for any fixed a and b by
virtue of (7.2.5), this limit (see (7.2.6)) cannot be anything other than F([a, b)).
Thus, from (7.2.5) and (7.2.6) we get

b
f po(t)dt =F([a,b)).
a
This means that the distribution F has the density po(¢), which is defined by re-

lation (7.2.4). The boundedness of po(t) evidently follows from the integrability
of ¢:

1
polt) < E/Iwﬂdr <o0.

The theorem is proved. g
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7.2.2 The Inversion Formula for Distributions

Theorem 7.2.2 [f F(x) is the distribution function of a random variable & and ¢(t)
is its ch.f., then, for any points of continuity x and y of the function F(x),>

1 e—itx _ e—ity
F(y)—-Fx)=— 1 _
W= Fo=50 alino/ it

If the function @(t)/t is integrable at infinity then the passage to the limit under the
integral sign is justified and one can write

o(e"7 dr. (7.2.7)

1 g—itx _ ity
FO) = F@) =5 / o W (72.8)

Proof Suppose first that the ch.f. ¢(#) is integrable. Then F(x) has a density f(x)
and the assertion of the theorem in the form (7.2.8) follows if we integrate both sides
of Eq. (7.2.1) over the interval with the end points x and y and change the order of
integration (which is valid because of the absolute convergence).?

Now let ¢(¢) be the characteristic function of a random variable & with an ar-
bitrary distribution F. On a common probability space with &, consider a random
variable n which is independent of £ and has the normal distribution with parame-
ters (O, 202). As we have already pointed out, the ch.f. of 7 is e"z"z.

This means that the ch.f. of & + 1, being equal to ¢(¢)e™’ 2"2, is integrable. There-
fore by (7.2.8) one will have

1 00 e—ilx _e—ity 2 o
F, — Feyp(x) = — ——p@)e " dt. 7.2.9
g4y (¥) — Fegp(x) o /_Oo m @(1) (7.2.9)
Since n L 0as0 — 0, we have F¢ , = F (see Chap. 6). Therefore, if x and y are
points of continuity of F, then F(y) — F(x) =limg_0(Fg45(y) — Fr1,(x)). This,
together with (7.2.9), proves the assertion of the theorem. O

In the proof of Theorem 7.2.2 we used a method which might be called the
“smoothing” of distributions. It is often employed to overcome technical difficul-
ties related to the inversion formula.

Corollary 7.2.1 (Uniqueness Theorem) The ch.f. of a random variable uniquely
determines its distribution function.

2In the literature, the inversion formula is often given in the form
1 A eitx _ pily
F(y)—F(x)= o Ali_)moo » fw(t)dt
which is equivalent to (7.2.7).

3Formula (7.2.8) can also be obtained from (7.2.1) without integration by noting that
(F(x) — F(y))/(y — x) is the value at zero of the convolution of two densities: f(x) and the
uniform density over the interva_l [—y, —x] (see also the remark at the end of Sect. 3.6). The ch.f.

L 1x_g=ity
of the convolution is equal to e(‘yiix)i;)go(t).
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The proof follows from the inversion formula and the fact that F is uniquely
determined by the differences F'(y) — F(x).

For lattice random variables the inversion formula becomes simpler. Let, for the
sake of simplicity, & be an integer-valued random variable.

Theorem 7.2.3 If p:(z) := Ez° is the generating function of an arithmetic random
variable then

P(E=k) = L/ pe(2)z ¥ dz. (7.2.10)
2mi |z]=1

Proof Turning to the ch.f. ¢ (1) = Zj ¢''/P(& = j) and changing the variables z =
it in (7.2.10) we see that the right-hand side of (7.2.10) equals

L 1 TG
— Hdt=—Y PE=j itG=k gz,
2n/_,,e s (1) Zﬂ; E= e

Here all the integrals on the right-hand side are equal to zero, except for the integral
with j = k which is equal to 2. Thus the right-hand side itself equals P(§ = k).
The theorem is proved. d

Formula (7.2.10) is nothing else but the formula for Fourier coefficients and has
a simple geometric interpretation. The functions {e; = ¢!'*} form an orthonormal
basis in the Hilbert space L, (—m, ) of square integrable complex-valued functions
with the inner product

1 b4
(f.e)=o—[ [fWst)d:
T J-x

(g is the complex conjugate of ). If gz = > e;P(£ = k) then it immediately follows
from the equality ¢z = > e (¢, ex) that

Y

1 .
P(E =h) = (ps,00) = / e R oe (1) dt.

—TT

7.2.3 The Inversion Formula in L,. The Class of Functions that
Are Both Densities and Ch.F.s

First consider some properties of ch.f.s related to the inversion formula. As a prelim-
inary, note that, in classical Fourier analysis, one also considers the Fourier trans-
forms of functions f from the space L, of square-integrable functions. Since in this
case a function f is not necessarily integrable, the Fourier transform is defined as
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the integral in the principal value sense:*

N
(p(t) = lim (p(N)(l‘), (p(N)(t) = / e”xf(x) dx, (7.2.11)
N—o00 -N
where the limit is taken in the sense of convergence in Lj:

/Icp(t) — (p(N)(t)|2dx -0 as N — oo.

Since by Parseval’s equality

1 1/2
Iflle, = Ellwlle, where ||gllz, = [/ Iglz(t)dt} ,

the Fourier transform maps the space L; into itself (there is no such isometricity
for Fourier transforms in L). Here the inversion formula (7.2.1) holds true but the
integral in (7.2.1) is understood in the principal value sense.

Denote by J and I the class of all densities and the class of all ch.f.s, respec-
tively, and by 3| + C L; the class of nonnegative real-valued integrable chf.s,
so that the elements of J{; 4 are in J up to the normalising factors. Further, let
(H1.4)"D be the inverse image of the class 31, in F for the mapping f — ¢,
i.e. the class of densities whose ch.f.s lie in J{; 4. It is clear that functions f
from (H 1,+)(_1) and ¢ from J; 4 are necessarily symmetric (see Property 7A in
Sect. 7.1) and that £(0) € (0, 0o0). The last relation follows from the fact that, by the
inversion formula for ¢ € J; 1, we have

loll = llgllz, = /sv(t)dt — 27 (0).

Further, denote by (F(1 ). the class of normalised functions H%\I’ ¢ € Hjp 4,50

that (3,4).) C F, and denote by F>* the class of convolutions of symmetric
densities from Lj:

FQ2%) . {f(z)*(x) fely, fis symmetriC},

where

f<2)*(x):/ F@®) fx —1t)dt.

Theorem 7.2.4 The following relations hold true:
()Y =3O FE C (FHLD-
The class (31 +)).) may be called the class of densities conjugate to f €

(H 1,+)(_1). It turns out that this class coincides with the inverse image (J-CLJF)(_I).
The second statement of the theorem shows that this inverse image is a very rich

4 i i L
Here we again omit the factor T (cf. the footnote on page 154).
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class and provides sufficient conditions for the density f to have a conjugate. We
will need these conditions in Sect. 8.7.

Proof of Theorem 7.2.4 Let f € (H14+)~V. Then the corresponding ch.f. ¢ is in
1+ and the inversion formula (7.2.1) is applicable. Multiplying its right-hand side
by ”27"”, we obtain an expression for the ch.f. (at the point —#) of the density ﬁ

(recall that ¢ > 0 is symmetric if ¢ € H; ;). This means that % is a ch.f. and,
moreover, that f € (Fy,4))..
Conversely, suppose that f* := £ € (H; 4).|. Then f* € F is symmetric, and

el
the inversion formula can be applied to ¢:

2nf@) _
lell
Since the ch.f. *(¢) := zjﬁéﬁ” belongs to 3y, one has f* e (3, 4) V.

We now prove the second assertion. Suppose that f € L. Then ¢ € L, and
@2 € L1. Moreover, by virtue of the symmetry of f and Property 7A in Sect. 7.1,
the function ¢ is real-valued, so > > 0. This implies that ¢? € JH1,+. Since @2 is
the ch.f. of the density f@*, we have f®* e (31 ). The theorem is proved. [J

fx) = ife—”x(p(t)dm i/e"%(z)dt, /e"”f*(x)dx.
2 2

Note that any bounded density f belongs to L,. Indeed, since the Lebesgue mea-
sure of {x : f(x) > 1} is always less than 1, for f(-) < N we have

||f||%2=ff2(x)dx§/ f(x)dx+N2f dx <1+ N2 0
f)<l f(x)=1

Thus we have obtained the following result.

Corollary 7.2.2 For any bounded symmetric density f, the convolution f®* is, up
to a constant factor, the ch.f. of a random variable.

Example 7.2.1 The “triangle” density
I—1fx| if x| <1,

g(x):{o if x| > 1,

being the convolution of the two uniform distributions on [—1/2, 1/2] (cf. Exam-
ple 3.6.1) is also a ch.f. We suggest the reader to verify that the preimage of this
ch.f. is the density

1 sin?x/2
f(x):E )

X

(the density conjugate to g). Conversely, the density g is conjugate to f, and the
functions 8 f (¢) and g(¢) will be ch.f.s for g and f, respectively.
These assertions will be useful in Sect. 8.7.
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7.3 The Continuity (Convergence) Theorem

Let {@,(1)}52; be a sequence of ch.f.s and {F,}7° | the sequence of the respective
distribution functions. Recall that the symbol = denotes the weak convergence of
distributions introduced in Chap. 6.

Theorem 7.3.1 (The Continuity Theorem) A necessary and sufficient condition for
the convergence F, = F as n — 00 is that ¢, (t) — ¢(t) for any t, ¢(t) being the
ch.f. corresponding to F.

The theorem follows in an obvious way from Corollary 6.3.2 (here two of the
three sufficient conditions from Corollary 6.3.2 are satisfied: conditions (2) and (3)).
The proof of the theorem can be obtained in a simpler way as well. This way is
presented in Sect. 7.4 of the previous editions of this book.

In Sect. 7.1, for nonnegative random variables & we introduced the notion of
the Laplace transform v (s) := Ee~¢. Let ¥, (s) and ¥ (s) be Laplace transforms
corresponding to F,, and F. The following analogue of Theorem 7.3.1 holds for
Laplace transforms:

In order that F,, = F as n — o0 it is necessary and sufficient that Y, (s) — ¥ (s)
for each s > 0.

Just as in Theorem 7.3.1, this assertion follows from Corollary 6.3.2, since the
class { f(x) = e, s > 0} is (like {€/"*}) a distribution determining class (see Prop-
erty 6 in Sect. 7.1) and, moreover, the sufficient conditions (2) and (3) of Corol-
lary 6.3.2 are satisfied.

Theorem 7.3.1 has a deficiency: one needs to know in advance that the func-
tion ¢(¢) to which the ch.f.s converge is a ch.f. itself. However, one could have no
such prior information (see e.g. Sect. 8.8). In this connection there arises a natural
question under what conditions the limiting function ¢ () will be characteristic.

The answer to this question is given by the following theorem.

Theorem 7.3.2 Let
on(t) = / ¢ dFy (x)

be a sequence of ch.f.s and ¢, (t) — ¢(t) asn — oo for anyt.
Then the following three conditions are equivalent:

(a) @(t)isachf,;
(b) @(t) is continuous at t = 0;
(c) the sequence {Fy} is tight.

Thus if we establish that ¢, () — ¢(¢) and one of the above three conditions is
met, then we can assert that there exists a distribution F such that ¢ is the ch.f. of
Fand F,= F.



168 7 Characteristic Functions

Proof The equivalence of conditions (a) and (c) follows from Theorem 6.3.2. That
(a) implies (b) is known. It remains to establish that (c) follows from (b). First we
will show that the following lemma is true. U

Lemma 7.3.1 If ¢ is the ch.f. of & then, for any u > 0,

2 1 u
P(Iél > —) < —/ [1—o®)]adt
u uJ_,

Proof The right-hand side of this inequality is equal to

/ f ¢ YdF(x)dt,

where F is the distribution function of £. Changing the order of integration and

noting that
u —itx u :
/ (l—e_ltx)dt:(t—ke‘ ) :2u<1_smux)’
—u ix —u ux

we obtain that

l/u[l —(p(t)]dt=2/oo (1 - Sin”)ch(x)
uJ_, oo ux
32/ (1 — )dF(x)
|x|>2/u
22/ <I—L)dF(x)z/ dF(x).
Ix|>2/u lux| Ix|>2/u

The lemma is proved. O

sinux

ux

Now suppose that condition (b) is met. By Lemma 7.3.1

| |
limsup/ dF,(x) <limsup — / [1 — gon(t)] dt = — / [1 — (p(t)] dt
n—o0o [x|>2/u n—oo U J_y u,J_y

Since ¢(¢) is continuous at 0 and ¢(0) = 1, the mean value on the right-hand side can
clearly be made arbitrarily small by choosing sufficiently small «. This obviously
means that condition (c) is satisfied. The theorem is proved. O

Using ch.f.s one can not only establish convergence of distribution functions but
also estimate the rate of this convergence in the cases when one can estimate how
fast ¢, — ¢ vanishes. We will encounter respective examples in Sect. 7.5.

We will mostly use the machinery of ch.f.s in Chaps. 8, 12 and 17. In the present
chapter we will also touch upon some applications of ch.f.s, but they will only serve
as illustrations.
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7.4 The Application of Characteristic Functions in the Proof
of the Poisson Theorem

Let &1, ..., &, be independent integer-valued random variables,
k
Si=Y &  Pa=D=p. PE=0=1-p—q.
1

The theorem below is a generalisation of the theorems established in Sect. 5.4.7

Theorem 7.4.1 One has

n n n
P(S, = k) =T, (k)| < D pF+2> ar. where =y p.
k=1 k=1 k=1

Thus, if one is given a triangle array &1,, &2, ..., &m, n = 1,2, ..., of indepen-
dent integer-valued random variables,

n
Su=Y_&n, P(&n = 1) = pin, P(&xn =0) =1 — pin — Gin,
k=1

n
w= Zpkn,
k=1

then a sufficient condition for convergence of the difference P(S, = k) — II, ({k})
to zero is that

n

n
qun — 0, Zp,%n—>0.
k=1

k=1

Since

n
E 2
< pmax ,
p lpkn =u k<n Pkn

the last condition is always met if

max pi, — 0, U < o = const.
k<n

>This extension is not really substantial since close results could be established using Theo-
rem 5.2.2 in which & can only take the values 0 and 1. It suffices to observe that the probability of
the event A = J, {6k # 0, & # 1} is bounded by the sum ) gx and therefore

P =k =01+ (1= a)P(S, =kIA), 6,=1,i=12,

where P(S, = k|A) =P(S} =k) and S} are sums of independent random variables & with

Pk
1 — gk

P =1)=pi =L P =0)=1-p}.
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To prove the theorem we will need two auxiliary assertions.

Lemma 7.4.1 IfRe B <0 then
e —1]<1Bl, [P —1=B|<IB*/2,  |ef —1—B—p*/2| <IBP/6.

Proof The first two inequalities follow from the relations (we use here the change
of variables = Sv and the fact that |¢*| < 1 for Res < 0)

8 1
|eﬁ—1\=’/ e dt =‘/3/ Pdv| <8I,
0 0
B 1 1
lef —1-p|= / (¢ —1)dt :‘,8/ (efV — 1) dv §|ﬂ|2/ vdv=|B%|/2.
0 0 0
The last inequality is proved in the same way. O

Lemma 7.4.2 If|ax| <1, |bx| < 1,k=1,...,n, then

n n n
[Tax =[]0k =Dl —brl.
k=1 k=1 k=1

Thus if o (t) and 0 (t) are ch.f.s then, for any t,

[T =T ]0e0] <D lont) — o).
k=1 k=1 k=1

Proof Put A, =[];_, ax and B, =[[;_, bx. Then |A,| <1, |B,| <1, and
|Ay — Byl =|An—1an — By_1by]
= |(An—l — Bu—1)an + (an _bn)Bn—1| <|An-1 — Bu—1l +|an — byl

Applying this inequality » times, we obtain the required relation. g

Proof of Theorem 7.4.1 One has
oe(1) :=Ee" =1 + pr(e” — 1) + qe (ye(t) — 1),

where y(¢) is the ch.f. of some integer-valued random variable. By independence
of the random variables &,

s, () =] [ ex(®).

k=1
Let further ¢ € II,. Then

n
0 (1) =Eel = ' =1 = l—[ek(t),
k=1
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where 6y (t) = eP¥ (©'=1) Therefore the difference between the ch.f.s @s, and @, can
be bounded by Lemma 7.4.2 as follows:

n n
[Tec— 16
k=1 k=l

where by Lemma 7.4.1 (note that Re(e’’ — 1) < 0)

s, () — @ ()| =

n
<> lex — Ol,
k=1

21,0t _ 112 2
: et —1
|9k(f)—1—Pk(€"—1)|§%=%(sin2t+(l—cost)2)
.2
t t
=pi<SH; +2sin4§>, (7.4.1)

n n n . 2
sin“ ¢ t
— 6 <2 2 2sin* - ).
3 gk — 6l < zqk+zpk( " 2sin 2)
k=1 k=1 k=1
It remains to make use of the inversion formula (7.2.10):

1T
7 /_ i} e (s, (1) — @ (1)) dt

I - " sin? ¢ t
— 2 + 2 +2sin* = ) |dr
77/0 |: ZCIk ;Pk< 5 sin 2)

k=1

n n
= 22% + ZP;%
k=1 k=1

[P(Sy =) — T, (k) |

IA

IA

for
T 1 2 (7 t 3
— sinztdt:—, —/ sin* —dt = .
2 0 4 T Jo 2 4
The theorem is proved. g
If one makes use of the inequality |e! — 1| <2 in (7.4.1), the computations will

be simplified, there will be no need to calculate the last two integrals, but the bounds
will be somewhat worse:

Dlo =l =2(Ya+ Y ).
[P(Sy = k) = T, ({k})| < 2(2% + Zpi)'

7.5 Characteristic Functions of Multivariate Distributions.
The Multivariate Normal Distribution

Definition 7.5.1 Given a random vector & = (&1, &, ..., &y), its ch.f. (the ch.f. of
its distribution) is defined as the function of the vector variable t = (#1, ..., #7) equal
to
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d
(Pi:(t) ::Eeil‘éT :Eei(l'é) = Eexp{l Ztksk}
k=1
d

/exp{ Zthk}Fél ,,,,, g,(dx1, ..., dxg),

k=1

where & T is the transpose of £ (a column vector), and (¢, £) is the inner product.

The ch.f.s of multivariate distributions possess all the properties (with obvious
amendments of their statements) listed in Sects. 7.1-7.3.

It is clear that ¢ (0) = 1 and that |@: ()| <1 and @g(—t) = m always hold.
Further, g¢ (¢) is everywhere continuous. If there exists a mixed moment E£ fl ‘e f;d
then ¢¢ has the respective derivative of order kj + - - - + kg:

ky+--+k
8(p§]+ +d(l)

— jkittkagekt | gka
o o =i Eg - &,
ot ... 0t li=0

If all the moments of some order exist, then an expansion of the function ¢ (¢)
similar to (7.1.1) is valid in a neighbourhood of the point = 0.

If @ (¢) is known, then the ch.f. of any subcollection of the random variables
Cryseees Skj) can obviously be obtained by setting all #; except #,, ..., I; to be
equal to 0.

The following theorems are simple extensions of their univariate analogues.

Theorem 7.5.1 (The Inversion Formula) If A is a parallelepiped defined by the
inequalities ay < x < by, k=1, ...,d, and the probability P(§ € A) is continuous
on the faces of the parallelepiped, then

—llkuk _ e_llkbk t20-2
P A)=1i k t)dt ---dt,
(¢ €4)=lim =5 (Zn)d / / T @e(n)dn

If the random vector & has a density f(x) and its ch.f. g (¢) is integrable, then
the inversion formula can be written in the form

/e_i(t’x)<pg () dt.

If a function g(x) is such that its Fourier transform

g = / ¢V g(x)dx

is integrable (and this is always the case for sufficiently smooth g(x)) then the Par-
seval equality holds:

. - 1 -
Eg(€)=E7 3 f e g dr = G / 9 (—1)Z () dt.
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As before, the inversion formula implies the theorem on one-to-one correspon-
dence between ch.f.s and distribution functions and together with it the fact that
{e!"-*)} is a distribution determining class (cf. Definition 6.3.2).

The weak convergence of distributions F,(B) in the d-dimensional space to a
distribution F(B) is defined in the same way as in the univariate case: F(,) = F if

/f(x)dF(,,)(dx)—>/f(x)dF(dx)

for any continuous and bounded function f(x).
Denote by ¢, (t) and ¢(¢) the ch.f.s of distributions F;, and F, respectively.

Theorem 7.5.2 (Continuity Theorem) A necessary and sufficient condition for the
weak convergence F ;) = F is that, for any t, ¢, (1) — ¢(t) as n — oo.

In the case where one can establish convergence of ¢, (¢) to some function ¢(),
there arises the question of whether ¢(¢) will be the ch.f. of some distribution, or,
which is the same, whether the sequence F ;) will converge weakly to some distri-
bution F. Answers to these questions are given by the following assertion. Let Ay
be the cube defined by the inequality maxy |xx| < N.

Theorem 7.5.3 (Continuity Theorem) Suppose a sequence ¢, (t) of ch.f.s converges
as n — oo to a function ¢(t) for each t. Then the following three conditions are
equivalent:

(a) o) isachf;
(b) @(t) is continuous at the point t = 0;
(¢) limsup,, _, o [ ¢4, Fon(dx) > 0as N — oo.

All three theorems from this section can be proved in the same way as in the
univariate case.

Example 7.5.1 The multivariate normal distribution is defined as a distribution with
density (see Sect. 3.3)

where

d
Ox) =xAxT = Z ajjxixj,
i,j=1
and |A| is the determinant of a positive definite matrix A = ||a;;||.
This is a centred normal distribution for which E£ = 0. The distribution of the

vector & 4 a for any constant vector a is also called normal.
Find the ch.f. of £. Show that

to2tT
) (7.5.1)

@ (1) =6XP{—
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where 02 = A~! is the matrix inverse to A and coinciding with the covariance
matrix [|o;;| of &:

oij = E&;§;.

Indeed,

JIAT [ 00 o xAxT
¢g(t)=W[w~~-[wexp itx' — > dxy---dxg. (7.5.2)

Choose an orthogonal matrix C such that CACT = D is a diagonal matrix, and
denote by u1, ..., i, the values of its diagonal elements. Change the variables by
putting x = yC and t = vC. Then

d
|Al=|D| =[] ms.
k=1

d n
1 1 1
itx’ — SxAx’ =ivy’ —SyDy =i kE_] VkVk ~ 5 kz_l Kk Ve

and, by Property 2 of ch.f.s of the univariate normal distributions,

d 2 d 2
VIA] o . Mk, 1 v
gosm:—(zﬂ)d/z]'[f expiiviye — - tdyie=IAl [ [ ——=expj -5 &
k=1Y" k=1

Mk 21k
vD~ LT tCTD-1ceT AT
= eX —— ¢ = €X i =eX - .
P 2 P 2 P 2

On the other hand, since all the moments of & exist, in a neighbourhood of the point
t =0 one has

1 1
pe(t)=1— EzA*‘tT +O<Z tkz) =1+itEgT + Etoth - O(Z t,f)
From this it follows that E€ =0, Al =02,

Formula (7.5.1) that we have just proved implies the following property of nor-
mal distributions: the components of the vector (€1, ..., &q) are independent if and
only if the correlation coefficients p(&;,&;) are zero for all i # j. Indeed, if olisa
diagonal matrix, then A = o~ is also diagonal and fe(x) is equal to the product of
densities. Conversely, if (&1, ..., &) are independent, then A is a diagonal matrix,
and hence o is also diagonal.
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7.6 Other Applications of Characteristic Functions.
The Properties of the Gamma Distribution

7.6.1 Stability of the Distributions ®, ;2 and Ky,

The stability property means, roughly speaking, that the distribution type is pre-
served under summation of random variables (this description of stability is not
exact, for more detail see Sect. 8.8).

The sum of independent normally distributed random variables is also normally
distributed. Indeed, let &1 and &> be independent and normally distributed with pa-
rameters (aj, 012) and (ay, 0'22), respectively. Then the ch.f. of &1 + &; is equal to

A T L
06 (1) = 9 (Ve (1) = explitar — — 1 texpyitay — —=

2
t
=exp{it(a1 +ay) — 5(012 —i—azz)}.

Thus the sum &1 + &> is again a normal random variable, with parameters (a; +
ar, 012 + 022).

Normality is also preserved when taking sums of dependent random variables
(components of an arbitrary normally distributed random vector). This immediately
follows from the form of the ch.f. of the multivariate normal law found in Sect. 7.5.
One just has to note that to get the ch.f. of the sum & + - -- + &, it suffices to put
ty =---=t, =t in the expression

Oyt s - tn) = Eexplitiéy +--- + ity &)

The sum of independent random variables distributed according to the Poisson
law also has a Poisson distribution. Indeed, consider two independent random vari-
ables &1 € IT;, and &, € II,,. The ch.f. of their sum is equal to

Ps+6 (1) =exp{r (e — 1)} exp{rz(e” — 1)} =exp{ (1 +a2) (e — N}

Therefore &1 + & € I 43,.
The sum of independent random variables distributed according to the Cauchy
law also has a Cauchy distribution. Indeed, if §; € Ky, o, and & € Ky, ,, then

9z +5 (1) = explioit — oy t]} expliaat — oat]}
= expli(a1 + )t — (o1 + o)t };
§1+6 Ky 1ar,0140-
The above assertions are closely related to the fact that the normal and Poisson
laws are, as we saw, limiting laws for sums of independent random variables (the

Cauchy distribution has the same property, see Sect. 8.8). Indeed, if S>,/+/2n con-
verges in distribution to a normal law (where S; = Zl;zl &j, &; are independent

and identically distributed) then it is clear that S, //n and (S, — S,,)/+/n will also
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converge to a normal law so that the sum of two asymptotically normal random
variables also has to be asymptotically normal.

Note, however, that due to its arithmetic structure the random variable & € II,
(as opposed to § € @, 2 or § € Ky ) cannot be transformed by any normalisation
(linear transformation) into a random variable again having the Poisson distribution
but with another parameter. For this reason the Poisson distribution cannot be stable
in the sense of Definition 8.8.2.

It is not hard to see that the other distributions we have met do not possess the
above-mentioned property of preservation of the distribution type under summa-
tion of random variables. If, for instance, £&; and &; are uniformly distributed over
[0, 1] and independent then Fg, and Fg, 1¢, are substantially different functions (see
Example 3.6.1).

7.6.2 The T -distribution and its properties

In this subsection we will consider one more rather wide-spread type of distribution
closely related to the normal distribution and frequently used in applications. This
is the so-called Pearson gamma distribution Ty . We will write § € Iy if & has
density

A—le—ax x> 07

O()”
fa )= TO" ’
, x <0,

depending on two parameters « > 0 and A > 0, where I"(A) is the gamma function
o
) :/ e ™ dx, A>0.
0

It follows from this equality that f f(x;a,L)dx =1 (one needs to make the variable
change ax = y). If one differentiates the ch.f.

of [
so(t)=<p(t;a,x)=_/ el itx—ax g,
) Jo

with respect to ¢ and then integrates by parts, the result will be

QD/(I) = aA /Ooixkeitx—ax dx = Ol)L l)\‘ \/Oox)»—leilx—ax dx
) Jo ) a—it )
ir
= —o(1);
o —1t
(Ing() = (=rIn@—in), @) =cla—in~*.

Since ¢(0) =1 one has ¢ = o* and ot)y=(010-— it/a)_k.

It follows from the form of the ch.f. that the subfamily of distributions I'y , for
a fixed « also has a certain stability property: if §| € I'y,3, and & € I'y 3, are
independent, then & + & & Ty 5 12,-
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An example of a particular gamma distribution is given, for instance, by the dis-
tribution of the random variable

n
2 2
Xn = ZEZ ’
i=1

where &; are independent and normally distributed with parameters (0, 1). This is the
so-called chi-squared distribution with n degrees of freedom playing an important
role in statistics.

To find the distribution of X,% it suffices to note that, by virtue of the equality

P(x? <) =P(&| < VF) = — fﬁ g
X1 <X)= 1l <AVX)=—F—— e u,
! V2 Jo
the density of X12 is equal to
Ee_x/zx_m:f(x; 1/2,1/2), xieTini.
This means that the ch.f. of x? is
9" (t:1/2,1/2) = (1 = 2i)™* = (t: 1/2,n/2)

and corresponds to the density f(¢; 1/2,n/2).
Another special case of the gamma distribution is the exponential distribution
I'q =T, 1 with density

fx; o) =ae™*, x>0,

N |
(p(x;cx,l):(l—z) .
o

We leave it to the reader to verify with the help of ch.f.s that if §; &€ I'y; and are
independent, «; # oy for j # 1, then

n n n . —1
p(zsj >x) -y e l(1-2)
= = = o
J

and characteristic function

In various applications (in particular, in queueing theory, cf. Sect. 12.4), the so-
called Erlang distribution is also of importance. This is a distribution with density
f(x; o, A) for integer A. The Erlang distribution is clearly a A-fold convolution of
the exponential distribution with itself.

We find the expectation and variance of a random variable £ that has the gamma
distribution with parameters (o, A):

A A+ 1
EE =—i¢'(0;a, 1) = —, E&2=—igp"(0;a, 1) = w,
o

Ol2
AL+ 1 AMN\2 A
vare) = 2 (2 -
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Distributions from the gamma family, and especially the exponential ones, are
often (and justifiably) used to approximate distributions in various applied problems.
We will present three relevant examples.

Example 7.6.1 Consider a complex device. The failure of at least one of n parts
comprising the device means the breakdown of the whole device. The lifetime dis-
tribution of any of the parts is usually well described by the exponential law. (The
reasons for this could be understood with the help of the Poisson theorem on rare
events. See also Example 2.4.1 and Chap. 19.)

Thus if the lifetimes &; of the parts are independent, and for the part number j
one has

PEj>x)=e %", x>0,

then the lifetime of the whole device will be equal to n, = min(y, ..., &,) and we
will get

P(n, > x) :P(ﬂ{gi >x}> = HP(éj > X) :exp{—x Za[}.
j=l1 j=1 i=1

This means that 7, will also have the exponential distribution, and since
EEJ' = l/ozj s

the mean failure-free operation time of the device will be equal to

n —1
1
i = (Z. ﬁ) |

i=1

Example 7.6.2 Now turn to the distribution of ¢, = max(&y, ..., &,), where &; are
independent and all have the I'-distribution with parameters (¢, A). We could con-
sider, for instance, a queueing system with n channels. (That could be, say, a mul-
tiprocessor computer solving a problem using the complete enumeration algorithm,
each of the processors of the machine checking a separate variant.) Channel number
i is busy for a random time &;. After what time will the whole system be free? This
random time will clearly have the same distribution as &,.
Since the &; are independent, we have

P(¢, <x)=P(ﬂ{sj <x}> =[P <0)]". (7.6.1)
j=1

If n is large, then for approximate calculations we could find the limiting distri-
bution of ¢, as n — oo. Note that, for any fixed x, P(¢, <x) — 0asn — oo.

Assuming for simplicity that « = 1 (the general case can be reduced to this one
by changing the scale), we apply L’Hospital’s rule to see that, as x — oo,

x)»—l

. _ * 1 r—1_—y ~ —x
P($j<)c)_/)C F()L)y e Vdy F(A)e .
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Letting n — oo and
x=x(m)=In[n(nn)*"' /T (V)] +u, u=const,
we get

(mm)*~' oy, e

() n(lnn))‘*le T on

Therefore for such x and n — oo we obtain by (7.6.1) that

PE;>x)~

—Uu

e " _el
" (1+0(1))> —>e

Pl <x)= (1 -

Thus we have established the existence of the limit

=1
lim P<§n - ln[ni(hm) j| < u) =,
n—00 (L)

or, which is the same, that

| n(lnn) =1
Cn — n[if‘(}»)

In other words, for large n the variable ¢, admits the representation

|:n(lnn)k_]
~n| DR

} S Fo, Fo(u)=e"*"

0 0
xS ]—i—{, where ¢” € Fp.

Example 7.6.3 Let & and & be independent with §&; €'y 3, and & € Ty, ,. What
is the distribution of &1 /(&1 + &2)? We will make use of Theorem 4.9.2. Since the
joint density f(x,y) of & and n =& + & is equal to

fx, )= fx oA f(y—x5a,A2),

the density of 7 is

q(y) = f(yio, A1+ 22),
and the conditional density f(x | y) of &1 given n =y is equal to

f(X| )= f(x,y) . I'(AM +Xp) x}tl_l(y—x))tz—l
y)= q(y) T () e

By the formulas from Sect. 3.2 the conditional density of &1 /y = &1 /(&1 + &2) (given
the same condition &1 + & = y) is equal to

I'(A+22) el
')Ir (o)

This distribution does not depend on y (nor on «). Hence the conditional density
of &1 /(&1 + &) will have the same property, too. We obtain the so-called beta distri-
bution By, ;, with parameters A1 and A, defined on the interval [0, 1]. In particular,
for A = Ay = 1, the distribution is uniform: B; ; =Up ;.

, x€e[0,y].

x|y = (1—x)271 xelo,1].



180 7 Characteristic Functions

7.7 Generating Functions. Application to Branching Processes.
A Problem on Extinction

7.7.1 Generating Functions

We already know that if a random variable £ is integer-valued, i.e.
P<U{$ = k}) =1,
k

then the ch.f. g () will actually be a function of z = ¢'!, and, along with its ch.f.,
the distribution of £ can be specified by its generating function

pe(x):=Ezf =) P& =k).
k
The inversion formula can be written here as
1 [T _. 1
P =k) = —/ e e (1) dt = — 7 1 pe(2) dz. (7.7.1)
2 7 2mi lzl=1

As was already noted (see Sect. 7.2), relation (7.7.1) is simply the formula for
Fourier coefficients (since ¢!’k = costk + i sintk).

If & and 7 are independent random variables, then the distribution of § + n will
be given by the convolution of the sequences P(§ = k) and P(n = k):

oo
PE+n=n)= Y PE=kPh=n—k)
k=—00

(the total probability formula). To this convolution there corresponds the product of
the generating functions:

Pe+n(2) = pe(2) py(2).

It is clear from the examples considered in Sect. 7.1 that the generating functions of
random variables distributed according to the Bernoulli and Poisson laws are

pe@=1+pz—1.,  pe@)=exp{uz -1},

respectively.

One can see from the definition of the generating function that, for a nonnegative
random variable & > 0, the function pg(z) is defined for |z] < 1 and is analytic in
the domain |z] < 1.

7.7.2 The Simplest Branching Processes

Now we turn to sequences of random variables which describe the so-called branch-
ing processes. We have already encountered a simple example of such a process
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when describing a chain reaction scheme in Example 4.4.4. Consider a more general
scheme of a branching process. Imagine particles that can produce other particles
of the same type; these could be neutrons in chain reactions, bacteria reproducing
according to certain laws etc. Assume that initially there is a single particle (the
“null generation”) that, as a result of a “division” act, transforms with probabilities
Je, k=0,1,2, ..., into k particles of the same type,

ka =1
k=0

The new particles form the “first generation”. Each of the particles from that gen-
eration behaves itself in the same way as the initial particle, independently of what
happened before and of the other particles from that generation. Thus we obtain the
“second generation”, and so on. Denote by ¢, the number of particles in the n-th
generation. To describe the sequence ¢, introduce, as we did in Example 4.4.4,
independent sequences of independent identically distributed random variables

LTAS AR )

where E](.”) have the distribution

P(g](_”)zk)sz, k=0,1,....
Then the sequence ¢, can be represented as
%=1,
1
‘1= %'1( ),
2
O=67 -tk

Go= 6"+ g

2)
1 9

These are sums of random numbers of random variables. Since & 1("), 52("), ... donot

depend on ¢,_1, for the generating function f(,)(z) = Ez% we obtain by the total
probability formula that

o
) )
Joy(@) = ZP({,,,I —kE5 TtE
k=0

=Y Pl =k f @) = fu1(f ). (1.7.2)
k=0
where

F@ = fo@ =E&" =3 fidk.
k=0
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Fig. 7.1 Finding the ,
extinction probability of a f(2) )
branching process: it is given .
by the smaller of the two 1 /-
solutions to the equation -

z=f(2) -

[SSNY

Denote by f,(z) the n-th iterate of the function f(z), i.e. f1(2) = f(2), f»(2) =
f(f(@), f3(z) = f(f2(2)) and so on. Then we conclude from (7.7.2) by induction
that the generating function of ¢, is equal to the n-th iterate of f(z):

Ez" = fi)(2).

From this one can easily obtain, by differentiating at the point z = 1, recursive rela-
tions for the moments of ¢,.

How can one find the extinction probability of the process? By extinction we will
understand the event that all ¢, starting from some n will be equal to 0. (If ¢, =0
then clearly ¢,4+1 = {40 = -+ - =0, because P(§,41 =0/, =0) =1.) Set Ay =
{¢x = 0}. Then extinction is the event U,fil Ag. Since A, C A,+1, the extinction
probability g is equal to g = lim, .o P(A;,).

Theorem 7.7.1 The extinction probability q is equal to the smallest nonnegative
solution of the equation g = f(q).

Proof One has P(A,) = f,(0) <1, and this sequence is non-increasing. Passing in
the equality

Fa100) = f(fn(0)) (7.7.3)

to the limit as n — oo, we obtain

qg=f(@, q=1

This is an equation for the extinction probability. Let us analyse its solutions. The
function f(z) is convex (as f”(z) > 0) and non-decreasing in the domain z > 0
and f’(1) = m is the mean number of offspring of a single particle. First assume
that P(El(l) =1)<l1.Ifm<1then f(z) >zforz<1andhenceg=1.If m > 1
then by convexity of f the equation ¢ = f(q) has exactly two solutions on the
interval [0, 1]: g1 < 1 and g2 = 1 (see Fig. 7.1). Assume that ¢ = go = 1. Then the
sequence &, = 1 — f,,(0) will monotonically converge to 0, and f(1 —4§,) <1 -4,
for sufficiently large n. Therefore, for such n,

8n+1:1_f(1_5n)>8n,
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which is a contradiction as §, is a decreasing sequence. This means that ¢ = g1 < 1.
Finally, in the case P(gl(l) =1) = f1 = 1 one clearly has f(z) =z and ¢ = 0. The
theorem is proved. g

Now consider in more detail the case m = 1, which is called critical. We know
that in this case the extinction probability ¢ equals 1. Let g, = P(A,) = f,,(0) be
the probability of extinction by time n. How fast does g, converge to 1? By (7.7.3)
one has g, 41 = f(g,). Therefore the probability p, = 1 — g, of non-extinction of
the process by time n satisfies the relation

Pnt1=8(Pn), g)y=1—f(1-x).

It is also clear that ¥, = p, — pn+1 is the probability that extinction will occur
on step n.

Theorem 7.7.2 If m = f'(1) =1 and 0 < b := f"(1) < oo then y, ~ # and

pnN%asneoo.

Proof If the second moment of the number of offspring of a single particle is finite
(b < 00) then the derivative g”(0) = —b exists and therefore, since g(0) = 0 and
g'(0)= f’(1) =1, one has

gx)=x— §x2 +o(x2), X — 0.

Putting x = p,, — 0, we find for the sequence a,, = 1/p,, that

Pn = Pn+1 bpa(1+o(1) b

Ap+1 —an = =53 - =,

PnPn+1 2pn(1 —bpu/2+0(py)) 2
n—1

bn 2
a=ar+) (@i —a)~ o P
k=1
The theorem is proved. d

Now consider the problem on the distribution of the number ¢, of particles given
&n > 0.

Theorem 7.7.3 Under the assumptions of Theorem 7.7.2, the conditional distribu-
tion of pn&, (or 2¢,/(bn)) given &, > 0 converges as n — o0 to the exponential
distribution:

X

P(putn > x>0 — e, x>0.

The above statement means, in particular, that given ¢, > 0, the number of parti-
cles ¢, is of order n as n — oo.
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Proof Consider the Laplace transform (see Property 6 in Sect. 7.1) of the condi-
tional distribution of p, ¢, (given &, > 0):

o
E(e "¢, > 0) = i Z e Skemp (g, = k). (7.7.4)

" k=1
We will make use of the fact that, if we could find an N such that e™5/» =1 — py,
which is the probability of extinction by time N, then the right-hand side of (7.7.4)
will give, by the total probability formula, the conditional probability of the extinc-
tion of the process by time n 4+ N given its non-extinction at time n. We can evaluate

this probability using Theorem 7.7.2.
Since p, — 0, for any fixed s > 0 one has

2s
—SPn _ 1~ — ~—
e s .
Pn .
Clearly, one can always choose N ~n/s,s, ~ s,s, | s suchthate™P» —1 = —py.

Therefore e %Pk = (1 — px)¥ and the right-hand side of (7.7.4) can be rewritten
fors =s, as

1 & 1
— Y PG =kl —py)= P >0, un =0)

™ k=1
__ Pn—Pn+N
Pn
Pn+N n N 1
=1- ~1- = — .
Pn n+N n+N 1+s

Now note that
E(e_spnfn ;n > 0) — E(e_snpnfn |§n > O) — E[e_spnfn (l _ e_(sn_S)PnCn |Cn > 0)]

Sincee ™ <land 1 —e ™ <afora>0,and E¢, =1, E(¢,;|¢, > 0) = 1/p,, it is
easily seen that the positive (since s, > s) difference of the expectations in the last
formula does not exceed

(sn — ) puEn|n > 0) =5, —5s = 0.

Therefore the Laplace transform (7.7.4) converges, as n — oo, to 1/(1 + s).
Since 1/(1 + s) is the Laplace transform of the exponential distribution:

° 1
e~ X dx = ,
/0 145

we conclude by the continuity theorem (see the remark after Theorem 7.3.1 in
Sect. 7.3) that the conditional distribution of interest converges to the exponential
law.5

In Sect. 15.4 (Example 15.4.1) we will obtain, as consequences of martingale
convergence theorems, assertions about the behaviour of ¢, as n — oo for branching
processes in the case p > 1 (the so-called supercritical processes). O

The simple proof of Theorem 7.7.3 that we presented here is due to K.A. Borovkov.



Chapter 8
Sequences of Independent Random Variables.
Limit Theorems

Abstract The chapter opens with proofs of Khintchin’s (weak) Law of Large Num-
bers (Sect. 8.1) and the Central Limit Theorem (Sect. 8.2) the case of independent
identically distributed summands, both using the apparatus of characteristic func-
tions. Section 8.3 establishes general conditions for the Weak Law of Large Num-
bers for general sequences of independent random variables and also conditions for
the respective convergence in mean. Section 8.4 presents the Central Limit Theo-
rem in the triangular array scheme (the Lindeberg—Feller theorem) and its corollar-
ies, illustrated by several insightful examples. After that, in Sect. 8.5 an alternative
method of compositions is introduced and used to prove the Central Limit Theo-
rem in the same situation, establishing an upper bound for the convergence rate for
the uniform distance between the distribution functions in the case of finite third
moments. This is followed by an extension of the above results to the multivariate
case in Sect. 8.6. Section 8.7 presents important material not to be found in other
textbooks: the so-called integro-local limit theorems on convergence to the normal
distribution (the Stone—Shepp and Gnedenko theorems), including versions for sums
of random variables depending on a parameter. These results will be of crucial im-
portance in Chap. 9, when proving theorems on exact asymptotic behaviour of large
deviation probabilities. The chapter concludes with Sect. 8.8 establishing integral,
integro-local and local theorems on convergence of the distributions of scaled sums
on independent identically distributed random variables to non-normal stable laws.

8.1 The Law of Large Numbers

Theorem 8.1.1 (Khintchin’s Law of Large Numbers) Let {£,}° | be a sequence
of independent identically distributed random variables having a finite expectation
E¢, =aandlet S, ;=& +---+&,. Then

Sn P
— —>a asn— OoQ.
n

The above assertion together with Theorems 6.1.6 and 6.1.7 imply the following.

A.A. Borovkov, Probability Theory, Universitext, 185
DOI 10.1007/978-1-4471-5201-9_8, © Springer-Verlag London 2013
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Corollary 8.1.1 Under the conditions of Theorem 8.1.1, as well as convergence of
Sp/n in probability, convergence in mean also takes place:

Sn
— —a
n

E

—0 asn— oo.

Note that the condition of independence of & and the very assertion of the the-
orem assume that all the random variables & are given on a common probability
space.

From the physical point of view, the stated law of large numbers is the sim-
plest ergodic theorem which means, roughly speaking, that for random variables
their “time averages” and “space averages” coincide. This applies to an even greater
extent to the strong law of large numbers, by virtue of which S, /n — a with prob-
ability 1.

Under more strict assumptions (existence of variance) Theorem 8.1.1 was ob-
tained in Sect. 4.7 as a consequence of Chebyshev’s inequality.

Proof of Theorem 8.1.1 We have to prove that, for any ¢ > 0,

>s>—>0

as n — o0o. The above relation is equivalent to the weak convergence of distributions
S, /n & 1. Therefore, by the continuity theorem and Example 7.1.1 it suffices to
show that, for any fixed 7,

Sn

B

——a

@s,/n (1) — €.

The ch.f. ¢(¢) of the random variable & has, in a certain neighbourhood of 0, the
property |¢(¢) — 1| < 1/2. Therefore for such ¢ one can define the function /() =
Inp(¢) (we take the principal value of the logarithm). Since &, has finite expectation,
the derivative

¢'(0)
=1a
©(0)

exists. For each fixed ¢ and sufficiently large n, the value of /(¢ /n) is defined and

1'0) =

gosn/n (t) = (Pn(t/}’l) = el(t/n)n.

Since [/(0) = 0, one has

Glt/mn _ exp{tl(l/”t)/— 1(0) } O _ iat
n

as n — oo. The theorem is proved. O
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8.2 The Central Limit Theorem for Identically Distributed
Random Variables

Let, as before, {£,} be a sequence of independent identically distributed random
variables. But now we assume, along with the expectation E§, = a, the existence
of the variance Var&, = o2. We retain the notation S, = & + - - - + &, for sums of
our random variables and @ (x) for the normal distribution function with parameters
(0, 1). Introduce the sequence of random variables

S, —an

N

tn =

Theorem 8.2.1 If 0 < 62 < o0, then P(¢, < x) — ®(x) uniformly in x (—oo <
X < 00)asn— oo.

In such a case, the sequence {¢,} is said to be asymptotically normal.

It follows from ¢, = ¢ € ®¢ 1, {,,2 >0, E;,,Z =E¢? =1 and from Lemma 6.2.3
that the sequence {gnz} is uniformly integrable. Therefore, as well as the weak
convergence ¢, = ¢, { € ®9.1 (Ef () — Ef(¢) for any bounded continuous
f), one also has convergence E f(¢,) — Ef(¢) for any continuous f such that
| £(x)] < c(1 +x2) (see Theorem 6.2.3).

Proof of Theorem 8.2.1 The uniform convergence is a consequence of the weak
convergence and continuity of @ (x). Further, we may assume without loss of gen-
erality that a = 0, for otherwise we could consider the sequence {§/, =&, — a};’o: 1
without changing the sequence {¢,}. Therefore, to prove the required convergence,

it suffices to show that ¢, (1) — ¢~"*/2 when a = 0. We have

@, (1) = ¢" (;_ﬁ) where (1) = @g, (1).

Since Eé,% exists, ¢ (t) also exists and, as t — 0, one has

2 2.2
(1) = (0) +1¢'(0) + %(p”(O) +o(t?) =1——— +o(?). (8.2.1)

oS )
:n[——+ ( )]=——+o(1)»—§.

The theorem is proved. g

Therefore, as n — oo,

T Q
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8.3 The Law of Large Numbers for Arbitrary Independent
Random Variables

Now we proceed to elucidating conditions under which the law of large numbers and
the central limit theorem will hold in the case when & are independent but not nec-
essarily identically distributed. The problem will not become more complicated if,
from the very beginning, we consider a more general situation where one is given an
arbitrary series &1 ,, ..., &n.n, n = 1,2, ... of independent random variables, where
the distributions of & , may depend on n. This is the so-called triangular array
scheme.
Put

Cn = Z"Sk,w
k=1

From the viewpoint of the results to follow, we can assume without loss of generality
that

E&.» =0. (8.3.1)

Assume that the following condition is met: as n — 00,

n
Dy := "Emin (&, [&.4]) — 0. [Dy]
k=1
Theorem 8.3.1 (The Law of Large Numbers) If conditions (8.3.1) and [D1] are
satisfied, then ¢, & Iy or, which is the same, ¢y, LS 0asn— oo.

Example 8.3.1 Assume & = &, do not depend on n, E§ =0 and E|&* <m <
oo for 1 < s < 2. For such s, there exists a sequence b(n) = o(n) such that n =
o(b*(n)). Since, for & , = & /b(n),

2
Emin(lék,n|, S,in) = EH% &kl < b(n)i| +E|:%; 1| > b(n)]
- EHS—" kel <b(n)] +EH‘5—" > b(n)}
=" b | = bn)|’
=msb*(n),

we have
Dy <nmgb™*(n) — 0,

and hence S, /b(n) 2.
A more general sufficient condition (compared to m; < oo) for the law of large

numbers is contained in Theorem 8.3.3 below. Theorem 8.1.1 is an evident corollary
of that theorem.
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Now consider condition [D;] in more detail. It can clearly also be written in the
form

D1 = E(&nl: lnl > 1) + Y E(l&kal® [§cal <1) = 0.

k=1 k=1

Next introduce the condition

n
M=) Elfal <c<oo (8.3.2)
k=1
and the condition
n
M(2) ==Y E(l&nl: [kl > T) = 0 [M1]
k=1

forany 7 > 0 as n — oo. Condition [M1] could be called a Lindeberg type condition
(the Lindeberg condition [M;] will be introduced in Sect. 8.4).

The following lemma explains the relationship between the introduced condi-
tions.

Lemma 8.3.1 1. {[M;]N (3.2)} C [Dy]. 2. [D;] C [M;].

That is, conditions [M] and (8.3.2) imply [D;], and condition [D;] implies
[M;].

It follows from Lemma 8.3.1 that under condition (8.3.2), conditions [D;] and
[M;] are equivalent.

Proof of Lemma 8.3.1 1. Let conditions (8.3.2) and [M1] be met. Then, for
t<1, g (x)=min(x], |x|?),

one has

n

D1 =Y EgiEn) <Y E(&al: Enl > 7) + Y _E(&nl®: 1€l <7)
k=1 k=1

k=1
< Mi(©) +7 ) E(&nl; [Enl < 7) < Mi(7) + TM1(0). (83.3)
k=1

Since M1(0) = M < c and t can be arbitrary small, we have D; — 0 as n — o0.
2. Conversely, let condition [D1] be met. Then, for t <1,

Mi(t) <Y E( &l |6enl > 1)

k=1
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n
+T Y Bl T < il <1) <T'DI—> 0 (834
k=1

as n — oo for any 7 > 0. The lemma is proved. U
Let us show that condition [M] (as well as [D1]) is essential for the law of large

numbers to hold.
Consider the random variables

n

1 -1 with probability 1,
Ek,n =

S =

with probability 1 — 1.

For them, E&; , = 0, E|&.,| = @ ~ 2 M <2, condition (8.3.2) is met, but
Mi(t) = "n;l > % forn > 2, t < 1/2, and thus condition [M] is not satisfied. Here
the number v, of positive & ,, 1 < k < n, converges in distribution to a random
variable v having the Poisson distribution with parameter A = 1. The sum of the
remaining & ,s is equal to —@ . Therefore, ¢, + 1 & II; and the law
of large numbers does not hold.

Each of the conditions [D;] and [M;] imply the uniform smallness of E|&; ,|:

1m]fix El& .| =0 asn— oo. (8.3.5)
<k=n

Indeed, equation [M] means that there exists a sufficiently slowly decreasing se-
quence 7, — 0 such that M (t,) — 0. Therefore

max E|& | < max[l’n + E(|'§k,n|; Ek.n| > Tn)] <t + Mi(tn) > 0. (8.3.6)
k<n k<n

In particular, (8.3.5) implies the negligibility of the summands & .
We will say that & ,, are negligible, or, equivalently, have property [S], if, for any
>0,

maXP(|§k,n| > 8) —0 asn— oo. [S]
k<n

Property [S] could also be called uniform convergence of &, in probability to
zero. Property [S] follows immediately from (8.3.5) and Chebyshev’s inequality. It
also follows from stronger relations implied by [M]:

P(max jgil > ) = P(U{|sk,n| > s}>

k<n

<Y P(&nl>e) <& Y E(l&nli [&al > €) > 0. [S1]

k<n k<n

We now turn to proving the law of large numbers. We will give two versions of
the proof. The first one illustrates the classical method of characteristic functions.
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The second version is based on elementary inequalities and leads to a stronger as-
sertion about convergence in mean. !
Here is the first version.

Proof of Theorem 8.3.1% Put

Qrn(t) :=Ee™tn A(t) == g (t) — 1.

One has to prove that, for each ¢,

n

¢, (1) =Ee'"" = [ orn(®) > 1,
k=1

asn — oo. By Lemma 7.4.2

n n
[Tecnr -]]1
k=1 =1

|, (1) — 1] =

<> 1A
k=1

n n
=Y |[Ber — 1| =Y [B(e5 — 1 —itér)|.
k=1 k=1

By Lemma 7.4.1 we have (for g1 (x) = min(|x]|, x2))
e — 1 —itx| < min(2]tx], r2x?/2) < 2g1(tx) < 2h(1)g1 (1),

where (1) = max(|¢|, |¢|%). Therefore

|0, (1) — 1] <21(1) Y Eg1 (Ex.) = 2h(1) Dy — 0.
k=1

The theorem is proved. 0

The last inequality shows that |¢,, (z) — 1| admits a bound in terms of Dj. It
turns out that E|¢,| also admits a bound in terms of Dj. Now we will give the
second version of the proof that actually leads to a stronger variant of the law of
large numbers.

Theorem 8.3.2 Under conditions (8.3.1) and [D1] one has E|{,| — 0 (i.e.

o -2 0).

I'The second version was communicated to us by A.I. Sakhanenko.

2There exists an alternative “direct” proof of Theorem 8.3.1 using not ch.f.s but the so-called
truncated random variables and estimates of their variances. However, because of what follows, it
is more convenient for us to use here the machinery of ch.f.s.
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The assertion of Theorem 8.3.2 clearly means the uniform integrability of {¢,};
it implies Theorem 8.3.1, for

P(|¢n] > ¢) <E|tul/e >0 asn— oo.

Proof of Theorem 8.3.2 Put

Ep = .
k. 0 otherwise,

{sk,n if &) <1,

and &, := &, — & ,. Then & , =&, + &, and ¢ = ¢, + ¢, with an obvious
convention for the notations ¢, , £,'. By the Cauchy—Bunjakovsky inequality,

El¢,| <E|¢, —E¢)| +E|¢) —Eg)| < VE(¢, —Eg)” +E|¢)| + |EZ!|

<\ 2o Var(E,) + 2 3 ElEL] = 2 UR(E,) +2 DRl
1/2
=3 B, 16l < )]
+2) E(l&al; [€nl > 1) <V/Di +2D1 -0,
if D; — 0. The theorem is proved. 0
Remark 8.3.1 It can be seen from the proof of Theorem 8.3.2 that the argument will

remain valid if we replace the independence of & , by the weaker condition that
E,;n are non-correlated. It will also be valid if %‘]é’n are only weakly correlated so that

E(¢, — E{,;)z < cZVar(E,i’n), ¢ < 00.

If {&} is a given fixed (not dependent on n) sequence of independent random
variables, S, = >_;_; & and E& = ax, then one looks at the applicability of the law
of large numbers to the sequences

&k — ag 1 -
n— s n— n=75, < Sn - , 8.3.7
s St aeTaemg(s-Ta) 6

where &  satisfy (8.3.1), and b(n) is an unboundedly increasing sequence. In some
cases it is natural to take b(n) = > ;_, E[§/ if this sum increases unboundedly.
Without loss of generality we can set a; = 0. The next assertion follows from The-
orem 8.3.2.

Corollary 8.3.1 If, as n — oo,

Dy = — Emi 2/b 0
1= % mln(|€k|a &/ (”)) g
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or, for any t > 0,

1 n
Mi(z) = b E(1&; || > tb(1)) > 0, b(n) =) El&| — oo, (8.3.8)
k=1

then ¢y &) 0.

Now we will present an important sufficient condition for the law of large num-
bers that is very close to condition (8.3.8) and which explains to some extent its
essence. In addition, in many cases this condition is easier to check. Let by = E|&|,
by = maxg <, by, and, as before,

Si=) &  bm)=)_ b
k=1 k=1

The following assertion is a direct generalisation of Theorem 8.1.1 and Corol-
lary 8.1.1.

Theorem 8.3.3 Ler E&; = 0, the sequence of normalised random variables & /by
be uniformly integrable and b,, = 0o(b(n)) as n — oco. Then

Sn Wy,
b(n)

Ifby < b < 00 then b(n) < bn and > Do,

Proof Since

&k

by

53
by

’

E(I&l; 16| > th(n)) < bkE(

> r@) (8.3.9)

by

b
and 5

— 00, the uniform integrability of {E—i} implies that the right-hand side
of (8.3.9) is o(bx) uniformly in k (i.e. it admits a bound & (n)by, where e(n) — 0 as
n — oo and does not depend on k). Therefore

n

1
Mi(r)= ) 2 E(I&]; |&] > tb(n)) — 0

as n — 00, and condition (8.3.8) is met. The theorem is proved. O

Remark 8.3.2 1If, in the context of the law of large numbers, we are interested in
convergence in probability, only then can we generalise Theorem 8.3.3. In particular,
convergence
S,

Ko
b(n)
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will still hold if a finite number of the summands & (e.g., for k <[, [ being fixed)
are completely arbitrary (they can even fail to have expectations) and the sequence

& = &ry1, k > 1, satisfies the conditions of Theorem 8.3.3, where b(n) is defined for

the variables £ and has the property bg’(;)l) — lasn— oo.

This assertion follows from the fact that

Sn S S —S8 bn—-1) S p b(n—1)
= + N ) — )
b(n) bn) bn-—1I) b(n) b(n) b(n)

— 1,

and by Theorem 8.3.3

S, — 81
b(n—1)

p
—> 0 asn— oo.

Now we will show that the uniform integrability condition in Theorem 8.3.3

(as well as condition M1 (t) — 0) is essential for convergence ¢, 2 0. Consider a
sequence of random variables

¢ 2 —1 with probability 27¢,
N | with probability 1 — 275

for j e I := @125, s=1,2,...;6 =0. Then E§; =0, E|§;| =2(1 —27°) for
j € I, and, for n =2k, one has

k
bn) =Y 2(1-27°)|L],
s=1

where |I;| =25 — 25—1 — 25— ig the number of points in /;. Hence, as k — oo,

b(l’l) ~ 2[(1 _ 2—k)2k—1 + (1 _ 2—k+1)2k—2 4. ]
~okgokety ok — gy,

Observe that the uniform integrability condition is clearly not met here. The distri-
bution of the number v® of jumps of magnitude 2° — 1 on the interval /; converges,
as s — 00, to the Poisson distribution with parameter 1/2 = lim;_, oo 27*| |, while
the distribution of 27°(S2s — S,,-1) converges to the distribution of v — 1/2, where
v € I 2. Hence, assuming that n = 2k and partitioning the segment [2, n] into the
intervals (2° =1 s 1, s =1, ..., k, we obtain that the distribution of S,,/n converges,
as k — 00, to the distribution of

S K S — Spe >
7” =27%)" T225 =Y w—-1/227" =1,
s=1 =0
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where vy, l =0,1,..., are independent copies of v. Clearly, ¢ # 0, and so conver-

gence J* 520 fails to take place.
Let us return to arbitrary & . In order for [D1] to hold it suffices that the follow-
ing condition is met: for some s,2 > s > 1,

> El&al — 0. [L]

k=1

This assertion is evident, since g1 (x) < |x|* for 2 > s > 1. Conditions [L;] could
be called the modified Lyapunov conditions (cf. the Lyapunov condition [L;] in
Sect. 8.4).

To prove Theorem 8.3.2, we used the so-called “truncated versions” E,é’n of the
random variables & ,. Now we will consider yet another variant of the law of large
numbers, in which conditions are expressed in terms of truncated random variables.

Denote by &™) the result of truncation of the random variable £ at level N:

S(N) = max[—N, min(N, é)].

Theorem 8.3.4 Let the sequence of random variables {&;} in (8.3.7) satisfy the
following condition: for any given ¢ > 0, there exist Ny such that
1 n

- _ +(Np)
b kZIE’Ek g9 <e,

bn )ZNk<N<oo

1
Then the sequence {{,} converges to zero in mean: &, Q) 0.

Proof Clearly a(N") EE(N") — a; as Ny — oo and Ia( NO| < Ny. Further, we
have

_ _ (Vi)
Bl = 5 )E}Z(sk a0l = 5o )ZE\ék 5™
%-(Nk) a/ENk)

3 a™ — g
b(n)

Here the second term on the right-hand side converges to zero, since the sum under
the expectation satisfies the conditions of Theorem 8.3.1 and is bounded. But the
first and the last terms do not exceed ¢. Since the left-hand side does not depend on
g, we have E|Z,| — 0 as n — oo. O

Corollary 8.3.2 If b(n) = n and, for sufficiently large N and all k <n,

Els -] <e,

1
then ¢y Q) 0.
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The corollary follows from Theorem 8.3.4, since the conditions of the corollary
clearly imply the conditions of Theorem 8.3.4.

It is obvious that, for identically distributed &, the conditions of Corollary 8.3.2
are always met, and we again obtain a generalisation of Theorem 8.1.1 and Corol-
lary 8.1.1.

If E|&|" < oo for r > 1, then we can also establish in a similar way that

Sn (r)
—>a
n

Remark 8.3.3 Condition [D1] (or [M1]) is not necessary for convergence ¢, 20
even when (8.3.2) and (8.3.5) hold, as the following example demonstrates. Let &,
assume the values —n, 0, and n with probabilities 1/n2, 1— 2/n2, and 1/n2, re-

spectively. Here ¢, LS 0, since P(¢, #0) < P((J{&k.n #0}) <2/n— 0, El§,| =
2/n — 0 and M| =) El|& | =2 < oco. At the same time, Y E(|& nl; |&kn| >
1) =2 4 00, so that conditions [D] and [M] are not satisfied.

However, if we require that

i:k,n = —&k.n>» Ekn = 0,

n (8.3.10)
max &g , — 0, E Skn < € < 00,
ks k=1

then condition [D1] will become necessary for convergence ¢, 2.
Before proving that assertion we will establish several auxiliary relations that
will be useful in the sequel. As above, put A (f) := @i ,(t) — 1.

Lemma 8.3.2 One has

dolaw] < ltimy.

k=1

If condition [S] holds, then for each t, as n — oo,

max|Ak(t)| — 0.
k<n

If a random variable & with E§ = 0 is bounded from the left: § > —c, ¢ > 0, then
El§] <2c.

Proof By Lemma 7.4.1,
|Ac(@)| <Ele™n — 1] <|t|Elgenl. Y |M@)] < [t|M).

Further,
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|Ak(@®)| < E(|e"8n — 1] |&,0] < &) +E(|e"5n —1[; |60l > €)
<ltle +2P(|&k.nl > ).

Since ¢ is arbitrary here, the second assertion of the lemma now follows from con-
dition [S].
Put

g7 :=max(0; £) >0, T =—(-8") >0

Then E§ = E£T — E&E~ =0 and E|§| = E§T + E€~ = 2E£~ < 2c. The lemma is
proved. 0

From the last assertion of the lemma it follows that (8.3.10) implies (8.3.2) and
(8.3.5).

Lemma 8.3.3 Let conditions [S] and (8.3.2) be satisfied. A necessary and sufficient
condition for convergence @, (t) — @(t) is that

n
> Ac(t) = Ing().
k=1
Proof Observe that
Re Ax(t) =Re(gn(t) — 1) <0, || <1,

and therefore, by Lemma 7.4.2,

n

n
02, = 20] = | [Torat0 ~ [T
k=1 k=1

n n
<Y lorn(®) —eM O] =D "[eMO — 1 — A1)

k=1 k=1

1 & 1 n
= 3 ;A%(I) = Eml?X|Ak(t)} ];‘Ak(l”.

By Lemma 8.3.2 and conditions [S] and (8.3.2), the expression on the left-hand side
converges to 0 as n — oo. Therefore, if ¢, (t) — @(¢) then exp{d>_ A (1)} — ¢ (),
and vice versa. The lemma is proved. g

The next assertion complements Theorem 8.3.1.
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Theorem 8.3.5 Assume that relations (8.3.1) and (8.3.10) hold. Then condition
[D1] (or condition [M)) is necessary for the law of large numbers.

Proof If the law of large numbers holds then ¢,, () — 1 and, hence by Lemma 8.3.3
(recall that (8.3.10) implies (8.3.2), (8.3.5) and [S])

n n
D A6y =) E(en — 1 —itg ) — 0.
k=1 k=1

Moreover, by Lemma 7.4.1

) |§k,n| =< 8k,n)

n
ZE(|eit§k‘n —1 - lték,n
k=1

1" n n

. 2. 2

= 5 ZE(|Xlk,n| 5 |$k,n| = Sk,n) =< ng,n =< m,?-xek,n ng,n — 0.
k=1 k=1 k=1

Therefore, if the law of large numbers holds, then by virtue of (8.3.10)
n .
ZE(eltfk,n —1-— ilfk,rﬂ gk,n > 8k,n) — 0.
k=1

Consider the function a(x) = (e/* — 1) /ix. Itis not hard to see that the inequality
la(x)| <1 proved in Lemma 7.4.1 is strict for x > ¢ > 0, and hence there exists a
6(t) > 0 for t > 0 such that Re(1 — «(x)) > §(r) for x > 7. This is equivalent to
Im(1 4 ix — e'*) > §(7)x, so that

1 .
xgﬁlm(l—i—ix—e”‘) for x > 1.

From this we find that

Ei(t) =Y E(l&nl: [nl > 7) =) E@Eni&n>1)

k=1 k=1

1 - :
T Im) "E(1+i&n— €% & > exn) = 0.
T
k=1

Thus condition [M;] holds. Together with relation (8.3.2), that follows from
(8.3.10), this condition implies [D;]. The theorem is proved. O
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There seem to exist some conditions that are wider than (8.3.10) and under which

condition [D1] is necessary for convergence ¢, Q) 0 in mean (condition (8.3.10) is
too restrictive).

8.4 The Central Limit Theorem for Sums of Arbitrary
Independent Random Variables

Asin Sect. 8.3, we consider here a triangular array of random variables &1 ,,, ..., &, n
and their sums
n
=Y & (8.4.1)
k=1
We will assume that & , have finite second moments:
‘7k2,n := Var( ) < 00,

and suppose, without loss of generality, that

n
E& =0, Y of,=Var(g)=1. (8.4.2)
k=1

We introduce the following condition: for some s > 2,

n
D; = ZEmin(Ekz’n, |§k,n|‘v) —0 asn— oo, D]
k=1
which is to play an important role in what follows. Our arguments related to condi-
tion [D;] and also to conditions [M3] and [L;] to be introduced below will be quite

similar to the ones from Sect. 8.3 that were related to conditions [D1], [M;] and

[Ls].
We also introduce the Lindeberg condition: for any t > 0, as n — 00,

My(x) =Y E(&nl* |l > T) > 0. [M;]
k=1

The following assertion is an analogue of Lemma 8.3.1.
Lemma 8.4.1 1. {[Mx]N (4.2)} C [D2]. 2. [D2] C [M2].

That is, conditions [Mj;] and (8.4.2) imply [D;], and condition [D;] implies
[M2].

From Lemma 8.4.1 it follows that, under condition (8.4.2), conditions [D,] and
[M;] are equivalent.
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Proof of Lemma 8.4.1 1. Let conditions [M3] and (8.4.2) be met. Put
2(x) = min(xz, Ix[*),  s>2.

Then (cf. (8.3.3), (8.3.4);t <1)

n

Dy=7 Eg2(En) = ) E(E: l6enl > 7) + Y E(5kal’s 5kl <)

k=1 k=1 k=1
< Ma(t) + T2 Ma(0) = My (7) 4 7° 2.

Since 7 is arbitrary, we have D> — 0 as n — o0.
2. Conversely, suppose that [D>] holds. Then

n n
1
M)(7) < ;E(s,in; Eenl > 1)+ = k;(mw; v <lnl <1) < 55 D20

for any 7 > 0, as n — oo. The lemma is proved. U

Lemma 8.4.1 also implies that if (8.4.2) holds, then condition [D3] is “invariant”
with respect to s > 2.
Condition [D>] can be stated in a more general form:

> E&Z ,h(|nl) = O,
k=1

where A (x) is any function for which A(x) > 0 for x > 0, h(x) 1, h(x) — 0 as
x — 0,and h(x) - ¢ < 0o as x — oo. All the key properties of condition [D>] will
then be preserved. The Lindeberg condition clarifies the meaning of condition [D>]
from a somewhat different point of view. In Lindeberg’s condition, 4(x) = I(z,c0),
7 € (0, 1). A similar remark may be made with regard to conditions [D] and [M]
in Sect. 8.3.

In a way similar to what we did in Sect. 8.3 when discussing condition [M|], one
can easily verify that condition [M;] implies convergence (see (8.3.6))

max Var(§; ,) = 0 (8.4.3)
k<n

and the negligibility of & , (property [S]). Moreover, one obviously has the inequal-
ity

1
Mi(7) = = Mo (7).

For a given fixed (independent of n) sequence {&} of independent random vari-
ables,

Sn = Z &k E& = ai, Var(£) = of, (8.4.4)
k=1
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one considers the asymptotic behaviour of the normed sums

1 oo oo
b= (Sn - Zak>, Bi=) of, (8:4.5)
n k=1 k=1

that are clearly also of the form (8.4.1) with & , = (& — ax)/Bn-
Conditions [D1] and [M3] for & will take the form

o0
22Em1n<(§k )2 I8 — . 2| )—)0, s> 2;
Bl’l k Bil

(8.4.6)

=1
1 o0
Mo(0) = =5 > B — )% |& —al > TBy) = 0, 7>0.
n k=1

Theorem 8.4.1 (The Central Limit Theorem) If the sequences of random vari-
ables {5k,n}lf°:1’ n=1,2,..., satisfy conditions (8.4.2) and [D>] (or [M2]) then, as
n — 00, P(¢, < x) = @ (x) uniformly in x.

Proof 1t suffices to verify that

o
2
00, () =[[oxn(®) > ™72

k=1

By Lemma 7.4.2,

o, (6) — 2| =

n
22
n@) = [ e %"
k=1

n
< Jgrn () — e a2

1
Yen)—14+ Etzak%n

53
k=1

n
+Ze

k=1

22,2 _q Lo

51208 (8.4.7)

Since by Lemma 7.4.1, for s < 3,

2

3
. X

lx_l_- -
e lx—l—2

< min<x2, %) <)
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(see the definition of the function g; in the beginning of the proof of Lemma 8.4.1),
the first sum on the right-hand side of (8.4.7) does not exceed

]

2

k=1

‘ 1
E<ezt¥k.n —1—ité, + Eﬂg}iﬂ)’

<Y Ego(ltéeal) <h (1) Y Ego(l&nl) < h()D2 — 0,
k=1

k=1

where A (1) = max(¢?, |t|3). The last sum in (8.4.7) (again by Lemma 7.4.1) does
not exceed (see (8.4.2) and (8.4.3))

* & t* - 4
_ 4 2 2 < 2 50 —
ko < & Maxog, » op, < -—maxo;, as n — 00.
8 8 & 8 «k
k=1 k=1
The theorem is proved. 0

If we change the second relation in (8.4.2) to E¢, — o2 > 0, then, introducing
the new random variables & , = & »/+/Var{, and using continuity theorems, it is
not hard to obtain from Theorem 8.4.1 (see e.g. Lemma 6.2.2), the following asser-
tion, which sometimes proves to be more useful in applications than Theorem 8.4.1.

Corollary 8.4.1 Assume that E&; ,, =0, Var(¢,) — 2 > 0, and condition [D2] (or
[M2]) is satisfied. Then ¢, & @ s, .

Remark 8.4.1 A sufficient condition for [D>] and [M;] is provided by the more re-

strictive Lyapunov condition, the verification of which is sometimes easier. Assume
that (8.4.2) holds. For s > 2, the quantity

n
Ly:=) El&.,
k=1

is called the Lyapunov fraction of the s-th order. The condition
Lyi—0 asn— o0 [L]

is called the Lyapunov condition.

The quantity L, is called a fraction since for & , = (§x —a)/ B, (where a; = E&,
Bg = Zzzl Var(§x) and & do not depend on n), it has the form

1 < s
LS=B—’§ZE|&—ak| :
k=1
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If the &, are identically distributed, a; = a, Var(&) =02, and E|§; —a|® = pu < oo,
then

u

S = spe-2 0.

The sufficiency of the Lyapunov condition follows from the obvious inequalities
g2(x) < |x|* for any s, D> < L;.

In the case of (8.4.4) and (8.4.5) we can give a sufficient condition for the in-
tegral limit theorem that is very close to the Lindeberg condition [M>]; the former
condition elucidates to some extent the essence of the latter (cf. Theorem 8.3.3), and
in many cases it is easier to verify. Put o, = max<, ox. Theorem 8.4.1 implies the
following assertion which is a direct extension of Theorem 8.2.1

Theorem 8.4.2 Let conditions (8.4.4) and (8.4.5) be satisfied, the sequence of
normalised random variables §k2 /(rk2 be uniformly integrable and o, = o(By) as
n— 00.Then §, & ®o 1.

Proof of Theorem 8.4.2 repeats, to some extent, the proof of Theorem 8.3.3. For
simplicity assume that ax = 0. Then

E(£2: 2 ész. 8k By
(Sk, |§k| > TBn) <o;E || >T= ) (8.4.8)
o, |0k Opn

2
where B, /o, — oo. Hence, it follows from the uniform integrability of {%} that
k
the right-hand side of (8.4.8) is o(akz) uniformly in k. This means that

1 n
Ma(v) = =5 > B(E 1] > 7Ba) > 0
n k=1

as n — oo and condition (8.4.6) (or condition [M>]) is satisfied. The theorem is
proved. g

Remark 8.4.2 We can generalise the assertion of Theorem 8.4.2 (cf. Remark 8.3.3).
In particular, convergence ¢, & ®¢ 1 still takes place if a finite number of summands
& (e.g., for k <1, | being fixed) are completely arbitrary, and the sequence & :=

&1, k > 1, satisfies the conditions ofTheorel;n 8.4.2, in which we put ak2 = Var(§)),
n—1
By

Bs = ZZ:I akz, and it is also assumed that — lasn— oo.

This assertion follows from the fact that

Sn :ﬂ_i_sn_Sl.anl

Bn Bn Bn —I Bn '

i 4 B,
where e 0, B,

— 1 and, by Theorem 8.4.2, Sg_j’ & ¥ | as n — oo.
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Remark 8.4.3 The uniform integrability condition that was used in Theorem 8.4.2
can be used for the triangular array scheme as well. In this more general case the
uniform integrability should mean the following: the sequences 01 ,, ..., NMpn, 1 =
1,2, ..., in the triangular array scheme are uniformly integrable if there exists a
function e(N) | 0 as N 1 oo such that, for all n,

maxE(|nj; 0.l > N) < e(N).
j=n

It is not hard to see that, with such an interpretation of uniform integrability,

the assertion of Theorem 8.4.2 holds true for the triangular array scheme as well
2
provided that the sequence { EQ” } is uniformly integrable and max <, 0 , = o(1) as

%jn

n — oQ.

Example 8.4.1 We will clarify the difference between the Lindeberg condition and
2

uniform integrability of {%} in the following example. Let n; be independent
k

bounded identically distributed random variables, En; =0, Dn; = 1 and g(k) > V2
be an arbitrary function. Put

£ = Nk with probability 1 — 2g72(k),
“7 1 £g(k)  with probability g2 (k).

Then clearly E& = 0, 07 := D& =3 — 2g72(k) € (2,3) and B2 € (2n,3n). The
2
uniform integrability of { %}, or the uniform integrability of {& kz} which means the

same in our case, excludeé the case where g(k) — oo as k — oo. The Lindeberg
condition is wider and allows the growth of g(k), except for the case where g(k) >
cvk. If g(k) = o(+/k), then the Lindeberg condition is satisfied because, for any
fixed T > 0,

E(&% & > tvk) =0

for all large enough k.

Remark 8.4.4 Let us show that condition [M3] (or [D3]) is essential for the central
limit theorem. Consider random variables

:l:L - ege l
P { 7 W?th probab?l?ty 0 X
0 with probability 1 — =.
They satisfy conditions (8.4.2), [S], but not the Lindeberg condition as M>(t) = 1
for T < Lz The number v; of non-zero summands converges in distribution to
arandom variable v having the Poisson distribution with parameter 2. Therefore, ¢,
will clearly converge in distribution not to the normal law, but to Zl;:l vj, where
y; are independent and take values 41 with probability 1/2.
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Note also that conditions [D;] or [Mj;] are not necessary for convergence of
the distributions of ¢, to the normal distribution. Indeed, consider the following
example: &1, € @1, &2, = --- = &,,, = 0. Conditions (8.4.2) are clearly met,
P(¢, < x) = @(x), but the variables & , are not negligible and therefore do not
satisfy conditions [D,] and [M>].

If, however, as well as convergence ¢, & ®o,; we require that the & , are neg-
ligible, then conditions [D;] and [M»] become necessary.

Theorem 8.4.3 Suppose that the sequences of independent random variables
{€k,n}i_, satisfy conditions (8.4.2) and [S]. Then condition [D1] (or [M2]) is neces-
sary and sufficient for convergence ¢, & ®¢ 1.

First note that the assertions of Lemmas 8.3.2 and 8.3.3 remain true, up to some
inessential modifications, if we substitute conditions (8.3.2) and [S] with (8.4.2)
and [S].

Lemma 8.4.2 Let conditions (8.4.2) and [S] hold. Then (Ar(t) = ¢r (t) — 1)
£2
A 13 O, A t < A
ngl kO] =0, > A < 3

and the assertion of Lemma 8.3.3, that the convergence (8.3.10) is necessary and
sufficient for convergence @, (t) — @(t), remain completely true.

Proof We can retain all the arguments in the proofs of Lemmas 8.3.2 and 8.3.3
except for one place where Y |Ax(7)| is bounded. Under the new conditions, by
Lemma 7.4.1, we have

. 12
|Ak(®)| = |@kn (1) — 1 — itE& | <Ele5n — 1 —itgy ,| < 3E€;?,n,
so that

2
Ylao] =5

No other changes in the proofs of Lemmas 8.3.2 and 8.3.3 are needed. U

Proof of Theorem 8.4.3 Sufficiency is already proved. To prove necessity, we make
use of Lemma 8.4.1. If ¢, (t) — e 1/

@k.n(t) — 1, one has

, then by virtue of that lemma, for Ay (¢) =

> A0 > Ing(r) = -5
k=1

For t = 1 the above relation can be written in the form

n
. 1
Ry = ];E<ezsk,n i+ 5;,5) 0. (8.4.9)
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Put or(x) := (¢! — 1 —ix)/x>. It is not hard to see that the inequality |a(x)| < 1/2
proved in Lemma 7.4.1 is strict for x # 0, and

1
sup |a(x)| < - —8(2),
N 2

where 6(7) > 0 for T > 0. This means that, for |x| > 7 > 0,

1 , 1 " x?
Re oz(x)—i—E >8(t) >0, x“ < ——Rel ¢ —l—lx—i—? ,

2
1 .
E(&2,; l&nl > 7) < mReE(eszﬂ it Sk,n)’
’ T

and hence by virtue of (8.4.9), for any 7 > 0,
My(t) < ! |R,| — 0
7)< — —
2 = (S(‘L’) n
as n — oo. The theorem is proved. O
Corollary 8.4.2 Assume that (8.4.2) holds and

Il?ax Var(é; ,) — 0. (8.4.10)
<n

Then a necessary and sufficient condition for convergence {, & ® 1 is that

n
Nn = ZE;?,n =3

k=1
(or that n, > 1).

Proof Let n, & I;. The random variables & , = Ekzn - Uk2n satisfy, by virtue of
(8.4.10), condition (8.3.10) and satisfy the law of large numbers:

n
g =150
k=1
Therefore, by Theorem 8.3.5, the é,é_n satisfy condition [M]: for any 7 > 0,

n
ZE(|§§M — ot |s |6, — ok > 7) = 0. (8.4.11)
k=1

But by (8.4.10) this condition is clearly equivalent to condition [M3] for & ,, and
hence ¢, & ¥ ;.
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Conversely, if ¢, & ®,1, then [M>] holds for & , which implies (8.4.11). Since,
moreover,

n n
Y Elg,| <2 Vara) =2,
k=1 k=1

relation (8.3.2) holds for é,é’n, and by Theorem 8.3.1

n
Y &= —150.

k=1

The corollary is proved. g

Example 8.4.2 Leté&;, k=1,2,...,beindependent random variables with distribu-
tions

1
P =k) =P(5 = k") = .

Evidently, & can be represented as &, = k“ny, where ni 4 n are independent,

1

P(1=1)=P(n=—-1)=7 Var(n) = 1, of = Var(§) = k*.

Let us show that, for all « > —1/2, the random variables S, /B,, are asymptoti-
cally normal. Since

2
S d 2

2
Ok

are uniformly integrable, by Theorem 8.4.2 it suffices to verify the condition

0, = maxo; = o(B,).
k<n

In our case &, = max (1, n?*) and, for @ > —1/2,

n
n2a+l

n
B2= kZaN/ Zad — .
n ]; o YT et

For o = —1/2, one has

n
B2 = Zk’l ~Inn.
k=1

Clearly, in these cases ¢, = o(Bjy,) and the asymptotical normality of S,,/n holds.
If « < —1/2 then the sequence B, converges, condition ,, = 1 = o(By,) is not
satisfied and the asymptotical normality of S,/ B, fails to take place.
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Note that, for « = —1/2, the random variable
—
Sy = k; NG
will be “comparable” with +/Inn with a high probability, while the sums

2L (=K
k=1 ﬁ

converge to a constant.

A rather graphical and well-known illustration of the above theorems is the scat-
tering of shells when shooting at a target. The fact is that the trajectory of a shell is
influenced by a large number of independent factors of which the individual effects
are small. These are deviations in the amount of gun powder, in the weight and size
of a shell, variations in the humidity and temperature of the air, wind direction and
velocities at different altitudes and so on. As a result, the deviation of a shell from
the aiming point is described by the normal law with an amazing accuracy.

Similar observations could be made about errors in measurements when their
accuracy is affected by many “small” factors. (There even exists a theory of errors
of which the crucial element is the central limit theorem.)

On the whole, the central limit theorem has a lot of applications in various areas.
This is due to its universality and robustness under small deviations from the as-
sumptions of the theorem, and its relatively high accuracy even for moderate values
of n. The first two noted qualities mean that:

(1) the theorem is applicable to variables & , with any distributions so long as
the variances of & , exist and are “negligible”;

(2) the presence of a “moderate” dependence’ between &, does not change the
normality of the limiting distribution.

To illustrate the accuracy of the normal approximation, consider the following
example. Let F,(x) = P(S,,/+/n < x) be the distribution function of the normalised
sum S, of independent variables & uniformly distributed over [—\/g , ﬁ], so that
Var(&;) = 1. Then it turns out that already for n = 5 (!) the maximum of |F, (x) —
@ (x)| over the whole axis of x-values does not exceed 0.006 (the maximum is
attained near the points x = £0.7).

And still, despite the above circumstances, one has to be careful when applying
the central limit theorem. For instance, one cannot expect high accuracy from the
normal approximation when estimating probabilities of rare events, say when study-
ing large deviation probabilities (this issue has already been discussed in Sect. 5.3).

3There exist several conditions characterising admissible dependence of & ,,. Such considerations
are beyond the scope of the present book, but can be found in the special literature. See e.g. [20].



8.5 Another Approach to Proving Limit Theorems 209
After all, the theorem only ensures the smallness of the difference
|®(x) —P(¢ < x)| (8.4.12)

for large n. Suppose we want to use the normal approximation to find an xo such
that the event {¢, > xo} would occur on average once in 1000 trials (a problem
of this sort could be encountered by an experimenter who wants to ensure that, in
a single experiment, such an event will not occur). Even if the difference (8.4.12)
does not exceed 0.02 (which can be a good approximation) then, using the normal
approximation, we risk making a serious error. It can turn out, say, that 1 — @ (xg) =
1073 while P(¢ < x) =~ 0.02, and then the event {{, > xo} will occur much more
often (on average, once in each 50 trials).

In Chap. 9 we will consider the problem of large deviation probabilities that
enables one to handle such situations. In that case one looks for a function P (n, x)
such that P(¢ < x)/P(n,x) — 1 as n — 00, x — 0o. The function P (n, x) turns
out to be, generally speaking, different from 1 — @ (x). We should note however that
using the approximation P (n, x) requires more restrictive conditions on {& ,}.

In Sect. 8.7 we will consider the so-called integro-local and local limit theorems
that establish convergence of the density of ¢, to that of the normal law and enables
one to estimate probabilities of rare events of another sort—say, of the form {a <
¢n < b} where a and b are close to each other.

8.5" Another Approach to Proving Limit Theorems. Estimating
Approximation Rates

The approach to proving the principal limit theorems for the distributions of sums of
random variables that we considered in Sects. 8.1-8.4 was based on the use of ch.f.s.
However, this is by far not the only method of proof of such assertions. Nowadays
there exist several rather simple proofs of both the laws of large numbers and the
central limit theorem that do not use the apparatus of ch.f.s. (This, however, does not
belittle that powerful, well-developed, and rather universal tool.) Moreover, these
proofs sometimes enable one to obtain more general results. As an illustration, we
will give below a proof of the central limit theorem that extends, in a certain sense,
Theorems 8.4.1 and 8.4.3 and provides an estimate of the convergence rate (although
not the best one).

Along with the random variables & , in the triangular array scheme under as-
sumption (8.4.2), consider mutually independent and independent of the sequence
{€k,n};_, random variables 1 , € <I>O’szn, Ok.n := Var(& ), so that

n

e i=) Nk € D1
k=1
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Set?

) 3 ) 3 3
i =El§al”, Vin = Enin|” = 307, < c3ptkon,

W= [ I d(Fn() = n0)] < i+ v

n n n
Ly:=Y pkn.  N3:=Y ven.  L§:=) pf, <Lz+N3<(l+c3)Ls.
k=1 k=1 k=1

Here Fj , and @y , are the distribution functions of & , and ni ,, respectively. The
quantities L3 and N3 are the third order Lyapunov fractions for the sequences {& ,, }
and {nx ,}. The quantities ug’n are called the third order pseudomoments and L?
the Lyapunov fractions for pseudomoments. Clearly, N3 < c3L3 — 0, provided that
the Lyapunov condition holds. As we have already noted, for & , = (§& — ak)/Ba,
where a; = E&, B,% = Z'l’ Var (&), and & do not depend on n, one has

1 n
Ly=—23) o m=Eli —al’.
k=1

If, moreover, & are identically distributed, then

Li= M1

AN

Our first task here is to estimate the closeness of E f(¢,) to E f(n,) for suffi-
ciently smooth f. This problem could be of independent interest. Assume that f
belongs to the class C3 of all bounded functions with uniformly continuous and
bounded third derivatives: sup, | f O < f.

Theorem 8.5.1 If f € C3 then

LO
f3 3<f3

[E/ @) —Ef ()| = == = 2 (Ls+ N3). (8.5.1)

Proof Put,for1 <[ <n,
Xi=&n+-F+&-1ntmnt-+nun,
Zy=&in+ &t i+ o,
X1 = 1n, Xny1=28n.
Then
Xit1 =21+ &0, Xi=Z;+nn, (8.5.2)

4 o0, —t 4
—— te ldt = —.
V2 fo V2

2
X3¢ 2dx =

4If n € @, then ¢ =E|y|* = J%fo



8.5 Another Approach to Proving Limit Theorems 211

n

F&) = fam) =Y _[fXir) = FXD]. (8.5.3)

=1

Now we will make use of the following lemma.

Lemma 8.5.1 Let f € C3 and Z, & and n be independent random variables with

Et =En=a, E&?=En’ =02, M0=/|x3||d(Fg(x)—F,,(x))| < 00.

Then
f3M
Ef(Z+&) —Ef(Z+n)| < . (8.5.4)
Applying this lemma to (8.5.3), we get
0
3
mwann—ﬂmmsi——
which after summation gives (8.5.1). The theorem is proved. O

Thus to complete the argument proving Theorem 8.5.1 it remains to prove
Lemma 8.5.1.

Proof of Lemma 8.5.1 Set g(x) :=E f(Z 4+ x). It is evident that g, being the result
of the averaging of f, has all the smoothness properties of f and, in particular,
lg”(x)| < f3. By virtue of the independence of Z, & and n, we have

Ef(Z+& —Ef(Z+n) = /g(x)d(Fg (x) — Fy(x)). (8.5.5)

For the integrand, we make use of the expansion
2 3
g(x) =g(0) +xg'(0) + g "(0) + — g’”(9 ), br€[0,x].

Since the first and second moments of £ coincide with those of 1, we obtain for the
right-hand side of (8.5.5) the bound

1 0
§ 0 d(Fe - Fye)| = B

The lemma is proved. g

Remark 8.5.1 In exactly the same way one can establish the representation

///( ) f4 faL
Ef(¢n) —Ef ()| < ZE £, — - (8.5.6)
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under obvious conventions for the notations fs1 and Lg. This bound can improve
upon (8.5.1) if the differences E(E,in — r;,?”) are small. If, for instance, &, =
(& — a)/(o+/n), & are identically distributed, and the third moments of & , and
nk.n coincide, then on the right-hand side of (8.5.6) we will have a quantity of the
order 1/n.

Theorem 8.5.1 extends Theorem 8.4.1 in the case when s = 3. The extension
is that, to establish convergence ¢, & @, 1, one no longer needs the negligibility
of & . If, for example, &1, € @12 (in that case /L?’n =0) and Lg — 0, then
Ef(¢,) — Ef(n),n& ®o,1, forany f from the class Cz. Since C3 is a distribution
determining class (see Chap. 6), it remains to make use of Corollary 6.3.2.

We can strengthen the above assertion.

Theorem 8.5.2 For any x € R,
0\1/4
[P(gy <x)— ()| <c(L) ", (8.5.7)
where ¢ is an absolute constant.
Proof Take an arbitrary function & € C3, 0 < h <1, such that h(x) =1 for x <0

and A (x) =0 for x > 1, and put h3 = sup, |A”'(x)|. Then, for the function f(x) =
h((x —t)/e), we will have f3 =sup, | f”(x)| < h3/e>, and by Theorem 8.5.1

LY

P <) =Ef (&) <Ef(n)+ ar
PR LS L S Y S L
= n< & 683 = n< = 683 .

The last inequality holds since the maximum of the derivative of the normal distri-
bution function @ (1) = P(y < t) is equal to 1/+/27. Establishing in the same way
the converse inequality and putting & = (Lg)l/ 4. we arrive at (8.5.7). The theorem
is proved. g

The bound in Theorem 8.5.2 is, of course, not the best one. And yet inequality
(8.5.7) shows that we will have a good normal approximation for P(¢, < x) in the
large deviations range (i.e. for |x| — oco) as well—at least for those x for which

(1= (1x)) (L) = o (8.5.8)
as n — oo. Indeed, in that case, say, for x = |x| > 0,

‘M_%Mﬁ
o) |- 1-0)
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Since by L’Hospital’s rule

/2 g ~ #e*)‘z/z as x — 00,

1 o0
1— @ = —
) m/ ¢ N

(8.5.8) holds for |x| < c1,/—1In Lg with an appropriately chosen constant c.

In Chap. 20 we will obtain an extension of Theorems 8.5.1 and 8.5.2.

The problem of refinements and approximation rate bounds in the central limit
theorem and other limit theorems is one of the most important in probability theory,
because solving it will tell us how precise and efficient the applications of these
theorems to practical problems will be. First of all, one has to find the true order of
the decay of

Ay = sup|P({n <Xx)-— ¢(x)|

in n (or, say, in L3 in the case of non-identically distributed variables). There ex-
ist at least two approaches to finding sharp bounds for A,. The first one, the so-
called method of characteristic functions, is based on the unimprovable bound for
the closeness of the ch.f.s

2

t
Ingg, (1) + 5 <clLs

that the reader can obtain by him/herself, using Lemma 7.4.1 and somewhat modify-
ing the argument in the proof of Theorem 8.4.1. The principal technical difficulties
here are in deriving, using the inversion formula, the same order of smallness for A,,.

The second approach, the so-called method of compositions, has been illustrated
in the present section in Theorem 8.5.1 (the idea of the method is expressed, to a
certain extent, by relation (8.5.3)). It will be using just that method that we will
prove in Appendix 5 the following general result (Cramér—Berry—Esseen):

Theorem 8.5.3 If &, = (& — ax)/Bn, where & do not depend on n, then

sup|P(¢, < x) — @ (x)| < cLs,
X
where ¢ is an absolute constant.

In the case of identically distributed & the right-hand side of the above inequality
becomes ch/(a3ﬁ). It was established that in this case (27)~ 12 < ¢ < 0.4774,
while in the case of non-identically distributed summands ¢ < 0.5591.°

One should keep in mind that the above theorems and the bounds for the constant
¢ are universal and therefore hold under the most unfavourable conditions (from
the point of view of the approximation). In real problems, the convergence rate is
usually much better.

5See [33].
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8.6 The Law of Large Numbers and the Central Limit Theorem
in the Multivariate Case

In this section we assume that &; ,, ..., &, , are random vectors in the triangular
array scheme,

n
ESk,n =0, &n = kan
k=1

The law of large numbers ¢, £ 0 follows immediately from Theorem 8.3.1, if
we assume that the components of & , satisfy the conditions of that theorem. Thus
we can assume that Theorem 8.3.1 was formulated and proved for vectors.

Dealing with the central limit theorem is somewhat more complicated. Here we
will assume that E|§k’n|2 < 00, where |x|? = (x, x) is square of the norm of x. Let

n

2 . T 2. 2

ak,n T Egk,ngk»ﬂ’ Oy = Zak,n
k=1

(the superscript T denotes transposition, so that ékT ,, 18 @ column vector).
Introduce the condition

n
Y Emin(&, 1, 5al") > 0, s> 2, [D;]
k=1

and the Lindeberg condition

> E(&nl* 1enl > 1) = 0 [M;]

k=1

as n — oo for any t > 0. As in the univariate case, we can easily verify that condi-
tions [D>] and [M3] are equivalent provided that tr 0,12 = Z?:l (anz) jj <€ <oo.

Theorem 8.6.1 If 0> — o2, where o>

[D>] (or [M2)) is met, then

is a positive definite matrix, and condition

é‘n & d’oyaz.

Corollary 8.6.1 (“The conventional” central limit theorem) If &1,&2, ... is a se-
quence of independent identically distributed random vectors, E&, = 0, 0% =
E&l& and S, = Y"}_, & then, as n — oo,

Sn
Jn

S D) 2.
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This assertion is a consequence of Theorem 8.6.1, since the random variables
&x.n = & /+/n satisfy its conditions.

Proof of Theorem 8.6.1 Consider the characteristic functions

n
Gin(t) =B 50 g (1) :=Ee! 0 = [T a0
k=1

In order to prove the theorem we have to verify that, for any ¢, as n — oo,
L 57
©n(t) = exp —Eta th .
We make use of Theorem 8.4.1. We can interpret ¢y ,(¢) and ¢, (¢) as the ch.f.s

op ) =Eexp(iv],).  ¢f(v)=Eexp(ivg))

of the random variables Eken = (&k.n,9), C,? = (&n, 0), where 0 =t /|¢t]|, v = |¢]. Let

us show that the scalar random variables Ef’n satisfy the conditions of Theorem 8.4.1
(or Corollary 8.4.1) for the univariate case. Clearly,

n n
Egl, =0, Y E(,)° = E@n.0>=0026" > 065%" >0.
k=1 k=1

That condition [D5] is satisfied follows from the obvious inequalities
5 n n
En 07 = &0, < 1&al® D Eg(&,) <D Ega(&al).
k=1 k=1

where g>(x) = min(xz, |x|*), s > 2. Thus, for any v and @ (i.e., for any t), by Corol-
lary 8.4.1 of Theorem 8.4.1

1 1
on(t) = Eexp{ivg‘,‘?} — exp{ —EUZOUZGT} = exp{ —5t02tT }
The theorem is proved. O

Theorem 8.6.1 does not cover the case where the entries of the matrix o> grow
unboundedly or behave in such away that the rank of the limiting matrix o2 becomes
less than the dimension of the vectors & ,. This can happen when the variances of
different components of & , have different orders of decay (or growth). In such a
case, one should consider the transformed sums ¢, = ¢,0, ! instead of ¢,. Theo-
rem 8.6.1 is actually a consequence of the following more general assertion which,
in turn, follows from Theorem 8.6.1.

Theorem 8.6.2 If the random variables é‘,i 0= Ek,nU,,_l satisfy condition [D3] (or
[M2]) then ¢, & ®o, g, where E is the identity matrix.
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8.7 Integro-Local and Local Limit Theorems for Sums of
Identically Distributed Random Variables with Finite
Variance

Theorem 8.2.1 from Sect. 8.2 is called the integral limit theorem. To understand
the reasons for using such a name, one should compare this assertion with (more
accurate) limit theorems of another type, that describe the asymptotic behaviour of
the densities of the distributions of S, (if any) or the asymptotics of the probabilities
of sums S, hitting a fixed interval. It is natural to call the theorems for densities local
theorems. Theorems similar to Theorem 8.2.1 can be obtained from the local ones
(if the densities exist) by integrating, and it is natural to call them integral theorems.
Assertions about the asymptotics of the probabilities of S, hitting an interval are
“intermediate” between the local and integral theorems, and it is natural to call them
integro-local theorems. In the literature, such statements are often also referred to
as local, apparently because they describe the probability of the localisation of the
sum S, in a given interval.

8.7.1 Integro-Local Theorems

Integro-local theorems describe the asymptotics of
P(S, €[x,x + A))

as n — oo for a fixed A > 0. Probabilities of this type for increasing A (or for
A = 00) can clearly be obtained by summing the corresponding probabilities for
fixed A.

We will derive integro-local and local theorems with the inversion formulas from
Sect. 8.7.2.

For the sake of brevity, put

Ax)=[x,x+ A)

and denote by ¢ (x) = ¢ 1 (x) the density of the standard normal distribution. Below
we will restrict ourselves to the investigation of the sums S, =& + --- 4+ &, of

independent identically distributed random variables & 4 .

Theorem 8.7.1 (The Stone—Shepp integro-local theorem) Let & be a non-lattice
random variable, E€ = 0 and E£% = 62 < oo. Then, for any fixed A > 0, as
n— oo,

P(S, € Alx)) = UA—ﬁ ¢(Ux—ﬁ) + o(%) 8.7.1)

where the remainder term o(1/+/n) is uniform in x.
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Remark 8.7.1 Since relation (8.7.1) is valid for any fixed A, it will also be valid
when A = A,, — 0 slowly enough as n — oco. If A = A, grows then the asymp-
totics of P(S, € A[x)) can be obtained by summing the right-hand sides of (8.7.1)
for, say, A =1 (if A, — oo is integer-valued). Thus the integral theorem follows
from the integro-local one but not vice versa.

Remark 8.7.2 By virtue of the properties of densities (see Sect. 3.2), the right-hand
side of representation (8.7.1) has the same form as if the random variable ¢, =
Su/ (0 +/n) had the density ¢ (v) + o(1), although the existence of the density of S,
(or &) is not assumed in the theorem.

Proof of Theorem 8.7.1 First prove the theorem under the simplifying assumption
that condition
limsup|p(r)| <1 8.7.2)
[t]—o00
is satisfied (the Cramér condition on the ch.f.). Property 11 of ch.f.s (see Sect. 8.7.1)
implies that this condition is always met if the distribution of the sum S,,, for some
m > 1, has a positive absolutely continuous component. The proof of Theorem 8.7.1
in its general form is more complicated and will be given at the end of this section,
in Sect. 8.7.3.
In order to use the inversion formula (7.2.8), we employ the “smoothing method”
and consider, along with S, the sums

Zy = S+ 1s, (8.7.3)

where 15 € U_s 9. Since the ch.f. ¢, (¢) of the random variable s, being equal to
1— e—itS

—_—, 8.7.4
ité ( )

Dns (t ) =
possesses the property that the function ¢, (t)/t is integrable at infinity, for the
increments of the distribution function G, (x) of the random variable Z,, (its ch.f.
divided by ¢ is integrable, too) we can use formula (7.2.8):

1 —itx 1—e 4 n
Ga+2) = Gy() = P(Zy € A[0) = 5. / I g O 1) d

A / —ItX N\
=— [ e """ (®)e(t)dt, (8.7.5)
2

where 9(t) = @y, (1) @y, (1) (cf. (7.2.8)) is the ch.f. of the sum of independent random
variables ns and 7. We obtain that the difference G, (x + A) — G, (x), up to the
factor A, is nothing else but the value of the density of the random variable S, +
ns + 14 at the point x.

Split the integral on the right-hand side of (8.7.5) into the two subintegrals: one
over the domain |f| < y for some y < 1, and the other—over the complementary
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domain. Put x = v4/n and consider first

. 1 . u u
I :=/ eIV ()G dt = — e—'“”go”(—>a<—) du.
Itl<y V1 <y NZYARNN

Without loss of generality we can assume o = 1, and by (8.2.1) obtain that

t2
l—9(t) =+ +o( %),

2
Ing(t) = ln[l — (1 — (p(t))] = —% + o(t2) ast — 0. (8.7.6)

Hence

ne( = ——”—2+h 8.7.7)
”nﬁl)(ﬁ)— 5 n(u), (8.7.

where h, (1) — 0 for any fixed u as n — oco. Moreover, for y small enough, in the
domain |u| < y+/n we have

2
OIESS

so the right-hand side of (8.7.7) does not exceed —u?/3. Now we can rewrite /] in
the form

1 u? u
I =— expy —iuv — — +h,,(u)}g’5<—> du, (8.7.8)
: \/ﬁ lu|<y/n p{ 2 \/ﬁ

where |p(u//n)| <1 and @(u//n) — 1 for any fixed u as n — 0o. Therefore, by
virtue of the dominated convergence theorem,

2
Jnl — exp{—iuv - “7} du (8.7.9)

uniformly in v, since the integral on the right-hand side of (8.7.8) is uniformly con-
tinuous in v. But the integral on the right-hand side of (8.7.9) is simply (up to the
factor 1/(2m)) the result of applying the inversion formula to the ch.f. of the normal
distribution, so that

lim /il = V2w e V2, (8.7.10)

It remains to consider the integral

b ::/ e IV ()G (1) dt.
[t1>y
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By virtue of (8.7.2) and non-latticeness of the distribution of &,

q:=suple®)| <1 (8.7.11)
[t|>y

and therefore
|1 §q”f [o()|dt < q"c(A,8), lim Vnlb=0 (8.7.12)
lt|=y e

uniformly in v, where c(A, §) depends on A and § only. We have established that,
for x = v4/n, as n — oo, the relations

12 1
L+ = %ev2/2+0<ﬁ>,

_ —x2/(2n) L
P(Z, € Alx)) = WirTii +0(ﬁ>

hold uniformly in v (see (8.7.5)). This means that representation (8.7.13) holds uni-
formly for all x.
Further, by (8.7.3),

(8.7.13)

N

{Zyelx,x+A-8)} C{Sie A} C{Z,elx—8,x+ A)} (8.7.14)

and, so, in particular,

P(S, € ALx)) < A4S o~ (=8)2/@n) +0<L) _ A+ ) o—52/Cn) +0(L).
T V2mn NG 27 n

By (8.7.14) an analogous converse inequality also holds. Since § is arbitrary, this
is possible only if

P(S, € Alx)) = x/%f““’“ + 0(%) (8.7.15)

The theorem is proved. g

8.7.2 Local Theorems

If the distribution of S, has a density than we can obtain local theorems on the
asymptotics of this density.

Theorem 8.7.2 Let E£ =0, E£% = 6% < 00 and suppose there exists an m > 1
such that at least one of the following three conditions is met:

(a) the distribution of Sy, has a bounded density;
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(b) the distribution of S,,, has a density from Lo;
(c) the ch.f. ¢ (t) of the sum S, is integrable.

Then, for n > m, the distribution of the sum S, has density fs, (x) for which the
representation

1 x? 1
fs, (x) = NP exp{—zna2 } + 0(75) (8.7.16)

holds uniformly in x as n — oo.
Conditions (a)—(c) are equivalent to each other (possibly with different values

of m).

Proof We first establish the equivalence of (a)—(c). The fact that a bounded density
belongs to L, was proved in Sect. 7.2.3. Conversely, if f € Ly then

|f@* )| = ‘/f(u)f(t —u)du

1/2
< [/ fz(u)dux/fz(t—u)du:| :/fZ(u)du@o,

Hence the relationship fs,, € L, implies the boundedness of fs, , and thus (a) and
(b) are equivalent.

If ™ is integrable then by Theorem 7.2.2 the density fs, exists and is bounded.
Conversely, if fs, is bounded then fs, € L2, ¢s, € Ly and ¢s, € L1 (see
Sect. 8.7.2). This proves the equivalence of (a) and (c).

We will now prove (8.7.16). By the inversion formula (7.2.1),

1 .
fsn(x)zz—/e_”xw"(t)dt.
T

Here the integral on the right-hand side does not “qualitatively” differ from the
integral on the right-hand side of (8.7.5), we only have to put ¢(¢) = 1 in the part
I of the integral (8.7.5) (the integral over the set |¢| < y), and, in the part I, (over
the set |z| > ), to replace the integrable function @(z) with the integrable function
@™ (¢) and to replace the function ¢” (¢) with ¢" =™ (). After these changes the whole
argument in the proof of relation (8.7.13) remains valid, and therefore the same
relation (up to the factor A) will hold for

o= ool +o()

s, (x) = expy ——— ol — ).

2nno P 2no? Jn

The theorem is proved. O
Theorem 8.7.2 implies that the density f;, of the random variable ¢, = af}ﬁ

converges to the density ¢ of the standard normal law:

fe,(v) = ¢ (v)

uniformly in v as n — oo.
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For instance, the density of the uniform distribution over [—1, 1] satisfies the
conditions of this theorem, and hence the density of S, at the point x = vo./n
(02 = 1/3) will behave as a\/lzﬁ ev?/20%) (cf. the remark to Example 3.6.1).

In the arithmetic case, where the random variable £ is integer-valued and the
greatest common divisor of all possible values of & equals 1 (see Sect. 7.1), it is the
asymptotics of the probabilities P(S, = x) for integer x that become the subject of

interest for local theorems. In this case we cannot assume without loss of generality
that E€ = 0.

Theorem 8.7.3 (Gnedenko) LetE& =a, E£2 =02 < 00 and & have an arithmetic
distribution. Then, uniformly over all integers x, as n — 00,

P(S, = x) = exp{(x_a")2}+o<i> (8.7.17)
" 2rno 2n0? vn) o

Proof When proving limit theorems for arithmetic &, it is more convenient to use
the generating functions (see Sects. 7.1, 7.7)

P =p:):=EF, [z]=1,

so that p(e'’) = (), where ¢ is the ch.f. of £.
In this case the inversion formulas take the following form (see (7.2.10)): for
integer x,

2mwi

P(E =x) = i/ 7 p(2)dz,
lz|=1

T

1 1 .
P(S,=x) = —/ TN dr = — e " () dt.
2mi lzl=1 2 7

As in the proof of Theorem 8.7.1, here we split the integral on the right-hand side
into two subintegrals: over the domain |¢| < y and over the complementary set. The
treatment of the first subintegral

I= f TG (1) di = f e ()] di
[tl<y ltl<y

for y = x — an differs from the considerations for /; in Theorem 8.7.1 only in that
it is simpler and yields (see (8.7.10))

/ V2 y? N 1
= expy — ol — ).
N Pl 2702 N
Similarly, the treatment of the second subintegral differs from that of 7, in Theo-
rem 8.7.1 in that it becomes simpler, since the range of integration here is compact
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and on that one has

lo()| <q(y) <1 (8.7.18)

Therefore, as in Theorem 8.7.1,

_ (L N 7 1
Iz_O(ﬁ)’ P(S,,_x)_maexp{ 2n02}+0(ﬁ>'

The theorem is proved. O

Evidently, for the values of y of order \/n Theorem 8.7.3 is a generalisation of
the local limit theorem for the Bernoulli scheme (see Corollary 5.2.1).

8.7.3 The Proof of Theorem 8.7.1 in the General Case

To prove Theorem 8.7.1 in the general case we will use the same approach as in
Sect. 7.1. We will again employ the smoothing method, but now, when specifying
the random variable Z, in (8.7.3), we will take 67 instead of ns, where 8 = const,
n is a random variable with the ch.f. from Example 7.2.1 (see the end of Sect. 7.2)
equal to

o IL—t], [t <1,
1) =
én 0, > 1,

so that for Z,, = S, + 0n, similarly to (8.7.5), we have

A —itx n
P(Z, € Alx)) = Efmd e Q" (1), (1) oy (1) dt, (8.7.19)

2

where ¢g, (1) = max(0, 1 — 6[t|). As in Sect. 8.7.1, split the integral on the right-
hand side of (8.7.19) into two subintegrals: /1 over the domain |¢| < y and I> over
the domain y < |¢| < 1/6. The asymptotic behaviour of these integrals is investi-
gated in almost the same way as in Sect. 8.7.1, but is somewhat simpler, since the
domain of integration in I is compact, and so, by the non-latticeness of &, one has
on it the upper bound

g:= sup |o(0)|<1 (8.7.20)
y<lt|=1/0

Therefore, to bound I, we no longer need condition (8.7.2).
Thus we have established, as above, relation (8.7.13).
To derive from this fact the required relation (8.7.15) we will need the following.

Lemma 8.7.1 Let f(y) be a bounded uniformly continuous function, n an arbitrary
proper random variable independent of S, and b(n) — oo as n — oo. If, for any
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fixed A >0 and 6 >0, as n - oo, we have

A X
P(Sn—i—GnGA[x)):%[f(%) +0(1):|, (8.7.21)
then
A X
P(S, € Alx)) = M[f<%> —|—0(1)]. (8.7.22)

In this assertion we can take S, to be any sequence of random variables satisfying
(8.7.21). In this section we will set b(n) to be equal to /7, but later (see the proof
of Theorem A7.2.1 in Appendix 7) we will need some other sequences as well.

Proof Put 6 := 82 A, where 8 > 0 will be chosen later, AL:=(14286)A, ALlx) :=
[x,x 4+ A1) and fy :=max f(y). We first obtain an upper bound for P(S,, € A[x)).
We have
P(Z, € Aplx — A8)) = P(Z, € Aylx — AS); In| < 1/8).
On the event |n| < 1/6 one has —§ A < 6n < § A, and hence on this event
{Zhe ALlx — A8)} D {S, € Alx)}.
Thus, by independence of n and S,,,
P(Z,, € Aylx — A(S)) > P(Sn € Alx); In] < 1/8) = P(S,, € A[x))(l — h(ﬁ)),

where h(8) :=P(|n| > 1/§) — 0 as § — 0. By condition (8.7.21) and the uniform
integrability of f we obtain

P(S, € Alx)) < P(Z, € Aylx — 48)) (1 — h(8)) ™

A X 25Afo 1 .
= [b(n) f(b(n))+ b(n) +0<b(n)>}(1—h(8)) .

(8.7.23)

If, for a given ¢ > 0, we choose § > 0 such that
_ A
(1—h@) ' =1+ 2=,

then we derive from (8.7.23) that, for all n large enough and & small enough,

A X
P(S, € Alx)) < ) (f(W> + s). (8.7.24)
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This implies, in particular, that for all x,

A
P(S, € Alx)) < m(fo +e). (8.7.25)

Now we will obtain a lower bound for P(S,, € A[x)). For the event
A:={Z, € A_[x + A8)}
we have
P(A) =P(A; [n] < 1/8) +P(A; In| = 1/5). (8.7.26)
On the event |n| < 1/6 we have
{ZheA_lx+ A8} C{Sh e Alx)}.
and hence
P(A; In] < 1/8) < P(S,, € A[x)). (8.7.27)
Further, by independence of 1 and S,, and inequality (8.7.25),
P(A;n| = 1/8) =E[P(A | n); [ = 1/5]
E[P(S, € A_[x +60n+ AS) | n); In| = 1/8]
n

A

= m(fo +&)h(d).

Therefore, combining (8.7.26), (8.7.27) and (8.7.21), we get

A x 28 Af) 1 A
P(S: € A) = o5 (b(n)) ") +0<b(n>> " pn o)

In addition, choosing § such that
£ £
h(s -, 28 -,
foh(d) < 3 fo < 3

we obtain that, for all n large enough and ¢ small enough,

A X
P(S,eA > — — ) —€). 8.7.28
(50 c a0 =551 (555) ) (8728
Since ¢ is arbitrarily small, inequalities (8.7.24) and (8.7.28) prove the required
relation (8.7.22). The lemma is proved. O

To prove the theorem it remains to apply Lemma 8.7.1 in the case (see (8.7.13))
where f = ¢ and b(n) = /n. Theorem 8.7.1 is proved. U
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8.7.4 Uniform Versions of Theorems 8.7.1-8.7.3 for Random
Variables Depending on a Parameter

In the next chapter, we will need uniform versions of Theorems 8.7.1-8.7.3, where
the summands &; depend on a parameter A. Denote such summands by &, the
corresponding distributions by F;,, and put

n
Soon = ZS(x)k,

k=1

where &) are independent copies of £;) & F(;). If A is only determined by the
number of summands n then we will be dealing with the triangular array scheme
considered in Sects. 8.3-8.6 (the summands there were denoted by & ). In the
general case we will take the segment [0, A1] for some A; > 0 as the parametric set,
keeping in mind that A € [0, A1] may depend on n (in the triangular array scheme
one can put A = 1/n).

We will be interested in what conditions must be imposed on a family of dis-
tributions F(;) for the assertions of Theorems 8.7.1-8.7.3 to hold uniformly in
A € [0, A1]. We introduce the following notation:

a(r) =E&p), o) = Var(§:)), o) = Ee'fs»

The next assertion is an analogue of Theorem 8.7.1.

Theorem 8.7.1A Let the distributions F(yy satisfy the following properties: 0 <
o1 <0 (L) <oy < 00, where a1 and o2 do not depend on \:

(a) the relation

2
Qo) (1) — 1 —ia(W)t + ! mzz(x) =o(?). my(1):=E&},, (8.7.29)

holds uniformly in ) € [0, A1] as t — 0, i.e. there exist a ty > 0 and a function
e() — 0 as t — 0, independent of X, such that, for all |t| < ty, the absolute
value of the left-hand side of (8.7.29) does not exceed &(t)t*;

(b) for any fixed 0 < 01 < 6 < o0,

qoy = sup |ep®|<q <1, (8.7.30)

01 <|t|<6>

where q does not depend on A.

Then, for each fixed A > 0,

P(Soyn —na(r) € Alx)) = (8.7.31)

a(xfﬁ‘p(a(;;ﬁ) +°<%)’

where the remainder term o(1/+/n) is uniform in x and A € [0, A1].
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Proof Going through the proof of Theorem 8.7.1 in its general form (see Sect. 7.3),
we see that, to ensure the validity of all the proofs of the intermediate assertions in
their uniform forms, it suffices to have uniformity in the following two places:

(a) the uniformity in A of the estimate o(t?) as t — 0 in relation (8.7.6) for the
expansion of the ch.f. of the random variable £ = g(’\%f)(l);
(b) the uniformity in relation (8.7.20) for the same ch.f.

We verify the uniformity in (8.7.6). For ¢(t) = E '8 we have by (8.7.29)

ita(})
1 = In
neO =" ((M)

t2(ma(h) — a* (1))
) +of

where the remainder term is uniform in A.
The uniformity in relation (8.7.20) clearly follows from condition b), since o (1)
is uniformly separated from both 0 and co. The theorem is proved. g

Remark 8.7.3 Conditions (a) and (b) of Theorem 8.7.1A are essential for (8.7.31)
to hold. To see this, consider random variables & and n with fixed distributions,
Et =En=0and E£>2 =En”> = 1. Let A € [0, 1] and the random variable &) be
defined by

3 with probability 1 — A
&G 0 (8.7.32)

with probability A,

so that E£;) =0 and Var(§(,)) =2 — A (in the case of the triangular array scheme
one can put A = 1/n). Then, under the obvious notational conventions, for A = 2,
t — 0, we have

t 312 "o
Yoy () =1 — Ve (1) + W’n(ﬁ) =1- > +o(t ) +t7pn(1).
This implies that (8.7.29) does not hold and hence condition a) is not met for the
values of X in the vicinity of zero. At the same time, the uniform versions of relation
(8.7.31) and the central limit theorem will fail to hold. Indeed, putting A = 1/n, we
obtain the triangular array scheme, in which the number v,, of the summands of the
form 7; /+/ in the sum Sy, = Y 1, £ converges in distribution to v € II; and

k

,  where Hy = Z ;.
i=1

1 S i Sn—v" + an
Jn2—n) T =1 J2=1/n

The first term on the right-hand side weakly converges in distribution to ¢ € @012,
while the second term converges to H,/+/2. Clearly, the sum of these independent
summands is, generally speaking, not distributed normally with parameters (0, 1).
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To see that condition (b) is also essential, consider an arithmetic random variable
& with E€ =0 and Var(¢) = 1, take n to be a random variable with the uniform
distribution U_; 1, and put

foy & with probability 1 — A,

®=1%  with probability 2.
Here the random variable &(;) is non-lattice (its distribution has an absolutely con-
tinuous component), but

©o)2r) = (1 = 1) + Ap,(2m), qoy =1-2x.

Again putting A = 1/n, we get the triangular array scheme for which condition (b)
is not met. Relation (8.7.31) does not hold either, since, in the previous notation, the
sum S, is integer-valued with probability P(v, =0) = e~ !, so that its distribution
will have atoms at integer points with probabilities comparable, by Theorem 8.7.3,
with the right-hand side of (8.7.31). This clearly contradicts (8.7.31).

If we put A = 1/n? then the sum Sayn will be integer-valued with probability
(1 —1/n?)" — 1, and the failure of relation (8.7.31) becomes even more evident.

Uniform versions of the local Theorems 8.7.2 and 8.7.3 are established in a com-
pletely analogous way.

Theorem 8.7.2A Let the distributions ¥ ;) satisfy the conditions of Theorem 8.7.1A
with 0, = 0o and the conditions of Theorem 8.7.2, in which conditions (a)—(c) are
understood in the uniform sense (i.e., maxy fS(A)m (x) or the norm of mem in Ly or
f |¢f’i) ()| dt are bounded uniformly in A € [0, A1]).

Then representation (8.7.16) holds for fs;,, (x) uniformly in x and X, provided
that on its right-hand side we replace o by o (A).

Proof The conditions of Theorem 8.7.2A are such that they enable one to obtain
the proof of the uniform version without any noticeable changes in the arguments
proving Theorems 8.7.1A and 8.7.2. g

The following assertion is established in the same way.

Theorem 8.7.3A Let the arithmetic distributions ¥, satisfy the conditions of The-
orem 8.7.1A for 0, = . Then representation (8.7.17) holds uniformly in x and A,
provided that a and o on its right-hand side are replaced with a(A) and o (L), re-
spectively.

Remark 8.7.3 applies to Theorems 8.7.2A and 8.7.3A as well.

8.8 Convergence to Other Limiting Laws

As we saw in previous sections, the normal law occupies a special place among all
distributions—it is the limiting law for normed sums of arbitrary distributed random
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variables. There arises the natural question of whether there exist any other limiting
laws for sums of independent random variables.

It is clear from the proof of Theorem 8.2.1 for identically distributed random
variables that the character of the limiting law is determined by the behaviour of the
ch.f. of the summands in the vicinity of 0. If E€ = 0 and E£2 = 02 = —¢” (0) exist,

then
1 ¢" (0)t? 1
— =1 -,
4 ( ﬁ) + 2n +o n

and this determines the asymptotic behaviour of the ch.f. of S,/./n, equal to
@" (t4/n), which leads to the normal limiting law. Therefore, if one is looking for
different limiting laws for the sums S, = &; + --- + &, it is necessary to renounce
the condition that the variance is finite or, which is the same, that ¢”(0) exists. In
this case, however, we will have to impose some conditions on the regular variation
of the functions Fy(x) =P(£ > x) and/or F_(x) =P(£ < —x) as x — oo, which
we will call the right and the left tail of the distribution of &, respectively. We will
need the following concepts.

Definition 8.8.1 A positive (Lebesgue) measurable function L(t) is called a slowly
varying function (s.v.f.) as t — o0, if, for any fixed v > 0,

L(vt)

L(t)

—1 ast— oo. (8.8.1)

A function V (¢) is called a regularly varying function (r.v.f.) (of index —p) as t —
oo if it can be represented as

Vi)=1"PL@), (8.8.2)
where L(t) is an s.v.f. as t — oo.

One can easily see that, similarly to (8.8.1), the characteristic property of regu-
larly varying functions is the convergence
V (vt) _p
— v
V()

ast — o0 (8.8.3)

for any fixed v > 0. Thus an s.v.f. is an r.v.f. of index zero.

Among typical representatives the class of s.v.f.s are the logarithmic function and
its powers In” ¢, y € R, linear combinations thereof, multiple logarithms, functions
with the property that L(t) — L = const # 0 as t — oo etc. As an example of a
bounded oscillating s.v.f. we mention

Lo(t) =2 +ssin(Inlnz), > 1.

The main properties of r.v.f.s are given in Appendix 6.
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As has already been noted, for S, /b(n) to converge to a “nondegenerate” limiting
law under a suitable normalisation b(n), we will have to impose conditions on the
regular variation of the distribution tails of £. More precisely, we will need a regular
variation of the “two-sided tail”

Fo(t) = F_(t) + F1.(1) =P(§ ¢ [—1,1)).

We will assume that the following condition is satisfied for some 8 € (0, 2],
pel[—1,1]

[Rg, o] The two-sided tail Fo(x) = F_(x) + Fi(x) is anr.v.f. as x — oo, i.e. it
can be represented as

Fo(x) =t"PLR,(x), B€(0,2], (8.8.4)
where L, (x) is an s.v.f., and the following limit exists

py = lim Fy(x)
TS0 Fy(x)

e [0, 1], 0 :=2p4— 1. (8.8.5)

If p;+ > 0, then clearly the right tail F (x) is an r.v.f. like Fy(x), i.e. it can be
represented as

Fy(x)=V(x):=x"L(x), Be(02], L&)~ pyLrx).

(Here, and likewise in Appendix 6, we use the symbol V to denote an r.v.f.) If
o+ = 0, then the right tail F (x) = o(Fp(x)) is not assumed to be regularly varying.
Relation (8.8.5) implies that the following limit also exists

. F_(x)
p— = lim =
=00 Fo(x)

— P+

If p— > 0, then, similarly to the case of the right tail, the left tail F_(x) can be
represented as

F x)=W@) :=xPLwkx), Be(02], Lwx)~p_Lgx).

If p— =0, then the left tail F_(x) = o(Fp(x)) is not assumed to be regularly varying.
The parameters p- are related to the parameter p in the notation [Rg ,] through
the equalities

p=p+—p-=2py—1e[-11].
Clearly, in the case 8 < 2 we have E£ 2 — 00, so that the representation
2 2

<p(t)=1—tTa+o(lz) ast — 0

no longer holds, and the central limit theorem is not applicable. If E£ exists and is
finite then everywhere in what follows it will be assumed without loss of generality
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that

E& =0.

Since Fy(x) is non-increasing, there always exists the “generalised” inverse function
Fo(_l) (1) understood as

FS V) = inf{x : Fo(x) <ul.

If the function Fy is strictly monotone and continuous then b = Fé_l)(u) is the
unique solution to the equation

Fob)=u, wue(@,1).

Set
Sn
Cn = b(n)’
wherein the case 8 > 2 we define the normalising factor b(n) by
b(n):= F{"(1/n). (8.8.6)
For 8 =2 put
b(n):=Y"V/n), (8.8.7)
where

Y (x) :=2x*2/0 yFo(y)dy=2sz0 yF+(y)dy+/0 yF—(y)dy}
= x?E(£% —x <& <x) =x 2Ly (x), (8.8.8)

Ly is an s.v.f. (see Theorem A6.2.1(iv) in Appendix 6). It follows from Theo-
rem A6.2.1(v) in Appendix 6 that, under condition (8.8.4), we have

bn)=n""PL,(n), B <2,

where L is an s.v.f.
‘We introduce the functions

vz(x)=/0 V(y)dy, V’(x)=/ V() dy.

8.8.1 The Integral Theorem

Theorem 8.8.1 Let condition [Rg, ] be satisfied. Then the following assertions hold
true.
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(i) For B €(0,2), B # 1 and the normalising factor (8.8.6), as n — o0,
o= 8P, (8.8.9)

The distribution Fg ,of the random variable ¢ B:P) depends on parameters B
and p only and has a ch.f. 9#-P) (1), given by

PP (1) = Eeitt"” — exp{|t|ﬂB(/3, 0, 19)}, (8.8.10)

where ¥ =signt,

pr ﬂ”} 8.8.11)

BB,p,0)=T(1—-p8) [i,oz? sinT —cos -

and, for B € (1,2),weput '(1 —B)=TQ2—B)/(1 — ).
(i) When B =1, for the sequence &, with the normalising factor (8.8.6) to con-

verge to a limiting law, the former, generally speaking, needs to be centred.
More precisely, as n — 00, the following convergence takes place:

Gy — An= ¢, (8.8.12)
where
n
An = s Vibm) = Wi (b)) = p . (8.8.13)
C =~ 0.5772 is the Euler constant, and
. . t
o) (1) =Eet " = exp{—¥ —iptInl| } (8.8.14)

If n[Vi(b(n)) — Wi (b(n))] = o(b(n)), then p =0 and we can put A, = 0.
If E& exists and equals zero then

n

= %[Wl(b(n)) —vi(bm)]-pcC.

n

IfEE =0 and p #0 then pA, > —00 asn — o0.
(iii) For B =2 and the normalising factor (8.8.7), as n — oo,

L= 30 920y =R =2,
so that £ %P) has the standard normal distribution that is independent of p.

The Proof of Theorem 8.8.1 is based on the same considerations as the proof of
Theorem 8.2.1, i.e. on using the asymptotic behaviour of the ch.f. ¢(¢) in the vicinity
of zero. But here it will be somewhat more difficult from the technical viewpoint.
This is why the proof of Theorem 8.8.1 appears in Appendix 7. g
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Remark 8.8.1 The last assertion of the theorem (for § = 2) shows that the limiting
distribution may be normal even in the case of infinite variance of £.

Besides with the normal distribution, we also note “extreme” limit distributions,
corresponding to the p = &1 where the ch.f. 9% (or the respective Laplace trans-

form) takes a very simple form. Let, for example, p = —1. Since ¢/™”/? = ¢, then,
for B # 1,2,
.. Bro Jo¥ 4%
B(B,—1,9)=—-I'(1—pB)|isin —i—cosT

=—I'(1-B)eP™2 =—ra—p)iv)”,
0P =V(1) = exp{-I' (1 — B},
E" ™ —exp{—I(1-B)Af}, Rer=0.

Similarly, for 8 = 1, by (8.8.14) and the equalities —% =i @ =ilni?Y we have

(a,-1 Tt o . o
Ing' "V (t) = — +itln|t| =itlnid +itln|t| =it Init,
Ee" ™" —exp{Alni), Rei>0.
A similar formula is valid for p = 1.

Remark 8.8.2 If B < 2, then by virtue of the properties of s.v.f.s (see Theo-
rem A6.2.1(iv) in Appendix 6), as x — o0,

xz_ﬂLpo(x) = szo(x).

2-B 2-B

Therefore, for 8 < 2, we have Y (x) ~2(2 — ,B)_lFo(x),

— 1/8
()62 e

(cf. (8.8.6)). On the other hand, for 8 =2 and o2 := E&2 < 0o one has

X X
/0 yFo(y)dy =/0 Y PLR(y)dy ~

Y)~x"20% b)) =YV (1/n) ~ Jon.

Thus normalisation (8.8.7) is “transitional” from normalisation (8.8.6) (up to the
constant factor (2/(2 — ,3))1/ ) to the standard normalisation o+/n in the cen-
tral limit theorem in the case where E£2 < oo. This also means that normalisa-
tion (8.8.7) is “universal” and can be used for all 8 < 2 (as it is done in many
textbooks on probability theory). However, as we will see below, in the case 8 < 2
normalisation (8.8.6) is easier and simpler to deal with, and therefore we will use
that scaling.
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Recall that Fg , denotes the distribution of the random variable ¢#:P) The pa-
rameter § takes values in the interval (0, 2], the parameter p = p4+ — p— can assume
any value from [—1, 1]. The role of the parameters 8 and p will be clarified below.

Theorem 8.8.1 implies that each of the laws Fg ,,0 < S <2and -1 <p <1is
limiting for the distributions of suitably normalised sums of independent identically
distributed random variables. It follows from the law of large numbers that the de-
generate distribution I, concentrated at the point a is also a limiting one. Denote the
set of all such distributions by &¢. Furthermore, it is not hard to see that if F is a dis-
tribution from the class &g then the law that differs from F by scaling and shifting,
i.e. the distribution Fy, ;) defined, for some fixed b > 0 and a, by the relation

B—a

Fia.p)(B) ::F(%), where ={ueR:ub+ac€ B},
is also limiting for the distributions of sums of random variables (S, — a,)/b, as
n — oo for appropriate {a,} and {b,}.

It turns out that the class of distributions G obtained by the above extension from
S exhausts all the limiting laws for sums of identically distributed independent
random variables.

Another characterisation of the class of limiting laws & is also possible.

Definition 8.8.2 We call a distribution F stable if, for any ay, as, by > 0, by > 0,
there exist a and b > 0 such that

Fia,01) * Flay by) = Fla by

This definition means that the convolution of a stable distribution F with itself
again yields the same distribution F, up to a scaling and shift (or, which is the
same, for independent random variables & & F we have (§; + & —a)/b € F for
appropriate a and b).

In terms of the ch.f. ¢, the stability property has the following form: for any
b1 > 0 and by > 0, there exist a and b > 0 such that

o(th)p(thy) = ¢"p(th), teR. (8.8.15)

Denote the class of all stable laws by G5. The remarkable fact is that the class of all
limiting laws & (for (S, — an) /b, for some a, and b,) and the class of all stable
laws &5 coincide.

If, under a suitable normalisation, as n — 00,

&= 00,

then one says that the distribution F of the summands & belongs to the domain of
attraction of the stable law Fg ,.

Theorem 8.8.1 means that, if F satisfies condition [Rg ,], then F belongs to the
domain of attraction of the stable law Fg ,.
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One can prove the converse assertion (see e.g. Chap. XVIIL, § 5 in [30]): if F
belongs to the domain of attraction of a stable law Fg , for 8 < 2, then [Rg ,] is
satisfied.

As for the role of the parameters 8 and p, note the following. The parameter
characterises the rate of convergence to zero as x — oo for the functions

Fgp—(x):=Fg ,((—00,—x)) and Fg, 4 (x):=Fp ,([x,00)).
One can prove that, for p4 > 0, as t — o0,

Fgp+(t)~ppt™F, (8.8.16)

and, for p_ > 0, as t — o0,
Fgp—(t)~p_tF. (8.8.17)

Note that, for & € Fg, ,, the asymptotic relations in Theorem 8.8.1 turn into pre-
cise equalities provided that we replace in them b(n) with b, :=n'/# . In particular,

P(Z—n > t> =Fg, (). (8.8.18)

n

This follows from the fact that [¢#-#) (¢ /b,)]" coincides with ¢ #-?) (1) (see (8.8.10))
and hence the distribution of the normalised sum S,, /b, coincides with the distribu-
tion of the random variable &.

The parameter p taking values in [—1, 1] is the measure of asymmetry of the dis-
tribution Fg . If, for instance, p = 1 (o— = 0), then, for 8 < 1, the distribution Fg ;
is concentrated entirely on the positive half-line. This is evident from the fact that in
this case Fg 1 can be considered as the limiting distribution for the normalised sums
of independent identically distributed random variables & > 0 (with F_(0) = 0).
Since all the prelimit distributions are concentrated on the positive half-line, so is
the limiting distribution.

Similarly, for p = —1 and 8 < 1, the distribution Fg 1 is entirely concentrated
on the negative half-line. For p =0 (o4 = p— = 1/2) the ch.f. of the distribution
Fg o will be real, and the distribution Fg  itself is symmetric.

As we saw above, the ch.f.s ¢#+#) (1) of stable laws F , admit closed-form rep-
resentations. They are clearly integrable over R, and the same is true for the func-
tions 5@ -2 (1) for any k > 1. Therefore all the stable distributions have densities
that are differentiable arbitrarily many times (see e.g. the inversion formula (7.2.1)).
As for explicit forms of these densities, they are only known for a few laws. Among
them are:
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1. The normal law F; , (which does not depend on p).

2. The Cauchy distribution Fy o with density 2/(r2 4 4x2), —00 < x < 00. Scal-
ing the x-axis with a factor of 77 /2 transforms this density into the form 1/7 (14 x2)
corresponding to Ko ;.

3. The Lévy distribution. This law can be obtained from the explicit form for
the distribution of the maximum of the Wiener process. This will be the distribution
F1/2,1 with parameters 1/2, 1 and density (up to scaling; cf. (8.8.16))

—/@) x50

(this density has a first hitting time of level 1 by the standard Wiener process, see
Theorem 19.2.2).

8.8.2 The Integro-Local and Local Theorems

Under the conditions of this section we can also obtain integro-local and local the-
orems in the same way as in Sect. 8.7 in the case of convergence to the normal law.
As in Sect. 8.7, integro-local theorems deal here with the asymptotics of

P(Sn eA[x)), Alx)=[x,x+ A)

as n — oo for a fixed A > 0.

As we can see from Theorem 8.8.1, the ch.f. (p(ﬂ’p) (t) of the stable law Fg , is
integrable, and hence, by the inversion formula, there exists a uniformly continuous
density £ of the distribution Fg ;. (As has already been noted, it is not difficult
to show that f(#:#) is differentiable arbitrarily many times, see Sect. 7.2.)

Theorem 8.8.2 (The Stone integro-local theorem) Let & be a non-lattice random
variable and the conditions of Theorem 8.8.1 be met. Then, for any fixed A > 0, as
n— oo,

_ 4 w,p)(L) (L)
P(S, € Alx)) = b(n)f b +o o0 ) (8.8.19)

where the remainder term o(ﬁ) is uniform over x.
If B =1 and E|&| does not exist then, on the right-hand side of (8.8.20), we must
replace f(ﬁ’p)(ﬁ) with f(ﬂ’p)(ﬁ — Ay), where A, is defined in (8.8.13).

All the remarks to the integro-local Theorem 8.7.1 hold true here as well, with
evident changes.

If the distribution of S, has a density then we can find the asymptotics of that
density.
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Theorem 8.8.3 Let there exist an m > 1 such that at least one of conditions (a)—(c)
of Theorem 8.7.2 is satisfied. Moreover, let the conditions of Theorem 8.8.1 be met.
Then for the density fs, (x) of the distribution of S,, one has the representation

1 X 1
— B~ -
fs,(x) = D) <b(n)) + 0<b(n)) (8.8.20)

which holds uniformly in x as n — oo.
If B =1 and E|&| does not exist then, on the right-hand side of (8.8.20), we must
replace f(ﬁ’p)(ﬁ) with f(ﬁ’p)(ﬁ — Ay), where A, is defined in (8.8.13).

The assertion of Theorem 8.8.3 can be rewritten for ¢, = % — A, as

fr, () = fPP ()

for any v as n — oo.
For integer-valued & the following theorem holds true.

Theorem 8.8.4 Let the distribution of & be arithmetic and the conditions of Theo-
rem 8.8.1 be met. Then, uniformly for all integers x, as n — 00,

P(S, —x) = —— f(ﬁ’/”<x — a”) +0(L) (8.8.21)
b(n) b(n) vn)’

where a = E& if E|&| exists and a = 0 if E|&| does not exist, B # 1. If B =1
and E|&| does not exist then, on the right-hand side of (8.8.21), we must replace

f(ﬂ’p)(%) with f(ﬂ.,p)(bzfn) — Ap).

The proofs of Theorems 8.8.2-8.8.4 mostly repeat those of Theorems 8.7.1-8.7.3
and can be found in Appendix 7.

8.8.3 An Example

In conclusion we will consider an example.

In Sect. 12.8 we will see that in the fair game considered in Example 4.2.3 the
ruin time 7(z) of a gambler with an initial capital of z units satisfies the relation
P(1(z) > n) ~ z4/2/7n as n — oo. In particular, for z =1,

P(n(1) > n) ~ y/2/7n. (8.8.22)

It is not hard to see (for more detail, see also Chap. 12) that 1(z) has the same
distribution as 71 + 12 + - - - +n;, where n; are independent and distributed as n(1).
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Thus for studying the distribution of n(z) when z is large, by virtue of (8.8.22), one
can make use of Theorem 8.8.4 (with 8 = 1/2, b(n) = 2n?/), by which

lim P(Z””2(x) < x) = Fi/0.1(x) (8.8.23)

7—00 z

is the Lévy stable law with parameters § = 1/2 and p = 1. Moreover, for integer x

and z — 00,
1
P(n(2) =x) = 22f“/“)(22>+ (—Zz).

These assertions enable one to obtain the limiting distribution for the number of
crossings of an arbitrary strip [u, v] by the trajectory Sy, ..., S, in the case where

P =-D=PEG=-1)=1/2.

Indeed, let for simplicity u = 0. By the first positive crossing of the strip [0, v] we
will mean the Markov time

N4 :=min{k : Sy = v}.
The first negative crossing of the strip is then defined as the time 14 + 1, where
n— :=min{k : Sy, 4x =0}.

The time n; = n4+ + n— will also be the time of the “double crossing” of [0, v]. The
variables 7+ are distributed as n(v) and are independent, so that 7 has the same
distribution as n(2v). The variable Hy = n1(2v) + - - - + nx(2v), where n; (2v) have
the same distribution as n(2v) and are independent, is the time of the k-th double
crossing. Therefore

v(n) :=max{k: Hy <n}=min{k : Hy > n} — 1

is the number of double crossings of the strip [0, v] by time n. Now we can prove
the following assertion:

nli)n;()P(% >x) Fijo. (#) (8.8.24)

To prove it, we will make use of the following relation (which will play, in its
more general form, an important role in Chap. 10):

{v(n) =k} ={Hi <n},

where Hj is distributed as n(2vk). If n /k2 — s% as n — oo, then by virtue of

(8.8.23)
27 Hy 2nn ws?
P(H, <n) =P % < "
(He =n) ((2vk)2 = (2vk)2) ‘/2‘(2v2)’
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and therefore
v(n) T
P(ﬁ > x) = P(v(n) > xﬁ) = P(HLxﬁJ <n)— Fip,1 <m>

(Here for k = |x+/n] one has n/k* — s> = 1/x%.) Relation (8.8.24) is proved. [J

Assertion (8.8.24) will clearly remain true for the number of crossings of the
strip [u, v], u # 0; one just has to replace v with v — u on the right-hand side of
(8.8.24). It is also clear that (8.8.24) enables one to find the limiting distribution of
the number of “simple” (not double) crossings of [u, v] since the latter is equal to
2v(n) or 2v(n)+1.



Chapter 9
Large Deviation Probabilities for Sums
of Independent Random Variables

Abstract The material presented in this chapter is unique to the present text. After
an introductory discussion of the concept and importance of large deviation prob-
abilities, Cramér’s condition is introduced and the main properties of the Cramér
and Laplace transforms are discussed in Sect. 9.1. A separate subsection is devoted
to an in-depth analysis of the key properties of the large deviation rate function,
followed by Sect. 9.2 establishing the fundamental relationship between large devi-
ation probabilities for sums of random variables and those for sums of their Cramér
transforms, and discussing the probabilistic meaning of the rate function. Then the
logarithmic Large Deviations Principle is established. Section 9.3 presents integro-
local, integral and local theorems on the exact asymptotic behaviour of the large
deviation probabilities in the so-called Cramér range of deviations. Section 9.4 is de-
voted to analysing various types of the asymptotic behaviours of the large deviation
probabilities for deviations at the boundary of the Cramér range that emerge under
different assumptions on the distributions of the random summands. In Sect. 9.5,
the behaviour of the large deviation probabilities is found in the case of heavy-tailed
distributions, namely, when the distributions tails are regularly varying at infinity.
These results are used in Sect. 9.6 to find the asymptotics of the large deviation
probabilities beyond the Cramér range of deviations, under special assumptions on
the distribution tails of the summands.

Let &€,&1, &, ... be a sequence of independent identically distributed random vari-
ables,

n
E&, =0, Etl =02 < o0, Su=) &.
k=1

Suppose that we have to evaluate the probability P(S, > x). If x ~ v/n as n — o0,
v = const, then by the integral limit theorem

P(S, > x)~ 1 —cp(§> 9.0.1)

as n — oo. But if x > /i, then the integral limit theorem enables one only to
conclude that P(S, > x) — 0 as n — oo, which in fact contains no quantitative
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information on the probability we are after. Essentially the same can happen for
fixed but “relatively” large values of v/o. For example, for v/o > 3 and the values
of n around 100, the relative accuracy of the approximation in (9.0.1) becomes, gen-
erally speaking, bad (the true value of the left-hand side can be several times greater
or smaller than that of the right-hand side). Studying the asymptotic behaviour of
P(S, > x) for x > /n as n — oo, which is not known to us yet, could fill these
gaps. This problem is highly relevant since questions of just this kind arise in many
problems of mathematical statistics, insurance theory, the theory of queueing sys-
tems, etc. For instance, in mathematical statistics, finding small probabilities of er-
rors of the first and second kind of statistical tests when the sample size n is large
leads to such problems (e.g. see [7]). In these problems, we have to find explicit
functions P (n, x) such that

P(S, = x) = P(n,x)(1+o(1)) (9.0.2)

as n — oo. Thus, unlike the case of normal approximation (9.0.1), here we are
looking for approximations P (n, x) with a relatively small error rather than an ab-
solutely small error. If P(n,x) — 01in (9.0.2) as n — oo, then we will speak of the
probabilities of rare events, or of the probabilities of large deviations of sums S,,.
Deviations of the order /n are called normal deviations.

In order to study large deviation probabilities, we will need some notions and
assertions.

9.1 Laplace’s and Cramér’s Transforms. The Rate Function

9.1.1 The Cramér Condition. Laplace’s and Cramér’s Transforms

In all the sections of this chapter, except for Sect. 9.5, the following Cramér condi-
tion will play an important role.

[C] There exists a X # 0 such that
Ee = /e”F(dy) < o0. 9.1.1)

We will say that the right-side (left-side) Cramér condition holds if A > 0 (A < 0)
in (9.1.1). If (9.1.1) is valid for some negative and positive A (i.e. in a neighbour-
hood of the point A = 0), then we will say that the two-sided Cramér’s condition is
satisfied.

The Cramér condition can be interpreted as characterising a fast (at least expo-
nentially fast) rate of decay of the tails F(¢) of the distribution F. If, for instance,
we have (9.1.1) for A > 0, then by Chebyshev’s inequality, for > 0,

Fi(t) :=P(E > 1) <e MEe,
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i.e. Fy (t) decreases at least exponentially fast. Conversely, if, for some p > 0, one
has F () <ce ™, t >0, then, for A € (0, ),

o0 [o') 00
/0 IF(dy) = — fo & dF, () = Fy (0) + 2 fo VF,(y)dy
o A cA
§F+(O)+C)L/ e( _M)ydy=F+(O)+—)\<oo,
0 w—

Since the integral fi)oo e F(dy) is finite for any A > 0, we have Ee*é < oo for
A€ (0, ).

The situation is similar for the left tail F_(¢) :=P(§ < —r) provided that (9.1.1)
holds for some A < 0.

Set

Ay = sup{A ‘Bt < oo}, A= inf{k ‘B < oo}

Condition [C] is equivalent to Ay > A_. The right-side Cramér condition means
that A4 > 0; the two-sided condition means that A, > 0 > A_. Clearly, the ch.f.
@(t) = Ee''¢ is analytic in the complex plane in the strip —A, < Imf < —A_. This
follows from the differentiability of ¢(¢) in this region of the complex plane, since
the integral [ |ye!”” |[F(dy) for the said values of Im# converges uniformly in Rez.
Here and henceforth by the Laplace transform (Laplace—Stieltjes or Laplace—
Lebesgue) of the distribution F of the random variable & we shall mean the function

Y () ==Ee™ = g(—id),

which conflicts with Sect. 7.1.1 (and the terminology of mathematical analysis),
according to which the term Laplace’s transform refers to the function Ee™*¢ =
@(iL). The reason for such a slight inconsistency in terminology (only the sign of
the argument differs, this changes almost nothing) is our reluctance to introduce new
notation or to complicate the old notation. Nowhere below will it cause confusion. !

As well as condition [C], we will also assume that the random variable & is
nondegenerate, i.e. £ # const or, which is the same, Var& > 0.

The main properties of Laplace’s transform.

As was already noted in Sect. 7.1.1, Laplace’s transform, like the ch.f., uniquely
characterises the distribution F. Moreover, it has the following properties, which
are similar to the corresponding properties of ch.f.s (see Sect. 7.1). Under obvious
conventions of notation,

WD) Yappe(A) = et Y (b)), if a and b are constant.

!In the literature, the function Ee*¢ is sometimes called the “moment generating function”.
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W2) If &1,...,&, are independent and S,, = 27:1 &, then

s, 0) =[] v, ).

j=1

(¥3) If E|£|F < 0o and the right-side Cramér condition is satisfied then the func-
tion g is k-times right differentiable at the point A =0,

¥ 0) = Eg* =iy

and, as A | 0,

ki
WMﬁ+Z%m+$ﬂ
=t

This also implies that, as A |, 0, the representation
k Vi A
J k
1nwg(,\):ZT+o(x ). 9.1.2)
i=1

holds, where y; are the so-called semi-invariants (or cumulants) of order j of the
random variable £. One can easily verify that

Y1 =my, yzzmgzaz, y3:m(3), 9.1.3)

where mg =E(¢ — ml)k is the central moment of order k.

Definition 9.1.1 Let condition [C] be met. The Cramér transform at the point X of
the distribution F is the distribution®

e F(dy)
Foydy) = ———. 9.14
) (dy) 7N ( )

2In some publications the transform (9.1.4) is also called the Esscher transform. However, the
systematic use of transform (9.1.4) for the study of large deviations was first done by Cramér.

If we study the probabilities of large deviations of sums of random variables using the inver-
sion formula, similarly to what was done for normal deviations in Chap. 8, then we will necessarily
come to employ the so-called saddle-point method, which consists of moving the contour of inte-
gration so that it passes through the so-called saddle point, at which the exponent in the integrand
function, as we move along the imaginary axis, attains its minimum (and, along the real axis, at-
tains its maximum; this explains the name “saddle point”). Cramér’s transform does essentially
the same, making such a translation of the contour of integration even before applying the inver-
sion formula, and reduces the large deviation problem to the normal deviation problem, where the
inversion formula is not needed if we use the results of Chap. 8. It is this technique that we will
follow in the present chapter.
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Clearly, the distributions F and F(;) are mutually absolutely continuous (see
Sect. 3.5 of Appendix 3) with density

Foy(dy) _ e
F(dy) v

Denote a random variable with distribution F;) by &).
The Laplace transform of the distribution F ;) is obviously equal to

E HEG) — M 915
‘ v ©-1)
Clearly,
') / (1)
E&) = % =(ny ).  Eg,= 1/1;(—A)
a (A 2 Y
Var(§)) = 1/;((/\)) - (ZE;) =(InyX)".

Since ¥ (1) > 0 and Var(§(;)) > 0, the foregoing implies one more important prop-
erty of the Laplace transform.

(¥4) The functions ¥ ()) and Inyr (X) are strictly convex, and

¥’

ElTey

strictly increases on (A—, Ay).

The analyticity of ¥ (A) in the strip ReX € (A_, A;) can be supplemented by
the following “extended” continuity property on the segment [A_, L] (in the strip
Rel e[, A4]).

(¥'5) The function ¥ (L) is continuous “inside” [h_, A1), i.e. Y(A+ F0) =y (A1)
(where the cases ¥ (A1) = oo are not excluded).

Outside the segment [A_, A;] such continuity, generally speaking, does not
hold as, for example, is the case when ¥ (Ay) < oo and ¥ (A4 + 0) = oo, which
takes place, say, for the distribution F with density f(x) = cx 3¢ *+* for x > 1,
¢ = const.

9.1.2 The Large Deviation Rate Function

Under condition [C], the large deviation rate function will play the determining role
in the description of asymptotics of probabilities P(S, > x).
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Definition 9.1.2 The large deviation rate function (or, for brevity, simply the rate
function) A of a random variable £ is defined by

A(e) :==sup(ar —Iny(1)). (9.1.6)
A

The meaning of the name will become clear later. In classical analysis, the right-
hand side of (9.1.6) is known as the Legendre transform of the function In vy ()).

Consider the function A(a,A) = oA — Iny(A) of the supremum appearing
in (9.1.6). The function — In i/ (1) is strictly concave (see property (¥4)), and hence
so is the function A(«, A) (note also that A(x, A) = —Iny,(X), where ¥, (1) =
e (1) is the Laplace transform of the distribution of the random variable £ — o
and, therefore, from the “qualitative point of view”, A(w, A) possesses all the prop-
erties of the function —Inyr(1)). The foregoing implies that there always exists a
unique point A = A(«) (on the “extended” real line [—oo, co]) at which the supre-
mum in (9.1.6) is attained. As o grows, the value of A(x, A) for A > O increases
(proportionally to 1), and for A < O it decreases. Therefore, the graph of A(«, 1) as
the function of A will, roughly speaking, “roll over” to the right as « grows. This
means that the maximum point A(c) will also move to the right (or stay at the same
place if A(a) = A4).

We now turn to more precise formulations. On the interval [A_, A ], there exists
the derivative (respectively, the right and the left derivative at the endpoints A1)

Al(a, M) =a— i((j:)) 9.1.7)
The parameters
YO F0)
:t_ilﬁ()\i:{:()) , o_ <oy, 9.1.8)

will play an important role in what follows. The value of o determines the angle at
which the curve In v (1) “sticks” into the point (A, In{(A4)). The quantity «_ has
a similar meaning. If & € [@—, @] then the equation A&(a, 1)=0, or (see (9.1.7))

Vo) _
Q)

always has a unique solution A(c) on the segment [A_, L] (A+ can be infinite).

This solution A(«), being the inverse of an analytical and strictly increasing function

% on (A_, A4+) (see (9.1.9)), is also analytical and strictly increasing on («—, ),

o, 9.1.9)

M)Ay asa b og; Ma)l A- asalo_. (9.1.10)
The equalities

¥(M@)

Al@) = ar(@) —lnllf(k(a))’ ¥ (M) -

(9.1.11)
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yield
' = ! — M / _
Ala) = Mo) + ar'(a) e V(@) = ().
Recalling that
ww(((()))):I’nl:Eé, Oe[r_,ry], myelo_,ayl,

we obtain the following representation for the function A:
(A1) If ag € [a—,a4], @ € [@—, o] then

o

A@) =A(a0)+/ A(v) dv. (9.1.12)

@0

Since A(m1) = A(my) = 0 (this follows from (9.1.9) and (9.1.11)), we obtain,
in particular, for ag = m1, that

A(oz):/a A(v) dv. (9.1.13)

mi
The functions A(«) and A(a) are analytic on (¢—, o).

Now consider what happens outside the segment [o_, o4 ]. Assume for definite-
ness that A4 > 0. We will study the behaviour of the functions A(«) and A(«) near
the point o4 and for o > «y. Similar results hold true in the vicinity of the point ov_
in the case A_ < 0.

First let Ay = 00, i.e. the function In(X) is analytic on the whole semiaxis
A > 0, and the tail F(¢) decays as t — oo faster than any exponential function.
Denote by

Sy = :I:sup{t CFL(t) > 0}

the boundaries of the support of F. Without loss of generality, we will assume that
sy >0, s_<0. (9.1.14)

This can always be achieved by shifting the random variable, similarly to our as-
suming, without loss of generality, E£ = 0 in many theorems of Chap. 8, where we
used the fact that the problem of studying the distribution of S, is “invariant” with
respect to a shift. (We can also note that Az _, (e — a) = Ag(a), see property (A4)
below, and that (9.1.14) always holds provided that E€ =0.)

(A2) () If Ay =00 then oy = 5.

Hence, for s+ = co, we always have o, = oo and so for any @ > o_ we are
dealing with the already considered “regular” case, where (9.1.12) and (9.1.13) hold
true.
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(i) If s+ < oo then Ay = 00, 4 =54,
Alay) =—InP(E =54), Al@) =00 fora > ay.
Similar assertions hold true for s_, o—, A_.

Proof (i) First let s; < 0o. Then the asymptotics of (1) and /(L) as A — oo is
determined by the integrals in a neighbourhood of the point s : for any fixed & > 0,

YO ~E( 6> —¢), Y O)~E(EE > —¢)
as L — oo. Hence

. Y0y EEetiE>si—¢)
= lim = lim =
=00 Y(X) A—soo E(e*; & >s5, —¢)

o4 S4.

If 54 = oo, then Inyr (L) grows as A — oo faster than any linear function and
therefore the derivative (Iny (1))’ increases unboundedly, o = 00.

(ii) The first two assertions are obvious. Further, let p; =P(§ =s4) > 0. Then

Y ()~ pret,
oA —InyA)=ar—Inpy —Asy +0(1) = (¢ —ap)A —Inps +o0(1)

as A — oo. This and (9.1.11) imply that

—Inpy fora=oay,
Ala) =
o0 fora > ay.

If p; = 0, then the relation ¥ (1) = o(e**+) as A — oo similarly implies A () = co.
Property (A2) is proved. g

Nowlet 0 < Ay < oo. If ey < 00, then necessarily ¥ (A4) < 00, (A +0) =00
and ¥’ (A1) < oo (here we mean the left derivative). If we assume that ¥ (A4) = 00,
then Inyr (A1) = 00, (Iny (1)) — oo as A 1 A4 and a4 = 0o, which contradicts the
assumption o < 0o. Since ¥ (1) = oo for A > A, the point A(«), having reached
the value A4 as o grows, will stop at that point. So, for & > o4, we have

Ma)=ry, Al =i —InY(y) =A(y) +As(@ —ay).  (9.1.15)

Thus, in this case, for @ > o4 the function A (o) remains constant, while A(«) grows
linearly. Relations (9.1.12) and (9.1.13) remain true.

If oy = 00, then o < a4 for all finite @ > «_, and we again deal with the “regu-
lar” case that we considered earlier (see (9.1.12) and (9.1.13)). Since A(«) does not
decrease, these relations imply the convexity of A(«).

In summary, we can formulate the following property.
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(A3) The functions A(a) and A(a) can only be discontinuous at the points s
and under the condition P(§ = si) > 0. These points separate the domain
(s—, s4+) where the function A is finite and continuous (in the extended sense)
Jfrom the domain o ¢ [s—, s4+] where A(a) = oo. In the domain [s—, s1] the
function A is convex. (If we define convexity in the “extended” sense, i.e.
including infinite values as well, then A is convex on the entire real line.)
The function A is analytic in the interval («—,a4). If Ay < oo and oy < 00,
then on the half-line (a4, 00) the function A(«a) is linear with slope A ; at the
boundary point o the continuity of the first derivatives persists. If L = oo,
then A(a) = 00 on (a4, 00). The function A(a) possesses a similar property
on (—oo, o).

If A\_=0,then o =m; and A(x) = A(x) =0 for @ < m;.

Indeed, since A(m1) =0 and ¥ (L) = oo for A < A_ =0 = A(m), as the value
of « decreases to «_ = m, the point A(«), having reached the value 0, will stop,
and A(a) =0 for @ < a— = m . This and the first identity in (9.1.11) also imply that
A(a) =0fora <mj.

If A_ = A4+ = 0 (condition [C] is not met), then A(«) = A(«x) =0 for all «. This
is obvious, since the value of the function under the sup sign in (9.1.6) equals —oo
for all A # 0. In this case the limit theorems presented in the forthcoming sections
will be of little substance.

We will also need the following properties of the function A.

(A4) Under obvious notational conventions, for independent random variables &
and n, we have

gy (@) = sup(ech =0 e () = Inyy (1) = inf(As () + Ay (e = 7).

a—>b
Act1p(0) = st;p(ak — b —Inyg(re)) = Ag( . )

Clearly, inf}, in the former relation is attained at the point y at which A¢(y) =
Ay(a — y). If & and 7 are identically distributed then y = «/2 and therefore

o o o

(AS5) The function A(a) attains its minimal value O at the point « = EE =m . For
definiteness, assume that oy > 0. If m; =0 and E|£¥| < 0o, then

1
A(0)=A0)=A'0)=0, A"O)=—, A"(0)= _y_32’
V2 14
(9.1.16)
(In the case a— = 0 the right derivatives are intended.) As « |, 0, one has the

representation
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koA ,
A=) Oy +o(a*). 9.1.17)

j=2
The semi-invariants y; were defined in (9.1.2) and (9.1.3).

If the two-sided Cramér condition is satisfied then the series expansion (9.1.17)
of the function A(«) holds for k = o0o. This series is called the Cramér series.
Verifying properties (A4) and (A5) is not difficult, and is left to the reader.

(A6) The following inversion formula is valid: for » € (A—, L),

Iny(h) = sup(ak — A(a)). (9.1.18)

This means that the rate function uniquely determines the Laplace transform (1)
and hence the distribution F as well. Formula (9.1.18) also means that subsequent
double applications of the Legendre transform to the convex function In v (1) leads
to the same original function.

Proof We denote by T () the right-hand side of (9.1.18) and show that T (A) =
Inyr(A) for A € (A_, A4). If, in order to find the supremum in (9.1.18), we equate
to zero the derivative in « of the function under the sup sign, then we will get the
equation

r=A(@) = Ara). (9.1.19)

Since A(a), o € (a—, a), is the function inverse to (Inyr (L))" (see (9.1.9)), for
A€ (A_, 1y) Eq. (9.1.19) clearly has the solution

a=a®):=(Inyn)" (9.1.20)
Taking into account the fact that A(a(A)) = A, we obtain

T(A) =ra(h) — Aa(b)),
T'(W) =a) +ra' (W) — A(a())a’ (M) =a).

Since a(0) =mj and T (0) = —A(m;) =0, we have

A
T(A):/ a(u)du=1Iny (). (9.1.21)
0

The assertion is proved, and so is yet another inversion formula (the last equality
in (9.1.21), which expresses Inr (1) as the integral of the function a(A) inverse to
Al@)). 0

(A7) The exponential Chebyshev inequality. For o > m1, we have

P(S, > an) < e 4@,
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Proof If « > my, then A(a) > 0. For A = A(«) > 0, we have

Y (W) > E(e; S, > an) > *"P(S, > an);

P(Sn > Oll’l) < e—an)»(a)—l—nlntﬁ(k(a)) — e—nA(oz). O

We now consider a few examples, where the values of A+, @4, and the functions
Y (X), M), A(a) can be calculated in an explicit form.

Example 9.1.1 1If § € ®¢ 1, then

gLy — sl = — _o
Yy =e"'7, [A+| = |os| = 00, Ma) =a, AW)—Eﬂ
Example 9.1.2 For the Bernoulli scheme § € B, we have
YA = pe* +q, [At]|=00, ap=1, a-=0, m =E&=p,
1-— 1-—
Ay =P e A - forae (1),
pl—a) p 1—

A(O)=—In(1—p), A()=—Inp, A@) =00 fora¢l[0,1].

Thus the function H (¢) = A(w), which described large deviation probabilities for
S, in the local Theorem 5.2.1 for the Bernoulli scheme, is nothing else but the rate
function. Below, in Sect. 9.3, we will obtain generalisations of Theorem 5.2.1 for
arbitrary arithmetic distributions.

Example 9.1.3 For the exponential distribution I g, we have

1
L, =B, A_=—00, ar=00, oa_=0, m=-—,

A) =
v(2) 5

QI Im— >

B—
Ma)=B——, Al@)=af—1—Inaf fora>0.

Example 9.1.4 For the centred Poisson distribution with parameter §, we have

YA =exp{Ble’ —1-1]}, |rsl=o00, a-=-B, ap=00, m=0,

B+a a+p

AMa) =In 5 Al@) = (@ + f)In

—oa fora>—pg.



250 9 Large Deviation Probabilities for Sums of Independent Random Variables

9.2 A Relationship Between Large Deviation Probabilities for
Sums of Random Variables and Those for Sums of Their
Cramér Transforms. The Probabilistic Meaning of the Rate
Function

9.2.1 A Relationship Between Large Deviation Probabilities for
Sums of Random Variables and Those for Sums of Their
Cramér Transforms

Consider the Cramér transform of F at the point A = A(«) for o € [0—, 4] and
introduce the notation & @ := £ (4)),

n

S,(la) = Z Ei(a>7

i=1

where éi(a) are independent copies of &@. The distribution F® := F(;4) of the
random variable £@ is called the Cramér transform of F with parameter . The
random variables £ @) are also called Cramér transforms, but of the original random

variable £. The relationship between the distributions of S, and S,E"” is established
in the following assertion.

Theorem 9.2.1 For x =no, o € (¢, ay), and any t > 0, one has

t
P(S, € [x,x +1)) = "4 / e MOP(SI —an e dz). 9.2.1)
0

Proof The Laplace transform of the distribution of the sum S,(L“) is clearly equal to

Sy — [M} (9.2.2)
Y (A())

(see (9.1.5)). On the other hand, consider the Cramér transform (S,) . («)) of S, at
the point A(«). Applying (9.1.5) to the distribution of §,,, we obtain

Y (4 Aa))
Y (A(a))

EeM(Sn)(x(a)) —

Since this expression coincides with (9.2.2), the Cramér transform of S, at the
point M) coincides in distribution with the sum S,(la) of the transforms f;‘i(a). In

other words,
P(S, € dv)e*@v

=P(SW eq 9223
V@) (537 € dv) ©23)
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or, which is the same,
P(Sn edv) = e*k(a)ernlnw()»(ot))P(S(a) c dv) :efnA(a)+)»(ot)(not7v)P(S(ot) de)
n n °

Integrating this equality in v from x to x + ¢, letting x := no and making the change
of variables v — no = z, we get

X+t
P(Sn €x,x+ t)) = e*”A(“)/ ek(“)(”"‘*”)P(S,g"‘) € dv)

X

t
_ @ / e HOTP(S _ o e d).
0

The theorem is proved. g

Since for @ € [@—, @4+ ] we have

Y @)

E£@ = =X
¥ (A(@)

(see (9.1.11)), one has E(S,ga) —an) = 0 and so for ¢ < c/n we have probabilities

of normal deviations of S,(,a) — an on the right-hand side of (9.2.1). This allows us to
reduce the problem on large deviations of S, to the problem on normal deviations

of S,(la). If @ > a4, then formula (9.2.1) is still rather useful, as will be shown in
Sects. 9.4 and 9.5.

9.2.2 The Probabilistic Meaning of the Rate Function

In this section we will prove the following assertion, which clarifies the probabilistic
meaning of the function A(«x).

Denote by Alx) := [, + A) the interval of length A with the left end at
the point . The notation A,[«), where A,, depends on #, will have a similar mean-
ing.

Theorem 9.2.2 For each fixed « and all sequences A, converging to 0 as n — 0o
slowly enough, one has

A(a) =— lim ! lnP(& € An[a)>. 9.2.4)
n—-oon n

This relation can also be written as

P(ﬁ € Ay [a)) = ¢ Ao,
n
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Proof of Theorem 9.2.2 Firstlet o € (¢—, ). Then

4

EE(“) =a, Varé(“) = (lnw(k)))n:)»(a) <

o0

and hence, as n — oo and A, — 0 slowly enough (e.g., for A, > n_1/3), by the
central limit theorem we have

P(S\*) —an €0, Ayn)) — 1/2.

Therefore, by Theorem 9.2.1 for t = A,n, x = an and by the mean value theorem,
1
P(S,, elx,x+ ;)) = <§ +0(1)) A=A @ AN g (0 1);

% InP(S, € [x, x +1)) = —A(@) — A(@)0 A, +o(1) = —A@) + o(1)

as n — oo. This proves (9.2.4) for @ € (@_, a4).

The further proof is divided into three stages.

(1) The upper bound in the general case. Now let  be arbitrary and |A(«)| < co.
By Theorem 9.2.1 for t =nA,,, we have

P<ﬁ € An[oz)> < exp{—nA(a) + max(|2(0)|, |A(«)|)nA,}.

n

If A, — 0O then
. 1 Sn
lim sup — lnP<— € A,,[a)) < —A(w). 9.2.5)
n—oo N n

(This inequality can also be obtained from the exponential Chebyshev’s inequal-
ity (A7).)

(2) The lower bound in the general case. Let |A(a)| < oo and |s+| = oco. Intro-
duce “truncated” random variables V)¢ with the distribution

P eB; |5 <N)
P(MeeB)= P <) =P(eB|lE| <N)

and endow all the symbols that correspond to ‘& with the left superscript (N).
Then clearly, for each A,

E(e*; €| <N) 1ty (),  P(E|<N) 11
as N — oo, so that

E(e*; [§] < N)
Myo)y=— 151 =" ).
Y()) P(E| < N) - Y)
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The functions ™ A(«) and A(w) are the upper bounds for the concave functions
ax —In ™y (1) and @i — In (1), respectively. Therefore for each « we also have
convergence (N)A(oz) — A(a) as N — oo.

Further,

S, S,
P<—” eAn[a)> zP(—" € Apla); Ej] < N, j= 1,...,N)
n n

(N)

Sn
=P (| <N)P< eA,,[a)).

n

Since s+ = 400, one has May = +N and, for N large enough, we have «
(Mea_, M, ). Hence we can apply the first part of the proof of the theorem by
virtue of which, as A, — 0,

1 (N)Sn ™)
— InP e Apla) | = —""Alx) +0(1),
n n

! lnP<& € A,,[a)) > —MA(@) +o(1) + InP(|&] < N).
n n

The right-hand side of the last inequality can be made arbitrarily close to — A(«) by
choosing a suitable N. Since the left-hand side of this inequality does not depend
on N, we have

liminfl lnP<& € An[cx)> > —A(w). (9.2.6)
n—oo n n
Together with (9.2.5), this proves (9.2.4).

(3) It remains to remove the restrictions stated at the beginning of stages (1) and
(2) of the proof, i.e. to consider the cases |A(«)| = oo and min |s+| < co. These
two relations are connected with each other since, for instance, the equality A(«) =
Ay = 0o can only hold if ¢ > oy = s < oo (see property (A2)). For o > s,
relation (9.2.4) is evident, since P(S,/n € A,[e)) =0 and A(x) = co. For o =
ay =sy4 and py =P(§ =s4), we have, for any A > 0,

P(% € A[a+)> =P(S, =nay) =pl. 9.2.7)

Since in this case A(ay) = —In p4 (see (A2)), the equality (9.2.4) holds true.

The case A(a) = A_ = —oo with s_ > —o0 is considered in a similar way. How-
ever, due to the asymmetry of the interval A[a) with respect to the point «, there
are small differences. Instead of an equality in (9.2.7) we only have the inequality

P(% € An[oe)) >P(Sy=na_)=p", p-=PE=a). ©-2.8)
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Therefore we also have to use the exponential Chebyshev’s inequality (see (A7))
applying it to — S, for s_ =a_ < O:

S S
P<—" € An[a)> < P(—” <a_+ An> < e A+ (9.2.9)
n n

Relations (9.2.8), (9.2.9), the equality A(«¢—) = —In p_, and the right continuity of
A(o) at the point o imply (9.2.4) for « = a—. The theorem is proved. 0

9.2.3 The Large Deviations Principle

It is not hard to derive from Theorem 9.2.2 a corollary on the asymptotics of the
probabilities of S, /n hitting an arbitrary Borel set. Denote by (B) and [B] the
interior and the closure of B, respectively ((B) is the union of all open intervals
contained in B). Put

A(B) := inf A(x).
oEeB

Theorem 9.2.3 For any Borel set B, the following inequalities hold:

1 S
liminf — lnP<—n € B> > —A((B)), (9.2.10)
n—oo n n
. l Si'l
limsup—InP| — e B < —A([B]). (9.2.11)
n—oo N n

If A((B)) = A([B)), then the following limit exists:

Jim + lnP<& € B) — —A(B). (9.2.12)

n—o0o n n

This assertion is called the large deviation principle. It is one of the so-called
“rough” (“logarithmic”) limit theorems that describe the asymptotic behaviour of
InP(S,/n € B). It is usually impossible to derive from this assertion the asymp-
totics of the probability P(S,/n € B) itself. (In the equality P(S,/n € B) =
exp{—nA(B) + o(n)}, the term o(n) may grow in absolute value.)

Proof Without losing generality, we can assume that B C [s_, s4] (since A(x) = 0o
outside that domain).
We first prove (9.2.10). Let o) be such that

A((B)) = aierzg) A(e) = Aop))

(recall that A(«) is continuous on [s_, s1]). Then there exist a sequence of points
ok and a sequence of intervals (g — 8k, ok + 6x), where 8 — 0, lying in (B) and
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converging to the point o gy, such that
A((B) = inf A((ox — 8k, o + 8¢))-
Here clearly
irlsf A((ak — Ok, ax + Sk)) = irlgf Alag),
and for a given ¢ > 0, there exists a k = K such that A(ag) < A((B)) + .

Since Ap[ax) C (ox — 8k, otx + i) for large enough n (here A,[o) is from Theo-
rem 9.2.2), we have by Theorem 9.2.2 that, as n — oo,

1 S, 1 S,
—lnP(—" € B) > —1nP<—" € (B))
n n n n

1 Sy
> —InP| — e (ag — 8k, akx + k)
n n
1 Sy
> —InP| = € Ayfak) | > —A(ag) +o(1)
n n

> —A((B)) — e +o(l).

As the left-hand side of this inequality does not depend on ¢, inequality (9.2.10) is
proved.

We now prove inequality (9.2.11). Denote by «[p; the point at which
infye[p) A(a) = A(ap)) is attained (this point always belongs to [B] since [B]
is closed). If A(cp;) =0, then the inequality is evident. Now let A(ap)) > 0. By
convexity of A the equation A(a) = A(a[p]) can have a second solution a[’ B]- As-
sume it exists and, for definiteness, o[z < (p). The relation A([B]) = A(as))
means that the set [ B] does not intersect with (oz{ B I B]) and

P(ﬁ € B) 51)(i € [B]) < P(ﬁ 504{3]) +P<ﬁ > a[B]). (9.2.13)
n n n n

Moreover, in this case m; € (aE B Y g]) and each of the probabilities on the right-
hand side of (9.2.13) can be bounded using the exponential Chebyshev’s inequality
(see (A7)) by the value e 4@ 5D This implies (9.2.11).

If the second solution af p) does not exist, then one of the summands on the right-
hand side of (9.2.13) equals zero, and we obtain the same result.

The second assertion of the theorem (Eq. (9.2.12)) is evident.

The theorem is proved. g

Using Theorem 9.2.3, we can complement Theorem 9.2.2 with the following
assertion.
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Corollary 9.2.1 The following limit always exists

A—Qn—>oon

lim lim — lnP<S— € A[a)) =—A(x). (9.2.14)

Proof Take the set B in Theorem 9.2.3 to be the interval B = Alw). If o ¢ [s_, 5]
then the assertion is obvious (since both sides of (9.2.14) are equal to —o0). If
o = s+ then (9.2.14) is already proved in (9.2.7), (9.2.8) and (9.2.9).

It remains to consider points « € (s_, s ). For such «, the function A(«) is con-
tinuous and o + A is also a point of continuity of A for A small enough, and hence

A((B)) = A([B]) > A(a)

as A — 0. Therefore by Theorem 9.2.3 the inner limit in (9.2.14) exists and con-
verges to —A(x) as A — 0.
The corollary is proved. g

Note that the assertions of Theorems 9.2.2 and 9.2.3 and their corollaries are
“universal”—they contain no restrictions on the distribution F.

9.3 Integro-Local, Integral and Local Theorems on Large
Deviation Probabilities in the Cramér Range

9.3.1 Integro-Local and Integral Theorems

In this subsection, under the assumption that the Cramér condition A4 > 0 is met,
we will find the asymptotics of probabilities P(S,, € A[x)) for scaled deviations o =
x/n from the so-called Cramér (or regular) range, i.e. for the range o € (¢—, )
in which the rate function A () is analytic.

In the non-lattice case, in addition to the condition A > 0, we will assume with-
out loss of generality that E€ = 0. In this case necessarily

' (Ay)
V(dt)

The length A of the interval may depend on 7 in some cases. In such cases, we will
write A,, instead of A, as we did earlier. The value

>0, A0)=

a_ <0, oy =

2 V0@

= 9.3.1
% = @) ©3.D

is clearly equal to Var(£@) (see (9.1.5) and the definition of £ in Sect. 9.2).
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Theorem 9.3.1 Let Ay > 0, « € [0,w4), & be a non-lattice random variable,
E& =0 and EE? < 0o. If A, — 0 slowly enough as n — 0o, then

An

P(S € Anl) = ———
o

e MA@ (1 +0(1)), (9.3.2)

where oo = x /n, and, for each fixed o1 € (0, o), the remainder term o(1) is uniform
in o €0, a1] for any fixed oy € (0, o).
A similar assertion is valid in the case when A_ <0 and o € (a—, 0].

Proof The proof is based on Theorems 9.2.1 and 8.7.1A. Since the conditions of
Theorem 9.2.1 are satisfied, we have

An
P(S, € Aylx)) =A@ / e HMOP(S — an e dz).
0

As A(a) < Aoy —€) < 0o and A, — 0, one has e *@®? — 1 uniformly in
z € A,[0) and hence, as n — o0,

P(Sy € Aplx)) = e " AOP(SY) —an € 4,[0))(1 +o(1)) (9.3.3)

uniformly in @ € [0, o — €].

We now show that Theorem 8.7.1A is applicable to the random variables & =
&(.(a))- That 04 = o (A(ar)) is bounded away from O and from oo for « € [0, o] is
evident. (The same is true of all the theorems in this section.) Therefore, it remains
to verify whether conditions (a) and (b) of Theorem 8.7.1A are met for A = A(x) €

[0, 411, A1 == A(ary) < Ay and @y (1) = % (see (9.1.5)). We have

2
VO +it) =y Q) +iry’ () — % ¥ (W) +o(t?)

as t — 0, where the remainder term is uniform in A if the function ¥” (A + iu) is
uniformly continuous in u. The required uniform continuity can easily be proved
by imitating the corresponding result for ch.f.s (see property 4 in Sect. 7.1). This
proves condition (a) in Theorem 8.7.1A with

Y'() v (M)

A) = s A) = .
W=yoy mI=30

Now we will verify condition (b) in Theorem 8.7.1A. Assume the contrary: there
exists a sequence Ax € [0, A1] such that

| (A + i1)|

Gr, = sup
i<, VW)
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as k — oo. By the uniform continuity of v in that domain, there exist points
tx € [61,07] such that, as k — oo,

Y (g +ity)
¥ (Ax)

Since the region A € [0, A1], |#]| € [61,62] is compact, there exists a subsequence
(A, txr) = (Ao, fo) as k' — oo. Again using the continuity of 1, we obtain the
equality

[ (Ao +ito)]
AT _ 9.3.4
¥ (20) O34

which contradicts the non-latticeness of ;. Property (b) is proved.
Thus we can now apply Theorem 8.7.1A to the probability on the right-hand side

of (9.3.3). Since @ = ¢ and E(¢@)2 = %%ﬁ), this yields

_ ,—nA(w) An (L))
P(S,, € An[x)) =e <—oaﬁ¢(o) +o0 NG

A
=L "M@ (1 4 o(1)) (9.3.5)
ouN2mn
uniformly in @ € [0, 1] (or in x € [0, «1n]), where the values of
_ V@),
Y (A(a))

are bounded away from 0 and from oco. The theorem is proved. d

0-(3 — E(E(a) _ 0[)2

From Theorem 9.3.1 we can now derive integro-local theorems and integral the-
orems for fixed or growing A. Since in the normal deviation range (when x is com-
parable with 4/n) we have already obtained such results, to simplify the exposition
we will consider here large deviations only, when x > /n or, which is the same,
a = x/n > 1/4/n. To be more precise, we will assume that there exists a function
N(n) — 00, N(n) = o(s/n) as n — oo, such that x > N (n)/n (a > N(n)//n).

Theorem 9.3.2 Let A+ > 0, o € [0, ay), & be non-lattice, E€ = 0 and Eéz < 0.
Then, for any A > Ag >0, x > N(n) = o(y/n), N(n) — 0o as n — 00, one has

e—nA(oz)
P(S, € Alx)) = ————(1 — e @%) (1 +0(1)), 9.3.6
(51 41) = — (1= (ko). 036)
o(1) being uniform in a = x/n € [N(n)//n,a1] and A > Aq for each fixed
a1 € (0, 4).
In particular (for A = 00),
—nA(x)
P(S, > x) = (14 o0(1)). (9.3.7)

- oar(0)V2mn
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Proof Partition the interval A[x) into subintervals A,[x + kA,), k =0,...,
A/A, — 1, where A, — 0 and, for simplicity, we assume that M = A/ A, is an
integer. Then, by Theorem 9.2.1, as A, — 0,

P(S, € Anlx +kAy))
=P(S, €[x, x + (k+1)A,)) —P(Sy € [x, x +kAy,))
(k+1)A,
= MA@ / ef)‘(“)ZP(S(“) —an € dz)
kan !
= ¢ M A@OTHORAP(S® _gp e A [kA))(1+0(1)  (9.3.8)

uniformly in ¢ € [0, «1]. Here, similarly to (9.3.5), by Theorem 8.7.1A we have

@ An [ kA, 1
P(s¢ —aneA,,[kA,,)):aﬁqb AW 9.3.9)

uniformly in k and «. Since
M-
P(S, € Alx)) = Z (Sy € Aulx +k24)),

substituting the values (9.3.8) and (9.3.9) into the right-hand side of the last equality,
we obtain

—nA(@) M—1
P(S, € Alx)) = ‘ - Z A, e HkA, (¢< k?) +0(1)>

e—nA(a) A—A,
_ e—x(a)z <¢< ) +0(1))
Ga\/z 0 05\/_

After the variable change A («)z = u, the right-hand side can be rewritten as

—ni(a) (A=A (@) » u
oar(@)/n Jo € <¢<W)+0(1))du, (9.3.11)

where the remainder term o(1) is uniform in o € [0, «1], A > Ag, and u from the
integration range. Since A(x) ~ a/o? for small « (see (9.1.12) and (9.1.16)), for
a > N(n)/+/n we have

(9.3.10)

Aa) > (f) (1+0(1)),  oah(a)yn> ““N(")
Therefore, for any fixed u, one has
¢<L) - B0 = ——
Uak(a)\/ﬁ - m
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Moreover, ¢ (v) < 1/+/2x for all v. Hence, by (9.3.10) and (9.3.11),

e—nA(a) AMa)A
P(S,eAlx) = ———— e "du(l+o0(1)
( " ) ogMa)A/2mtn Jo ( )
e—nA(a) @) A
=——(1—¢"¢ 14+0(1)
aa)»(a)«/ern( )( )
uniformly in « € [0, «1] and A > Ay. Relation (9.3.7) clearly follows from (9.3.6)
with A = oco. The theorem is proved. O

Note that if E|£|F < oo (for A > 0 this is a restriction on the rate of decay of the
left tails P(§ < —t), t > 0), then expansion (9.1.17) is valid and, for deviations x =
o(n) (¢ = o0(1)) such that nak = )ck/nk_1 < ¢ = const, we can change the exponent
nA(a) in (9.3.6) and (9.3.7) to

koA ,
nA(@) =n § : A j.‘(o)af +o(na), (9.3.12)
] J:
J=2

where AU (0) are found in (9.1.16). For k = 3, the foregoing implies the following.

Corollary 9.3.1 Let &4 > 0, E|£]? < 00, & be non-lattice, E& = 0, E£? = o2,
x>/n and x = o(n?3) as n — oo. Then

P(S, > x) oV . oy (— (9.3.13)
x) ~ expy — ~o|— . 3.

"= xA/2m P 2no? O'ﬁ

In the last relation we used the symmetry of the standard normal law, i.e. the

equality 1 — @(¢) = @(—t). Assertion (9.3.13) shows that in the case A > 0 and
E|£]3 < oo the asymptotic equivalence

X
P(S,>x)~o| -
=) ( oy/n )
persists outside the range of normal deviations as well, up to the values
x =o0n?*3). If E&3 = 0 and E&* < oo, then this equivalence holds true up to the
values x = o(n>/#). For larger x this equivalence, generally speaking, no longer

holds.

Proof of Corollary 9.3.1 The first relation in (9.3.13) follows from Theorem 9.3.2
and (9.3.12). The second follows from the asymptotic equivalence

.2

o 2 ex/2

e 2du~ ,
X

X

which is easy to establish, using, for example, I’Hospital’s rule. g
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9.3.2 Local Theorems

In this subsection we will obtain analogues of the local Theorems 8.7.2 and 8.7.3 for
large deviations in the Cramér range. To simplify the exposition, we will formulate
the theorem for densities, assuming that the following condition is satisfied:

[D] The distribution F has a bounded density f(x) such that

fx) =e 00 a5 x — o0, if Ay < 00; (9.3.14)

f(x) <ce™™ foranyfixed A >0, c=c(), if Ay =00. (9.3.15)

Since inequalities of the form (9.3.14) and (9.3.15) always hold, by the exponen-
tial Chebyshev inequality, for the right tails

Fy(x) = / Fw)du,

condition [D] is not too restrictive. It only eliminates sharp “bursts” of f(x) as
X — 00.
Denote by f, (x) the density of the distribution of S,,.

Theorem 9.3.3 Let
EE=0, Efl<oo, Ay>0, a=2>ecl0,ap),
n

and condition [D] be met. Then

ean(a)
N2 n

where the remainder term o(1) is uniform in a € [0, o1] for any fixed o1 € (0, o).

Ju(x) = (1+0(D)),

Proof The proof is based on Theorems 9.2.1 and 8.7.2A. Denote by fn(a) (x) the

density of the distribution of S,(,“) . Relation (9.2.3) implies that, for x = an, a €
[a—, @4+], we have

fa () = e M@y (M) £, (x) = &A@ £ (x). (9.3.16)

Since E&@ = &, we see that E(S*) — x) = 0 and the density value f* (x)
coincides with the density of the distribution of the sum S,(Za) — an at the point 0. In
order to use Theorems 8.7.1A and 8.7.2A, we have to verify conditions (a) and (b)
for 6, = oo in these theorems and also the uniform boundedness in « € [0, ;] of

f |06 @) dt (9.3.17)
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for some integer m > 1, where ¢, («)) is the ch.f. of S("‘) (the uniform version of
condition (c) in Theorem 8.7.2). By condition [D] the density

MO f(v)

@ () —
SEO= @)

in bounded uniformly in « € [0, @] (for such o one has A(x) € [0, X1], A =
M(1) < A4). Hence the integral

f (£ ) dv

is also uniformly bounded, and so, by virtue of Parseval’s identity (see Sect. 7.2), is
the integral

/|¢<A<a))(f)|2df-

This means that the required uniform boundedness of integral (9.3.17) is proved
for m = 2.

Conditions (a) and (b) for 6, < oo were verified in the proof of Theorem 9.3.1. It
remains to extend the verification of condition (b) to the case 8, = oco. This can be
done by following an argument very similar to the one used in the proof of Theo-
rem 9.3.1 in the case of finite 6. Let 6, = oco. If we assume that there exist sequences
Ak €10, A4 ] and |#| > 0y such that

[ (i + ity ]
Y (M)

then, by compactness of [0, A ], there will exist sequences )»}C — Ap € [0, A4 ¢]
and 7 such that

W (A + i)l
¥ (Ao)

But by virtue of condition [D] the family of functions ¥ (A + it), t € R, is equicon-
tinuous in A € [0, Ay .]. Therefore, along with (9.3.18), we also have convergence

1. (9.3.18)

[ (Ao + i)l
¥ (Mo)

which contradicts the inequality

-1, |tk = 61 >0,

[ (Ao + i1)]
sup ———— < 1
=6, ¥ (o)

that follows from the existence of density.
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Thus property (b) is proved for 8, = 0o, and we can use Theorem 8.7.2A, which
implies that

@)= — (1 +0()).
In o(M(@)V2rn ( )
This, together with (9.3.16), proves Theorem 9.3.3. Il

Remark 9.3.1 We can see from the proof that, in Theorem 9.3.3, as a more gen-
eral condition instead of condition [D] one could also consider the integrability of
Y™ (A +it) for any fixed A € [0, A{], A1 < A4, or condition [D] imposed on S,,, for
some m > 1.

For arithmetic distributions we cannot assume without loss of generality that
m1 = E& = 0, but that does not change much in the formulations of the assertions.
If Ay > 0, then ey = ¥'(A4+)/¥ (A+) > m; and the scaled deviations & = x/n for
the Cramér range must lie in the region [m 1, o).

Theorem 9.3.4 Let A, > 0, E£% < 0o and the distribution of € be arithmetic. Then,
for integer x,

—nA(x)
PGS, =x)= (1 4+0(1)),
! aa\/27m( )
where the remainder term o(1) is uniform in o« = x/n € [m1, o1] for any fixed o1 €

(ml ) (‘Y+)-
A similar assertion is valid in the case when h_ <0 and o € (e, m1].

Proof The proof does not differ much from that of Theorem 9.3.1. By (9.2.3),
P(S, =x) = e M@y (M())P(S* = x) = e "A@P(S® =x),

where EE(“) =« for o € [m1, ay). In order to compute P(S,(,“) = x) we have to
use Theorem 8.7.3A. The verification of conditions (a) and (b) of Theorem 8.7.1A,
which are assumed to hold in Theorem 8.7.3A, is done in the same way as in the
proof of Theorem 9.3.1, the only difference being that relation (9.3.4) for ¢ty € [0, 7]
will contradict the arithmeticity of the distribution of £. Since a (A («)) = E& @ — @,
by Theorem 8.7.3A we have

P(S® =x) = (1+0(D)

1
ogN 27N

uniformly in « = x/n € [m, @1]. The theorem is proved. O
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9.4 Integro-Local Theorems at the Boundary of the Cramér
Range

9.4.1 Introduction

In this section we again assume that Cramér’s condition A > 0 is met. If oy = 00
then the theorems of Sect. 9.3 describe the large deviation probabilities for any
a = x/n. But if a4y < oo then the approaches of Sect. 9.3 do not enable one to
find the asymptotics of probabilities of large deviations of S,, for scaled deviations
a = x/n in the vicinity of the point o .

In this section we consider the case oy < oo. If in this case A4 = oo, then, by
property (A2)(i), we have oy = sy = sup{t : F1(t) > 0}, and therefore the ran-
dom variables & are bounded from above by the value o, P(S, > x) =0 for
a = x/n > ay. We will not consider this case in what follows. Thus we will study
the case o < 00, A4 < 00.

In the present and the next sections, we will confine ourselves to considering
integro-local theorems in the non-lattice case with A = A, — 0 since, as we saw in
the previous section, local theorems differ from the integro-local theorems only in
that they are simpler. As in Sect. 9.3, the integral theorems can be easily obtained
from the integro-local theorems.

9.4.2 The Probabilities of Large Deviations of S, in an
o(n)-Vicinity of the Point o.yn; the Case " (L) < 00

In this subsection we will study the asymptotics of P(S, € A[x)), x = an, when «
lies in the vicinity of the point a4 < 0o and, moreover, ¥ (A1) < 0o. (The case of
distributions F, for which A, < 00, a4 < 00 and ¥" (Ay) < oo, will be illustrated
later, in Lemma 9.4.1.) Under the above-mentioned conditions, the Cramér trans-
form F; ) is well defined at the point A, and the random variable & ®+) with the
distribution F(; ) has mean o« and a finite variance:

Y04 _ @n_ 2 ¥,
g~ V)= =Sl o

E&©@+) = 9.4.1)

(cf. (9.3.1)).

Theorem 9.4.1 Let & be a non-lattice random variable,
Ay € (0, 00), Y (Ay) < oo, y=x —ain=o(n).

If A, — 0 slowly enough as n — oo then

A” —nA(ay)—Ar y2
P(SneA,,[x)):ge +H74 4V exp —2, +o(1) ),

Og N 2mn o
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where

ol = v(Ay) a2,
oY)

and the remainder term o(1) is uniform in y.

Proof As in the proof of Theorem 9.3.1, we use the Cramér transform, but now at
the fixed point A, so there will be no triangular array scheme when analysing the
sums S,(Z‘X*). In this case the following analogue of Theorem 9.2.1 holds true.

Theorem 9.2.1A Let A4 € (0,00), a4 < 00 and y = x — nay. Then, for x = na
and any fixed A > 0, the following representation is valid:

A
P(S, € Alx)) = e A4y / e IP(S\ —an e dz). (9.4.2)
0

Proof of Theorem 9.2.1A repeats that of Theorem 9.2.1 the only difference being
that, as was already noted, the Cramér transform is now applied at the fixed point A4
which does not depend on o = x/n. In this case, by (9.2.3),

P(S, € dv) :ef)»+v+nan()»+)P(Sr(lO¢+) c dv) _ ean(a+)+)»+(a+n7v)P(Sr(lot+) c dv).
Integrating this equality in v from x to x 4+ A, changing the variable v = x + z

(x = na), and noting that w4 n — v = —y — z, we obtain (9.4.2).
The theorem is proved. d

Let us return to the proof of Theorem 9.4.1. Assuming that A = A, — 0, we
obtain, by Theorem 9.2.1A, that

P(Sy € Aulx)) = e "A@O Y P(SED) _ o ine Auly)(1+0(1).  (94.3)

By virtue of (9.4.1), we can apply Theorem 8.7.1 to evaluate the probability on
the right-hand side of (9.4.3). This theorem implies that, as A,, — 0 slowly enough,

P(S(a+) —aneA [y)) _ Ay ¢< y ) +0<L>
n + n Ja+ﬁ Ua+\/ﬁ «/ﬁ
A

2 1
N2mn ann Jn

Ou

uniformly in y. This, together with (9.4.3), proves Theorem 9.4.1. g
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9.4.3 The Class of Distributions £R. The Probability of Large
Deviations of S, in an o(n)-Vicinity of the Point ayn for
Distributions F from the Class ER in Case ¥ (A;)=00

When studying the asymptotics of P(S,, > an) (or P(S, € A[an))) in the case where
¥ (ML) = 00 and « is in the vicinity of the point oy < 0o, we have to impose
additional conditions on the distribution F similarly to what was done in Sect. 8.8
when studying convergence to stable laws.

To formulate these additional conditions it will be convenient to introduce certain
classes of distributions. If At < oo, then it is natural to represent the right tails F (¢)
as

Fo(t)=e "'V (), (9.4.4)
where, by the exponential Chebyshev inequality, V (1) = e°® as t — oco.
Definition 9.4.1 We will say that the distribution F of a random variable & (or the

random variable & itself) belongs to the class R if its right tail F.(¢) is a regularly
varying function, i.e. can be represented as

FLt)=1"PL@), (9.4.5)
where L is a slowly varying function as t — oo (see also Sect. 8.8 and Appendix 6).

We will say that the distribution F (or the random variable &) belongs to the
class ER if, in the representation (9.4.4), the function V is regularly varying (which
will also be denoted as V € R).

Distributions from the class R have already appeared in Sect. 8.8.

The following assertion explains which distributions from £R correspond to the
cases o = 00, a4 < 00, ¥ (Ay) =00 and ¥ (A1) < 00.

Lemma 9.4.1 Let F € ER. For ay to be finite it is necessary and sufficient that

o
/ tV(t)dt < oo.
1

For y" (A1) to be finite, it is necessary and sufficient that

o0
/ 2V () dt < oo.
1

The assertion of the lemma means that o, < oo if 8 > 2 in the representation
V(t) =t"PL(t), where L is an s.v.f. and a4 = oo if B < 2. For = 2, the finiteness
of a4 is equivalent to the finiteness of || loo t~'L(t)dt. The same is true for the
finiteness of ¥ (A4).
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Proof of Lemma 9.4.1 We first prove the assertion concerning « . Since

_ V'(Ay)
Y(ry)’

we have to estimate the values of ¥'(Ay) and ¥ (A4). The finiteness of ¥/ (A) is
equivalent to that of

o4

—foozerFJr(t)=[Oot(,\+V(t)dr—dV(t)), (9.4.6)
1 1

where, for V(t) = o(1/1),

—/Ooth(t)z V(1)+/OO V(t)dt.
1 1

Hence the finiteness of the integral on the left-hand side of (9.4.6) is equivalent to

that of the sum
o o0
x+/ tV(r)dt+/ V(t)dt
1 1

or, which is the same, to the finiteness of the integral f loo tV(t)dt. Similarly we see
that the finiteness of ¥ (\y) is equivalent to that of f loo V(t)dt. This implies the
assertion of the lemma in the case floo V(t)dt < oo, where one has V(¢) =o(1/1).
If floo V(t)dt = oo, then ¥ (A1) = 0o, Iny(X) — oo as A 1 A4 and hence oy =
lim 45, (Inyr (1)) = oo.

The assertion concerning " (A4) can be proved in exactly the same way. The
lemma is proved. g

The lemma implies the following:

(@) If B <2o0r B=2and floo t~'L(t) = oo, then . = oo and the theorems of the
previous section are applicable to P(S,, > x).

(b) If B>3 or B=3and [t 'L(t)dt < oo, then oy < 00, ¥ (A4) < 0o and
we can apply Theorem 9.4.1.

It remains to consider the case

(c¢) B €[2,3], where the integral [~ t~'L(t)dt is finite for = 2 and is infinite for
B=3.
It is obvious that in case (¢) we have oy < 0o and ¥ (Ay) = o0.
Put
A tV(t _ 1
Vi(t) = AptV(D) b(n) = V' ”<—>,
BY(A4) n

where VJ(:I) (1/n) is the value of the function inverse to V at the point 1/n.
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Theorem 9.4.2 Let & be a non-lattice random variable, F € ER and condition (c)
hold. If A, — 0 slowly enough as n — oo, then, for y =x—o4n = o(n),

A, —nA(o4)—Aryy
PﬁgeAnu»==——5—a;;———<fwL“(E%5>+qnn>,

where fP=11D is the density of the stable law Fg_1,1) with parameters g — 1,1,
and the remainder term o(1) is uniform in y.

We will see from the proof of the theorem that studying the probabilities of large
deviations in the case where o < 0o and ¥”(A4) = oo is basically impossible
outside the class ER, since it is impossible to find theorems on the limiting distribu-
tion of S, in the case Var(§) = oo without the conditions [R,, ,] of Sect. 8.8 being
satisfied.

Proof of Theorem 9.4.2 Condition (c) implies that o, = E£@+) < oo and
Var (€ @+)) = co. We will use Theorem 9.2.1A. For A, — 0 slowly enough we will
obtain, as in the proof of Theorem 9.4.1, that relation (9.4.3) holds true. But now,
in contrast to Theorem 9.4.1, in order to calculate the probability on the right-hand
side of (9.4.3), we have to employ the integro-local Theorem 8.8.3 on convergence
to a stable law. In our case, by the properties of r.v.f.s, one has

1 o0 1 o0
P(g@+) =— / MU F =—/ AL V@w)du —dV
() >1) o) ¢ rw=ge— (A4 V(u)du ()
— )‘7+ —B+1 ~
= 0D t Li(t)~ Vy(t), 9.4.7)

where L (t) ~ L(t) is a slowly varying function. Moreover, the left tail of the distri-
bution F+) decays at least exponentially fast. By virtue of the results of Sect. 8.8,
this means that, for b(n) = Vf__l)(l/ n), we have convergence of the distributions

(a4)
of w to the stable law Fg_; ; with parameters § — 1 € [1,2] and 1. It re-

mains to use representation (9.4.3) and Theorem 8.8.3 which implies that, provided
A, — 0 slowly enough, one has

(@) = A gt (Y o

uniformly in y. The theorem is proved. U

Theorem 9.4.2 concludes the study of probabilities of large deviations of S, /n
in the vicinity of the point o for distributions from the class ER.
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9.4.4 On the Large Deviation Probabilities in the Range o > o
for Distributions from the Class ER

Now assume that the deviations x of S, are such thate = x/n > ay,and y =x —
an grows fast enough (faster than /7 under the conditions of Theorem 9.4.1 and
faster than b(n) under the conditions of Theorem 9.4.2). Then, for the probability

P(S@) —ain e Auly)), (9.4.8)

the deviations y (see representation (9.4.3)) will belong to the zone of large devi-
ations, so applying Theorems 8.7.1 and 8.8.3 to evaluate such probabilities does
not make much sense. Relation (9.4.7) implies that, in the case F € ER, we have
F©@+) € R. Therefore, we will know the asymptotics of the probability (9.4.8) (and
hence also of the probability P(S, € A, [x)), see (9.4.3)) if we obtain integro-local
theorems for the probabilities of large deviations of the sums S, in the case where
the summands belong to the class R. Such theorems are also of independent inter-
est in the present chapter, and the next section will be devoted to them. After that,
in Sect. 9.6 we will return to the problem on large deviation probabilities in the
class &R mentioned in the title of this section.

9.5 Integral and Integro-Local Theorems on Large Deviation
Probabilities for Sums S,, when the Cramér Condition Is not
Met

If E£ = 0 and the right-side Cramér condition is not met (A4 = 0), then the rate
function A(«) degenerates on the right semiaxis: A(x) = A(x) =0 for o > 0, and
the results of Sects. 9.1-9.4 on the probabilities of large deviations of S, are of little
substance. In this case, in order to find the asymptotics of P(S, > x) and P(S, €
Alx)), we need completely different approaches, while finding these asymptotics is
only possible under additional conditions on the behaviour of the tail F,(¢) of the
distribution F, similarly to what happened in Sect. 8.8 when studying convergence
to stable laws.

The above-mentioned additional conditions consist of the assumption that the tail
F. (t) behaves regularly enough. In this section we will assume that F (1) =V (¢) €
R, where R is the class of regularly varying functions introduced in the previous
section (see also Appendix 6). To make the exposition more homogeneous, we will
confine ourselves to the case § > 2, Var(§) < oo, where —f is the power exponent
in the function V € R (see (9.4.5)). Studying the case 8 € [1, 2] (Var(§) = 0o) does
not differ much from the exposition below, but it would significantly increase the
volume of the exposition and complicate the text, and therefore is omitted. Results
for the case B € (0, 2] can be found in [8, Chap. 3].
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9.5.1 Integral Theorems

Integral theorems for probabilities of large deviations of S, and maxima S, =
maxg<n Sk in the case E€ =0, Var(§) < oo, F € R, B > 2, follow immediately from
the bounds obtained in Appendix 8. In particular, Corollaries A8.2.1 and A8.3.1 of
Appendix 8 imply the following result.

Theorem 9.5.1 Let E€ =0, Var(§) < oo, F € R and B > 2. Then, for x > «/nlnn,
P(S, > x) ~P(S, > x) ~nV(x). 9.5.1)

Under an additional condition [Dg] to be introduced below, the assertion of this
theorem will also follow from the integro-local Theorem 9.5.2 (see below).

Comparing Theorem 9.5.1 with the results of Sects. 9.2-9.4 shows that the nature
of the large deviation probabilities is completely different here. Under the Cramér
condition and for @« = x/n € (0, o), the large deviations of S,, are, roughly speak-
ing, “equally contributed to by all the summands” &, k < n. This is confirmed by
the fact that, for a fixed «, the limiting conditional distribution of &, k < n, given
that S,, € A[x) (or S, > x) for x =an, A =1, as n — oo coincides with the distri-
bution F® of the random variable & . The reader can verify this himself/herself
using Theorem 9.3.2. In other words, the conditions {S, € A[x)} (or {S, > x}),
x = an, change equally (from F to F(®) the distributions of all the summands.

However, if the Cramér condition is not met, then under the conditions of The-
orem 9.5.1 the large deviations of S, are essentially due to one large (comparable
with x) jump. This is seen from the fact that the value of nV (x) on the right-hand
side of (9.5.1) is nothing else but the main term of the asymptotics for P(&,, > x),
where En = maxk<p &. Indeed, if nV (x) — O then

PE, <0 =(1-V®) =1-nVx) +0((nVE)?),

PE,>x) =nV(x)+0((nV(x)’) ~nV(x).

In other words, the probabilities of large deviations of S,,, S, and &, are asymp-
totically the same. The fact that the probabilities of the events {§; > y} for y ~ x
play the determining role in finding the asymptotics of P(S, > x) can easily be
discovered in the bounds from Appendix 8.

Thus, while the asymptotics of P(S,, > x) for x = an > /n in the Cramér case
is determined by “the whole distribution F” (as the rate function A(«) depends on
the “the whole distribution F”’), these asymptotics in the case F € R are determined
by the right tail F;(¢) = V(¢) only and do not depend on the “remaining part” of
the distribution F (for the fixed value of E€ = 0).
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9.5.2 Integro-Local Theorems

In this section we will study the asymptotics of P(S,, € A[x)) in the case where
E§ =0, VaréE2 < 00, FeR, B>2, x> +«nlnn.  (9.5.2)

These asymptotics are of independent interest and are also useful, for example, in
finding the asymptotics of integrals of type E(g(S,); S, > x) for x > +/nlnn for
a wide class of functions g. As was already noted (see Subsection 4.4), in the next
section we will use the results from the present section to obtain integro-local theo-
rems under the Cramér condition (for summands from the class £R) for deviations
outside the Cramér zone.

In order to obtain integro-local theorems in this section, we will need additional
conditions. Besides condition F € R, we will also assume that the following holds:

Condition [Dg] For each fixed A, as t — oo,

V) = V+A) =v@)(A+o).  v()= ﬁVt(’).

It is clear that if the function L(¢) in representation (9.4.5) (or the function V (¢))
is differentiable for ¢ large enough and L'(z) = o(L(t)/t) as t — oo (all sufficiently
smooth s.v.f.s possess this property; cf. e.g., polynomials of In¢ etc.), then condi-
tion [Dg] will be satisfied, and the derivative —V’(¢) ~ v(¢) will play the role of the
function v(t).

Theorem 9.5.2 Let conditions (9.5.2) and [Dg] be met. Then

P(S, € Alx)) = Anv(x)(1 +o(),  v(x)= ﬂll(x),

where the remainder term o(1) is uniform in x > N+/nlnn and A € [Aq, A;] for
any fixed Ay > Ay > 0 and any fixed sequence N— 00.

Note that in Theorems 9.5.1 and 9.5.2 we do not assume that n— 00. The as-
sumption that x — oo is contained in (9.5.2).

Proof For y < x, introduce the events
Gp:={Su € AW}, B; =& <y}, B:=(B,. (9.5.3)

Then

P(G,)=P(G,B)+P(G,B), B=| |Bj, 9.5.4)
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where
n n
> P(G.B)=P(G,B) =) P(G,B))~ ) PG,BiB))  (955)
j=1 j=1 i<j<n

(see property 8 in Sect. 9.2.2).

The proof is divided into three stages: the bounding of P(G,B), that of
P(G,B;Bj),i # j, and the evaluation of P(G, B ).

(1) A bound on P(G, B). We will make use of the rough inequality

P(G,B) =P(S, =z x; B) (9.5.6)

and Theorem A8.2.1 of Appendix 8 which implies that, for x = ry with a fixed
r>2,any § >0,and x > Nv/nlnn, N — oo, we have

P(S,>x;B) < (nV(y) . (9.5.7)
Here we can always choose r such that
(nV (1) 7 < nAv(x) (9.5.8)

for x > /n. Indeed, putting n := x? and comparing the powers of x on the right-
hand and left-hand sides of (9.5.8), we obtain that for (9.5.8) to hold it suffices to
choose r such that

Q=B =95 <1-5,

which is equivalent, for 8 > 2, to the inequality.

B—1
r>—:

B—2
For such r, we will have that, by (9.5.6)—(9.5.8),
P(G,B) =o(nAv(x)). (9.5.9)
Since r — 8 > 1, we see that, for n < x2, relations (9.5.8) and (9.5.9) will hold true

all the more. L o
(2) A bound for P(G, B; B ). It is sufficient to bound P(G, B, _1B,). Set

H; :={v: v<(1—k8)x+A}, k=1,2.
Then

P(GnEn—IEn) = / P(S,—2 €dz)
Hy
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Xf P(z+ & edv, & = 6x)P(v+& € Alx), § > 6x).
H,
(9.5.10)

Since in the domain H; we have x — v > §x — A, the last factor on the right-hand
side of (9.5.10) has, by condition [Dg], the form Av(x — v)(1 +0(1)) < cAv(x) as
x — 00, so the integral over H; in (9.5.10), for x large enough, does not exceed

cAv(x)P(z+ &€ H; € >6x) <cAv(x)V(6x).

The integral over the domain H; in (9.5.10) evidently allows a similar bound. Since
nV(x) — 0, we obtain that

Z P(GnE,-Ej) <c Anzv(x)V(x) = O(Anv(x)). (9.5.11)

i<j<n
(3) The evaluation of P(G, B ) is based on the relation
P(GuBy) = / P(S, 1 €d2)P(t € Alx —2), € > bx)

H,

< / P(S,—1 €dz)P(§ € Alx —2))
H;
= A/ P(S,—1 €dz)v(x —z)(1 + o(1)), (9.5.12)
H

which yields

P(G,By) < AE[v(x — Sy—1); Su—1 < (1 = 8)x + A](1 4 o(1))
= Av(x)(1+o(D)). (9.5.13)
The last relation is valid for x > /n, since, by Chebyshev’s inequality, E[v(x —

Su—1); |Sn—1] < M/n] ~v(x) as M — 0o, M\/n = o(x) and, moreover, the fol-
lowing evident bounds hold:

E[v(x — Sp—1); Sp—1 € (M/n, (1 = 8)x + A)] = o(v(x)),

E[u(xr — Sy-1); Suoi1 € (=00, =M y/m)] = 0(v(x)

as M — oo.
Similarly, by (virtue of (9.5.12)) we get

(1=8)x
P(G,B,) > / P(S,—1 €dz)P(§ € Alx —2)) ~ Av(x). (9.5.14)

—00



274 9 Large Deviation Probabilities for Sums of Independent Random Variables

From (9.5.13) and (9.5.14) we obtain that
P(G,B,) = Av(x)(1 +o(1)).
This, together with (9.5.4), (9.5.9) and (9.5.11), yields the representation
P(G,) = Anv(x)(1 4 o(1)).

The required uniformity of the term o(1) clearly follows from the preceding argu-
ment. The theorem is proved. g

Theorem 9.5.2 implies the following

Corollary 9.5.1 Let the conditions of Theorem 9.5.2 be satisfied. Then there exists
a fixed sequence Ay converging to zero slowly enough as N — oo such that the

assertion of Theorem 9.5.2 remains true when the segment [A1, Az] is replaced in
it with [An, A2].

9.6 Integro-Local Theorems on the Probabilities of Large
Deviations of S,, Outside the Cramér Range (Under the
Cramér Condition)

We return to the case where the Cramér condition is met. In Sects. 9.3 and 9.4
we obtained integro-local theorems for deviations inside and on the boundary of
the Cramér range. It remains to study the asymptotics of P(S, € A[x)) outside
the Cramér range, i.e. for « = x/n > o4 . Preliminary observations concerning this
problem were made in Sect. 9.4.4 where it was reduced to integro-local theorems
for the sums §,, when Cramér’s condition is not satisfied. Recall that in that case we
had to restrict ourselves to considering distributions from the class £R defined in
Sect. 9.4.3 (see (9.4.4)).

Theorem 9.6.1 Let FeER, B >3, a=x/n>ay andy =x —ayn > /n. Then
there exists a fixed sequence Ay converging to zero slowly enough as N — 00, such
that

P(S, € Anlx)) = e A Anu (0)(1 + o(1))
=" DnAyvy()(1+o0(1),

where v (y) = AV (y) /W (Ay), the remainder term o(1) is uniform in x and n such
that y > N+/nlnn, N being an arbitrary fixed sequence tending to oo.

Proof By Theorem 9.2.1A there exists a sequence Ay converging to zero slowly
enough such that (cf. (9.4.3))

P(S, € Ay[x)) = e "ACOTAYP(SI _ o n e Anly)). 9.6.1)
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Since by properties (A1) and (A2) the function A () is linear for o > o4 :

Ala) = Alay) + (@ —aq)Ay,
the exponent in (9.6.1) can be rewritten as

—nA(ay) —Ary = —nA(w).

The right tail of the distribution of & @+) has the form (see (9.4.7))

A o0
P20 = o [ Vadu+ v

By the properties of regularly varying functions (see Appendix 6),
V)=Vt —u)=o(V())

as t — oo for any fixed u. This implies that condition [Dg] of Sect. 9.5 is satisfied
for the distribution of &(®+).

This means that, in order to calculate the probability on the right-hand side
of (9.6.1), we can use Theorem 9.5.2 and Corollary 9.5.1, by virtue of which, as
Apn — 0 slowly enough,

P(5, —ayn e Aly)) =nAyvi (1 +o(1),

where the remainder term o(1) is uniform in all x and » such that y > N+/nlnn,
N — oo.
The theorem is proved. g

Since P(S, € An[x)) decreases exponentially fast as x (or y) grows (note the
factor e~*+Y in (9.6.1)), Theorem 9.6.1 immediately implies the following integral
theorem.

Corollary 9.6.1 Under the conditions of Theorem 9.6.1,

A V()

P(S,>x)=
Sn= )= o

(14 o0(1)).

Proof Represent the probability P(S, > x) as the sum

P(S, > x) =) P(S, € Aylx +kAy))
k=0

ni ad
~ oA w(;—) Z ANV (y + ANk)e_)”rANk.
k=0
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Here the series on the right-hand side is asymptotically equivalent, as N — oo, to

the integral
o0
\%
V(y)f eitdr = L2
0 Ay

The corollary is proved. g

Note that a similar corollary (i.e. the integral theorem) can be obtained under the
conditions of Theorem 9.4.2 as well.

In the range of deviations o = jl—‘ > a4, only the case F € ER, B € [2, 3] (recall
that oy = oo for B < 2) has not been considered in this text. As we have already
said, it could also be considered, but that would significantly increase the length and
complexity of the exposition. Results dealing with this case can be found in [8]; one
can also find there a more complete study of large deviation probabilities.



Chapter 10
Renewal Processes

Abstract This is the first chapter in the book to deal with random processes in con-
tinuous time, namely, with the so-called renewal processes. Section 10.1 establishes
the basic terminology and proves the integral renewal theorem in the case of non-
identically distributed random variables. The classical Key Renewal Theorem in the
arithmetic case is proved in Sect. 10.2, including its extension to the case where
random variables can assume negative values. The limiting behaviour of the excess
and defect of a random walk at a growing level is established in Sect. 10.3. Then
these results are extended to the non-arithmetic case in Sect. 10.4. Section 10.5 is
devoted to the Law of Large Numbers and the Central Limit Theorem for renewal
processes. It also contains the proofs of these laws for the maxima of sums of in-
dependent non-identically distributed random variables that can take values of both
signs, and a local limit theorem for the first hitting time of a growing level. The chap-
ter ends with Sect. 10.6 introducing generalised (compound) renewal processes and
establishing for them the Central Limit Theorem, in both integral and integro-local
forms.

10.1 Renewal Processes. Renewal Functions

10.1.1 Introduction

The sequence of sums of random variables {S,}, considered in previous chapters, is
often called a random walk. It can be considered as the simplest random process in
discrete time n. The further study of such processes is contained in Chaps. 11, 12
and 20.

In this chapter we consider the simplest processes in continuous time t that are
also entirely determined by a sequence of independent random variables and do
not require, for their construction, any special structures (in the general case such
constructions will be needed; see Chap. 18).

Let 71, {7 j}?iz be a sequence of independent random variables given on a prob-
ability space (§2, §, P) (here we change our conventional notations &; to t; for rea-
sons that will become clear in Sect. 10.6, where &; appear again). For the random
variables 17, 73, ... we will usually assume some homogeneity property: proximity
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of the expectations or identical distributions. The random variable t; can be arbi-
trary.

Definition 10.1.1 A renewal process is a collection of random variables n(t) de-
pending on a parameter ¢ and defined on (£2, §, P) by the equality

n):=min{k >0:T, >1t}, t>0, (10.1.1)

where
k
T :=er, Ty :=0.
j=1

The variables 7(¢) are not completely defined yet. We do not know what () is
for w such that the level ¢ is never reached by the sequence of sums 7. In that case
it is natural to put

n(t) =00 ifall Ty <t. (10.1.2)

Clearly, n(¢) is a stopping time (see Sect. 4.4).

Usually the random variables 12, 73, ... are assumed to be identically distributed
with a finite expectation. The distribution of the random variable 7| can be arbitrary.

We assume first that all the random variables t; are positive. Then definition
(10.1.1) allows us to consider n(¢) as a random function that can be described
as follows. If we plot the points Top = 0, T1, T, ... on the real line, then one has
n(¢) = 0 on the semi-axis (—o0, 0), n(z) = 1 on the semi-interval [0, T7), n(¢) =2
on the semi-interval [T}, T) and so on.

The sequence {Tx}72,, is also often called a renewal process. Sometimes we will
call the sequence {T;} a random walk. The quantity n(¢) can also be called the first
passage time of the level 7 by the random walk {7 }72.

If, based on the sequence {7}, we construct a random walk 7 (x) in continuous
time:

Tx):=T, forxelk,k+1), k>0,
then the renewal process 1n(t) will be the generalised inverse of T (x):
n(t) :inf{x >0:T(x) > t}.

The term “renewal process” is related to the fact that the function 7 () and the
sequence {7} } are often used to describe the operation of various physical devices
comprising replaceable components. If, say, t; is the failure-free operating time
of such a component, after which the latter requires either replacement or repair
(“renewal”, which is supposed to happen immediately), then 7} will denote the time
of the k-th “renewal” of the component, while n(¢) will be equal to the number of
“renewals” which have occurred by the time 7.
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Remark 10.1.1 1If the j-th renewal of the component does not happen immediately
but requires a time r;. > (, then, introducing the random variables

k
T = rj+r}, T ::Zr}‘, n* () :=min{k : T > 1},

j=1
we get an object of the same nature as before, with nearly the same physical mean-
ing. For such an object, a number of additional results can be obtained, see e.g.,
Remark 10.3.1.

Renewal processes are also quite often used in probabilistic research per se, and
also when studying other processes for which there exist so-called “regeneration
times” after which the evolution of the process starts anew. Below we will encounter
examples of such use of renewal processes.

Now we return to the general case where 7; may assume both positive and nega-
tive values.

Definition 10.1.2 The function

H():=En(), =0,

is called the renewal function for the sequence {Ty}72.
In the existing literature, another definition is used more frequently.

Definition 10.1.2A The renewal function for the sequence {Ti )32 is defined by

U):=Y P(T; <1).

j=0

The values of H (1) and T () can be infinite.
If T; > 0 then the above definitions are equivalent. Indeed, for ¢ > 0, consider
the random variable
v(t) :=max{k: T <t} =n() — 1.

Then clearly

o0

ZI(Tj <t)=1+v(),

j=0
where I(A) is the indicator of the event A, and

Uit)=14+Ev(®t)=En(kt)=H(1).
The value U (¢) = Ev(¢) + 1 is the mean time spent by the trajectory {7; }ﬁo in the
interval [0, ¢].
If Tj can take values of different signs then clearly v(¢) > n(¢) and, with a pos-

itive probability, v(z) > n(¢) (the trajectory {7}, after crossing the level ¢, can re-
turn to the region (—o0, ¢]). Therefore in that case U(¢) > H (¢). Thus for t; taking
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values of different signs we have two versions of the renewal function given in Def-
initions 10.1.2 and 10.1.2A. We will call them the first and the second versions,
respectively. In the present chapter we will consider the first version only (Defini-
tion 10.1.2). The second version is discussed in Appendix 9.

Note that, for 7; assuming values of both signs and ¢ < 0, we have H(t) =0,
U (t) > 0, so the function H (¢) has a jump of magnitude 1 at the point r = 0.

Note also that the functions H(t) and U(f) we defined above are right-
continuous. In the existing literature, one often considers left-continuous versions
of renewal functions defined respectively as

o
H(t—0)=Eminfk: Sy >1) and U(t—0)=Y P(S; <1).
j=0
If all 7; are identically distributed and F * (1) is the k-fold convolution of the dis-

tribution function F(¢t) = P(§; < t), then the second left-continuous version of the
renewal function can also be represented in the form

> P,
k=0

where F* corresponds to the distribution degenerate at zero.

From the point of view of the exposition below, it makes no difference which
version of continuity is chosen. For several reasons, in the present chapter it will be
more convenient for us to deal with right-continuous renewal functions. Everything
below will equally apply to left-continuous renewal functions as well.

10.1.2 The Integral Renewal Theorem for Non-identically
Distributed Summands

In the case where 7;, j > 2, are not necessarily identically distributed and do not
possess other homogeneity properties, singling out the random variable t; makes
little sense.

Theorem 10.1.1 Let tj, j > 1, be uniformly integrable from the right, E|Ty| < 0o
for any fixed N and ay = Ety — a > 0 as k — oo. Then the following limit exists

lim 20 _ 1 (10.1.3)

—>0o0 t a

Proof We will need the following definition.

Definition 10.1.3 The random variable
x() = Tn(t) —t>0

is said to be the excess of the level ¢ (or overshoot over the level ) for the random
walk {T}}.
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Lemma 10.1.1 If a; € [ay, a*], ax > 0, then

t En(t 1
En(t)>—, limsup no _ 1 (10.1.4)
a

t—00 t A

Proof By Theorem 4.4.2 (see also Example 4.4.3)
ETyo=1+Ex() <a"En().

This implies the first inequality in (10.1.4). Now introduce truncated random vari-

ables r;S) :=min(z;, s). By virtue of the uniform integrability, one can choose an s

such that, for a given ¢ € (0, a,), we would have
ajs:= Et](s) >q, —&.
Then, by Theorem 4.4.2,
145 ET) = (ax—o)En®,

where

n
TS = Z r}s), 0 () := min{k : Tk(s) >t}
j=1

Since 1(t) < n®)(z), one has

t+s

H(t) =En() <En®@) < . (10.1.5)
a, — €
As ¢ > 0 can be chosen arbitrarily, we obtain that
H(t 1
lim sup @) < —
t—00 t Ax
The lemma is proved. g

We return to the proof of Theorem 10.1.1. For a given ¢ > 0, find an N such
that ay € [a — ¢,a + ¢] for all k > N and denote by Hy(¢) the renewal function
corresponding to the sequence {tyx};- ;. Then

t

H(@t)=E(n(); Ty > 1) +f P(Ty € du)[N + Hy(t —u)]

—0o0

=E[Hn( —Tn); Ty <t]+rw, (10.1.6)
where
ry = E(n(t); Ty > t) + NP(Ty <t) < NP(Ty >t)+ NP(Ty <t)=N.
Relation (10.1.5) implies that there exist constants cp, ¢z, such that, for all ¢,
Hy(t) <ci+cat.

Therefore, for fixed N and M,
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Ry.m :=E[Hy(@ —Ty): |Tn| = M, Ty <1]
< (c1 +a)P(ITy| = M, Ty <1) + c2E|Ty|.
Choose an M such that coP(|Ty| > M) < e. Then

ry + R
N NM _

lim sup
—>00

To bound H(¢) in (10.1.6) it remains to consider, for the chosen N and M, the
function

(10.1.7)

Hym() :=E[Hy(t — Ty); |Ty| < M].
By Lemma 10.1.1,

H t 1
limsup Z¥M® 1
t—00 t a—E¢&
H t P(T M 1
liminf N,m(f) . (ITn| < M) . +8/Cl.
1—00 t a-+é a+te
This together with (10.1.6) and (10.1.7) yields
t 1 H(t 1—
lim sup ) <e+ , liminf @) > ( 8/62).
t—00 t a—ée t—00 t a—+é¢

Since ¢ is arbitrary, the foregoing implies (10.1.3).
The theorem is proved. d

Remark 10.1.2 One can obtain the following generalisation of Theorem 10.1.1, in
which no restrictions on t; > 0 are imposed. Let t1 be an arbitrary nonnegative
random variable, and T} = t14; satisfy the conditions of Theorem 10.1.1. Then
(10.1.3) still holds true.”
This assertion follows from the relations
t

H(t) =P(t; >t)+/ P(t; € dv)H*(t — v), (10.1.8)
0

where H*(t) corresponds to the sequence {t*} and, for each fixed N and v < N,
P q ]

H*(t—v) H*(t—v) t—v
= . _) p—
1 tr—v t a
as t — oo. Therefore

N
%/ P(e; € dv)H (1 —v) — DL=N).
0

For the remaining part of the integral in (10.1.8), we have

1 /f H*(t) P(t; > N)
—

limsup— | P(t; €dv)H*(t — v) <limsup P(t; > N) =
t— 00 t N t— 00 t

Since the probability P(r; > N) can be made arbitrarily small by the choice of N,

the assertion is proved. g
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It is not difficult to verify that the condition 71 > 0 can be relaxed to the condition
Emin(0, 71) > —o0. However, if Emin(0, t;) = —o0, then H(t) = oo and relation
(10.1.3) does not hold.

Obtaining an analogue of Theorem 10.1.1 for the second version U(¢) of the
renewal function in the case of uniformly integrable t; taking values of both signs is
accompanied by greater technical difficulties and additional conditions. For a fixed
& > 0, split the series U (1) = ZZO=0 P(T,, <t) into the three parts

PIEED DD DD DD IS D I
PRgIt= ln—Z1<% n> 1010
By the law of large numbers (see Corollary 8.3.2),
T,

p
— —>da.
n

Therefore, for n < t(lu—_g),

P(TnSt)zP<Tns na >—>1

and hence

1 1—¢
PIEES
t 1 a
The second sum allows the trivial bound
1 2¢
PIEE
t 2 a
where the right-hand side can be made arbitrarily small by the choice of ¢.
The main difficulties are related to estimating ) 5. To illustrate the problems

arising here we confine ourselves to the case of identically distributed ; 4
this case the required estimate for ) ; can only be obtained under the condition
E(r_)2 < 00, 7~ :=max(0, —7). Assume without losing generality that Et2<oo.
(If E(t1)? = 00, 71 := max(0, 7), then introducing truncated random variables

‘L']( ) = min(s, T;), we obtain, using obvious conventions concerning notations, that

P(T, <t) <P(T, <1), U@) <UD (1) and 35 < 33, where E(r®))? < o0 and
the value of Et® can be made arbitrarily close to a by the choice of s.) In the
case Et? < 0o we can use Theorem 9.5.1 by virtue of which, for a regularly vary-
ing left tail W(r) =P(r < —t) =t PL(t) (L(1) is a slowly varying function) and
n>L(1+¢), wehave

P(T, <t)=P(T, —an < —(an —1)) ~nW(an —1).

By the properties of slowly varying functions (see Appendix 6), for the values
u =n/t comparable to 1, n > é(l +¢) and t — 0o, we have

W(an—t)N au—1\"*
W (et) ( P ) '
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Thus for 8 > 2, as t — oo,

Zgz Z P(T,,gz)»v/ oy VW@ =) dv

V>
n> (1-{;8)1 a

00 _ -B
~z2W(m)ﬁ+ u[aue 1} di~ c(€)2W (1) = o(1).

Summarising, we have obtained that

Ul 1
lim — =

t—oo f a.

Now if E(r_)2 = oo then U(t) = oo for all ¢. In this case, instead of U () one
studies the “local” renewal function

Ut.h)y =) P(T, € (t,t +h))

which is always finite provided that a > 0 and has all the properties of the increment
H(t 4+ h) — H(t) to be studied below (see e.g. [12]).

In view of the foregoing and since the function H (¢) will be of principal interest
to us, in what follows we will restrict ourselves to studying the first version of the
renewal function, as was noted above. We will mainly pay attention to the asymp-
totic behaviour of the increments H (¢t + h) — H(t) as t — oo. To this is closely
related a more general problem that often appears in applications: the problem on
the asymptotic behaviour as + — oo of integrals (see e.g. Chap. 13)

t
/0 gt —y)dH(y) (10.1.9)

for functions g(v) such that

/oog(v)dv < 00.
0

Theorems describing the asymptotic behaviour of (10.1.9) will be called the key
renewal theorems. The next sections and Appendix 9 will be devoted to these theo-
rems. Due to the technical complexity of the mentioned problems, we will confine
ourselves to considering only the case where 1, j > 2, are identically distributed.

Note that in some special cases the above problems can be solved in a very simple
way, since the renewal function H (¢) can be found there explicitly. To do this, as it
follows from Wald’s identity used above, it suffices to find Ex (¢) in explicit form.
If, for instance, t; are integer-valued, P(z; = 1) > 0 and P(z; > 2) = 0, for all
Jj =1, then x (#) = 1 and Wald’s identity yields H (t) = (¢t + 1) /a. Similar equalities
will hold if P(z; > t) = ce™ "' for t > 0 and y > O (if 7; are integer-valued, then ¢
takes only integer values in this formula). In that case the distribution of x () will
be exponential and will not depend on ¢ (for more details, see the exposition below
and also Chap. 15).
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10.2 The Key Renewal Theorem in the Arithmetic Case

We will distinguish between two distribution types for t;: arithmetic in an extended
sense (when the lattice span is not necessary 1; for the definition of arithmetic distri-
butions see Sect. 7.1) and all other distributions that we will call non-arithmetic. It is
clear that, say, a random variable taking values 1 and +/2 with positive probabilities
cannot be arithmetic.

In the present section, we will consider the arithmetic case. Without loss of gener-
ality, we will assume that the lattice span is 1. Then the functions P(z; < t) and H ()
will be completely determined by their values at integer points t =k, k=0,1,2....

. . .. d .
First we consider the case where the t; are positive, t; =t for j > 2. In that
case, the difference

hk):=Hk) —Hk—1)=Y P(Tj=k), k=1,
j=0

is equal to the expectation of the number of visits of the point k by the walk {7}
Put

qr =P(11 =k), pr =P(r =k).

Definition 10.2.1 A renewal process 7(¢) will be called homogeneous and denoted
by no(?) if

100 o0
=— i, k=1,2,..., =Er, that =1]). 10.2.1
w=t3n o-pe. (som 3a=1). oz

If we denote by p(z) the generating function

o
p@)=E =) p,
k=1

then the generating function ¢(z) = Ez5' = 322 | qxz* will be equal to
j—1 0 .
IS _ign i 1= 21— p)
Q(Z)Z— Z p=— p z = — p — .
a/; ;J a;]; agjl—z a(l—7z2)

As we will see below, the term “homogeneous” for the process 1o (?) is quite justi-
fied. One of the reasons for its use is the following exact (non-asymptotic) equality.

Theorem 10.2.1 For a homogeneous renewal process ny(t), one has

k
Ho(k) :=Enok) =1+ P

Proof Consider the generating function r(z) for the sequence ho(k) = Hy(k) —
Hy(k —1):
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r@@) = Z dhot) =) Y P =0

j=lk=1

T _ j q(z) __z
; q(z)Zp Q=15 a0

j=0

8

This implies that ho(k) = 1/a. Since Hy(0) = 1, one has Hyg(k) =1 + k/a. The
theorem is proved. O

Sometimes the process no(t) is also called stationary. As we will see below,
it would be more appropriate to call it a process with stationary increments (see
Sect. 22.1).

The asymptotic regular behaviour of the function 4 (k) as k — oo persists in the
case of arbitrary t; as well.

Denote by d the greatest common divisor (g.c.d.) of the possible values of t:

d:=g.cd.ik: pr >0},

and let g(k), k=0, 1, ..., be an arbitrary sequence such that

o0

Z}g(k)| < 00.

k=0

Theorem 10.2.2 (The key renewal theorem) If d = 1, t| is an arbitrary integer-

valued random variable and T 4 T > 0for j > 2, then, as k — 00,

1
h(k) == H@k) = Hlk= 1) — —, Zh(l)g(k o Z g(m).

m 0

These two relations are equivalent.
The first assertion of the theorem is also called the local renewal theorem.
To prove the theorem we will need two auxiliary assertions.

Lemma 10.2.1 Let all t; be identically distributed and v > 1 be a Markov
time with respect to the collection of o-algebras {F,}, where F, is independent
of o (Ty+1, Tht2, -..). Then the o-algebra generated by the random variables v,
71, ..., Ty, and the o-algebra o{t,4+1, Ty42,...} are independent. The sequence
{tv+1, Tv42, ...} has the same distribution as {11, 12, .. .}.

Thus, in spite of their random numbers, the elements of the sequence 7, ; are
distributed as ;.

Proof For given Borel sets By, B>, ..., Cy,Co,...put

A:={ve N, 11€By,...,17) € B}, D, :={ty41€Cy,..., T4k € Ck},
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where N is a given set of integers and k is arbitrary. Since P(D;) = P(Dyp) and the
events D; and {v = j} are independent, the total probability formula yields

o o
P(D,)=) P(v=j.Dj)=Y P(v=j)P(D;)=P(Dy).
j=1 j=1
Therefore, by Theorem 3.4.3, in order to prove the required independence of the
o -algebras, it suffices to show that P(D, A) =P(Dy)P(A).
By the total probability formula,

P(D,A) = ZP(DUA{U =j}) = ZP(DjA{v = j}).
jeN JjeN
But the event A{v = j} belongs to F;, whereas D; € 0 (71, ..., Tj4x). Therefore
D; and A{v = j} are independent events and

P(D; A{v = j}) =P(D/)P(A{v = j}) =P(D)P(A{v = j}), j=>1.
From here it clearly follows that P(D, A) = P(Dg)P(A). The lemma is proved. [

Lemma 10.2.2 Let 1, ¢2, ... be independent arithmetic identically and symmet-
rically distributed random variables with zero expectation E¢; = 0. Put Z, :=
> =1 ¢;- Then, for any integer k,

Vi :=min{n : Z, =k}

is a proper random variable: P(vy < 00) = 1.
The proof of the lemma is given in Sect. 13.3 (see Corollary 13.3.1).

Proof of Theorem 10.2.2 Consider two independent sequences of random vari-
ables (we assume that they are given on a common probability space): a sequence

71, T2, ..., where 71 has an arbitrary distribution, and a sequence r{ , rﬁ, ..., Where
P(t'1 =k) = gk (see (10.2.1)), and P(z'; = k) =P(r; = k) = pi for j > 2 (so that
r]/. 4 7; for j > 2; the process n'(t) constructed from the sums 7} = 21;21 ‘L’]/- is

homogeneous (see Definition 10.2.1)).
Set v:=min{n > 1: T, = T,}. It is clearly a Markov time with respect to the
sequence {1}, tj’.}. We show that P(v < 0c0) = 1. Put

n
Zy = Z(rj - rj/) forn>2, Z,:=0, Zp:=1 — 1.
j=2
Then
v=min{n >1:Z, =—Zp}.
By Lemma 10.2.2 (¢; = 7; — =/ have a symmetric distribution for j > 2), for each
integer k the variable vy = min{n > 1: Z, = k} is proper. Since Z, for n > 1 and
Z i are independent, we have
P(v < 00) = ZP(ZO = —k)P(yx <o0) = 1.
k
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Now we will “glue together” (“couple”) the sequences {T,} and {7,}. Since
T, = T‘j and v is a Markov time, by Lemma 10.2.1 one can replace t,41, Ty42, - -
with 7/ 1 T 42, -~ (and thereby replace 7,41, Ty42 with T, ,.T, 42, -+ +) Without
changing the distribution of the sequence {7},}.

Therefore, on the set {T,, < k} one has n(t) = n'(¢) for t > k — 1 and hence

h(k) =E(n(k) —n(k — 1))
=E[n'(k) —n'(k = 1); T, <k] +E[n(k) = n(k = 1); T, > k]

+10

1
=~ —E[N'(®) = n'tk=1); T, = k] + E[n(0) = n(k = ; T, = k].
Since |n(k) —n(k — 1)| <1, we have

1
h(k) — —| <P(T, = k) - 0
a

as k — oo. The first assertion of Theorem 10.2.2 is proved.
Since h(k) < 1, we can make the value of

k—N k—1 0
D gk =Dl < > e = D |2
=1 I=N+1 I=N+1

arbitrarily small by choosing an appropriate N. Moreover, by virtue of the first as-
sertion, for any fixed N,

k 1 N
> h(l)g(k—l)—>;2g(l) as k — oo.

I=k—N 1=0
This implies the second assertion of the theorem. g

Remark 10.2.1 The coupling of {T,,} and {7} in the proof of Theorem 10.2.2 could
be done earlier, at the time y :=min{n > 1:T,, € T'}, where T’ is the set of points
T ={T/, TZ’,...}.

Theorem 10.2.3 The assertion of Theorem 10.2.2 remains true for arbitrary (as-
suming values of different signs) t;.

Proof We will reduce the problem to the case t; > 0. First let all t; be identi-
cally distributed. Consider the random variable x; = x (0) that we will call the first
positive sum. We will show in Chap. 12 (see Corollary 12.2.3) that Ex; < oo if
a =Et; < 00. According to Lemma 10.2.1, the sequence 7, 0)+1, Ty0)+2, - - - Will
have the same distribution as 71, 72, . ... Therefore the “second positive sum” yx; or,
which is the same, the first positive sum of the variables t,0)+1, Ty©)+2, ... Will
have the same distribution as x; and will be independent of it. The same will be true
for the subsequent “overshoots” over the already achieved levels xi1, x1 + x2, ...
Now consider the random walk

e¢]

k=1
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and put
n*(¢) ;== min{k : Hy > t}, x*(t) == Hyp ) — 1, H*@) :=En*(@).
Since x; > 0, Theorem 10.2.2 is applicable, and therefore by Wald’s identity
1 1
H*(k)—H*"k—1)==—(1+Ex*k) —Ex*(k— 1)) > —,
Exi ( ) Exi
Ex*(k) —Ex*(k—1)— 0.

Note now that the distributions of the random variables y () (see Definition 10.1.3)
and x*(¢) coincide. Therefore

1
Hk) = Hk = 1) = —(1+Ex () — Ex(k — 1))

1 1
=—(1+Ex*(k) —Ex*(k— 1) - —.

a a

Now let the distributions of 71 and 7;, j > 2, be different. Then the renewal
function H(t) for such a walk will be equal to

k k

Hi(k)y=1+ Y Pam=d[Hk-i)+1]=1+ Y P =i)Hk-i),
Z k i

hi(k)=Hy(k) — Hi(k—1)= Z P(ry =i)h(k —i), k=0,

where Hi(—1) =0, h(0) = H(0) and the function H(¢) corresponds to identically
distributed ;. If we had h(k) < ¢ < oo for all k, that would imply convergence
h1(k) — 1/a and thus complete the proof of the theorem.

The required inequality h(k) < ¢ actually follows from the following gen-
eral proposition which is true for arbitrary (not necessarily lattice) random vari-
ables ;. O

Lemma 10.2.3 Ifall t; are identically distributed then, for all t and u,

H(+u)—H@) <H®W) <ci+cu.

Proof The difference n (¢t + u) — n(¢) is the number of jumps of the trajectory {fk}
that started at the point # + x (f) > ¢ until the first passage of the level r 4+ u, where
the sequence {Tk} has the same distribution as {7} and is independent of it (see
Lemma 10.2.1). In other words, 1(t + u) — n(«) has the same distribution as 7 (r —
x (1)) < 7(t), where 7 corresponds to {Tk} if x(#) <uandton(+u)—n()=0
if x(t) > u. Therefore H(t + u) — H(t) < H(u). The inequality for H (u) follows
from Theorem 10.2.1. The lemma is proved. 0

Theorem 10.2.3 is proved. g
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10.3 The Excess and Defect of a Random Walk. Their Limiting
Distribution in the Arithmetic Case

Along with the excess x(t) = Tj;) — t we introduce one more random variable
closely related to y (¢).

Definition 10.3.1 The random variable
y@) =t —=Typ-1=t— Ty
is called the defect (or undershoot) of the level t in the walk {7},}.

The quantity x (f) may be thought of as the time during which the component
that was working at time ¢ will continue working after that time, while y (¢) is the
time for which the component has already been working by that time.

One should not think that the sum x (¢) + y (¢) has the same distribution as 7;—
this sum is actually equal to the value of a t with the random subscript n(t). In
particular, as we will see below, it may turn out that Ex (#) > Et; for large . The
following apparent paradox is related to this fact. A passenger coming to a bus stop
at which buses arrive with inter-arrival times 71 > 0, 72 > 0, ... (Et; = a), will wait
for the arrival of the next bus for a random time x of which the mean Ex could
prove to be greater than a.

One of the principal facts of renewal theory is the assertion that, under broad
assumptions, the joint distribution of y () and y (¢) has a limit as r — oo, so that
for large t the distribution of x(¢#) does not depend on ¢ any more and becomes
stationary. Denote this limiting distribution of x () by G and its distribution function
by G:

G(x) = lim P(x(r) <x). (10.3.1)

If we take the distribution of 77 to be G then, for such process, by its very construc-
tion the distribution of the variable x (t) will be independent of ¢. Indeed, in that
case we can think of the positive elements of {7} as the renewal times for a process
which is constructed from the sequence {7;} and of which the start is shifted to a
point —N, where N is very large. Since by virtue of (10.3.1) we can assume that
the distributions of y (N) and x (N + t) coincide with each other, the distribution of
the variable x () (which can be identified with x (N + 7)) is independent of ¢ and
coincides with that of 7;. A formal proof of this fact is omitted, since it will not be
used in what follows. However, the reader could carry it out using the explicit form
of G(x) from (10.3.1) to be derived below.

In the arithmetic case, the distribution G is just the law (10.2.1) used to construct
the homogeneous renewal process no(#). We will prove this in our next theorem.

It follows from the fact that, for the process 1 (t), the distribution of x (¢) does
not depend on ¢ and coincides with that of 71, that the distribution of no(t + u) —
no(t) coincides with that of no(x) and hence is also independent of ¢. It is this
property that establishes the stationarity of the increments of the renewal process;
we called this property homogeneity. It means that the distribution of the number of
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renewals over a time interval of length u does not depend on when we start counting,
and therefore depends on u only.

Theorems on the limiting distribution of x(¢) and y (¢) are of interest not only
from the point of view of their applications. We will need them for a variety of other
problems. Again we consider first the case when the variables 7; > 0 are arithmetic.
In that case the “time” can also be assumed discrete and we will denote it, as before,

by the letters n and k. Let, as before, 7; 4 T for j > 2 and py =P(zr =k).

Theorem 10.3.1 Let the random variable t > 0 be arithmetic, Et = a exist, T| be
an arbitrary integer random variable, and the g.c.d. of the possible values of T be
equal to 1. Then the following limit exists

lim P(y(k) =i, x(k)=j) =22 i>0, j>0. (103.2)
k— 00 a

It follows from Theorem 10.3.1 that
100
lim P(x (k) =i)=— i, >0
R WAE
S (10.3.3)
lim P(y (k) =i)=— i, j=>0.
Jim P(y (k) =) a.z P J=

Proof of Theorem 10.3.1 By the renewal theorem (see Theorem 10.2.2), for k > i,

o]

P(y() =i, x(k)=j) =) P(Ti=k—i, up1=i+j)

N
I
-

Di+j

M

Pl =k—DP(x =i+ j)=hk—i)piyj—

N
I
N

as k — o0o. The theorem is proved. O

If Et2 = my < oo, then Theorem 10.3.1 allows a refinement of Theorem 10.2.2
(see Theorem 10.3.2 below).

Corollary 10.3.1 If my < oo, then the random variables y (k) are uniformly inte-
grable and

x (k) —> = Z Z as k — oo. (10.3.4)
i=0 j=i

Proof The uniform integrability follows from the inequalities i (k) < 1,

(x o) =J) Zh(k —i)piy) < Zp,

This implies (10.3.4) (see Sect. 6.1). O
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Now we can state a refined version of the integral theorem that implies Theo-
rem 10.2.2.

Theorem 10.3.2 If all T; are identically distributed and Et? =mj < oo, then

my+a
2a?

Hk) = g + +o(1)

as k — oo.

The Proof immediately follows from the Wald identity

k+Eyx(k
H (k) = En(k) = +TX()

and Corollary 10.3.1. 0

Remark 10.3.1 For the process n*(#) corresponding to nonzero times t’; required
for components’ renewals (mentioned in Remark 10.1.1), the reader can easily find,
similarly to Theorem 10.3.1, not only the asymptotic value p;;/a* of the proba-
bility that at time kK — oo the current component has already worked for time i and
will still work for time j, but also the asymptotics of the probability that the com-
ponent has been “under repair” for time i and will stay in that state for time j, that
is given by plfﬂ./a*, where p| = P(t/’. =i),a*=E(tj + t.;) =Kt}

Now consider the question of under what circumstances the distribution of the
random variable 7; for the homogeneous process (i.e. the distribution of what one
could denote by x (c0)) will coincide with that of 7; for j > 2. Such a coincidence
is equivalent to the equality

100
pi:;;pj

fori =1, 2,..., or, which is the same, to

a—1 1 (fa—1)
a(pi — pi-1) =—pi-1, pi= pi—1, pi=—— .
a a—1 a

This means that the renewal process generated by the sequence of independent iden-
tically distributed random variables 71, 15, ... is homogeneous if and only if 7; (or,
more precisely, ;1) have the geometric distribution.

Denote by y and x the random variables having distribution (10.3.2). Using
(10.3.1), it is not hard to show that y and x are independent also only in the case
when 1;, j > 2, have the geometric distribution. When all 7;, j > 1, have such a

distribution, y (n) and x (n) are also independent, and x (n) 4 71. These facts can be
proved in exactly the same way as for the exponential distribution (see Sect. 10.4).

We now return to the general case and recall that if Et? < oo then (see Corol-
lary 10.3.1)

Et?2 1
Ex:T

2a 2
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This means, in particular, that if the distribution of 7 is such that Et? > 242 —a,
then, for large n, the excess mean value Ey (n) will become greater than Et = a.

10.4 The Renewal Theorem and the Limiting Behaviour
of the Excess and Defect in the Non-arithmetic Case

Recall that in this chapter by the non-arithmetic case we mean that there exists no
h > 0 such that P(| J,{t = kh}) = 1, where k runs over all integers. To state the
key renewal theorem in that case, we will need the notion of a directly integrable
function.

Definition 10.4.1 A function g(u) defined on [0, c0) is said to be directly integrable
if:

(1) the function g is Riemann integrable' over any finite interval [0, N]; and

(2) > x 8(k) < oo, where g = maxk<u<k+11gW)|.

It is evident that any monotonically decreasing function g(¢) | O having a finite

Lebesgue integral
o
/ gt)dt < oo
0

is directly integrable. This also holds for differences of such functions.

The notion of directly integrable functions introduced in [12] differs somewhat
from the one just defined, although it essentially coincides with it. It will be more
convenient for us to use Definition 10.4.1, since it allows us to simplify to some
extent the exposition and to avoid auxiliary arguments (see Appendix 9).

Theorem 10.4.1 (The key renewal theorem) Let t; 4. >0for j>2and g be a
directly integrable function. If the random variable T is non-arithmetic, there exists
Et =a > 0, and the distribution of t; is arbitrary, then, as t — 00,

t o0
/ gt —u)dHu) — l/ g(u)du. (10.4.1)
0 a Jo

There is a measure H on [0, 0o) associated with H that is defined by H((x, y]) :=
H(y) — H(x). The integral

t
f gt —u)dH(u)
0

IThat is, the sums n~! Zkg and n~!'Y", g have the same limits as n — oo, where g
mingea, g(u), g, = Max,ea, g(u) Ay =[kA, (k+ 1)A), and A = N/n. The usual deﬁmtlon
of Riemann integrability over [0, co) assumes that condition (1) of Definition 10.4.1 is satisfied
and the limit of fON g(u)du as N — oo exists. This approach covers a wider class of functions
than in Definition 10.4.1, allowing, for example, the existence of a sequence #; — oo such that
8(1x) — oo.
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in (10.4.1) can also be written as

t
f g(t —u)H(du).
0
It follows from (10.4.1), in particular, that, for any fixed u,
H(t)— H(t —u) — = (10.4.2)
a

It is not hard to see that this relation, which is called the local renewal theorem, is
equivalent to (10.4.1).

The proof of Theorem 10.4.1 is technically rather difficult, so we have placed
it in Appendix 9. One can also find there refinements of Theorem 10.4.1 and its
analogue in the case where 7 has a density.

The other assertions of Sects. 10.2 and 10.3 can also be extended to the non-
arithmetic case without any difficulties. Let all 7; be nonnegative.

Definition 10.4.2 In the non-arithmetic case, a renewal process 7(t) is called ho-
mogeneous (and is denoted by no(¢)) if the distribution of the first jump has the
form

1 o0
P(r; > x) = —/ P(r > t)dt.
a Jx

The ch.f. of 71 equals
, 1 [ .
@7, (A) :=Ee* = —/ e P(r > x)dx.
alJo

Since here we are integrating over x > 0, the integral exists (as well as the func-
tion g(1) = ¢ (1) := Ee'*7) for all A with Im2 > 0 (for A = iar 4-v, —00 < v < 00,
a > 0, the factor e!** is equal to e~**e/**; see property 6 of ch.f.s). Therefore, for

ImaA >0,
1 * 2 -1
r M) =——|(1+ / M dP(r > x) | = &
ira 0 ira
Theorem 10.4.2 For a homogeneous renewal process,

t
Ho(t) =Eng()=1+—, 1>0.
a

Proof This theorem can be proved in the same way as Theorem 10.2.1. Consider
the Fourier—Stieltjes transform of the function Hy(#):

r(A) = /ooe”‘x dHp(x).
0

Note that this transform exists for ImA > 0 and the uniqueness theorem established
for ch.f.s remains true for it, since ¢*(v) :=r(iac +v)/r(ia), —00 < v < 00 (We put
A =1ia + v for a fixed a > 0) can be considered as the ch.f. of a certain distribution
being the “Cramér transform” (see Chap. 9) of Hy(z).
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Since t; > 0, one has

Hy(x) = > P(Tj <x).

j=0
As Hy(t) has a unit jump at ¢ = 0, we obtain

0 > M) —1 1
2) = M dHy(x) =1 Vel (L) =1
r) /O ¢ d Ho(x) +,Z—(:>%()W) ey
_ 1
e
It is evident that this transform corresponds to the function Hy(¢) = 1 + ¢/a. The
theorem is proved. d

In the non-arithmetic case, one has the same connections between the homoge-
neous renewal process no(¢) and the limiting distribution of x(¢) and y (#) as we
had in the arithmetic case. In the same way as in Sect. 10.3, we can derive from the
renewal theorem the following.

Theorem 10.4.3 If t > 0 is non-arithmetic, E1 = a, and the distribution of 11 > 0
is arbitrary, then the following limit exists
o

1
lim P(y(t) >u, x(t) > v) = —/ P(t > x)dx. (10.4.3)
1—00 u+v
Proof For t > u, by the total probability formula,

P(y (1) > u, x(1) > v)

o t—u

=P(r1 >t+v)+ E / P(n(t):j—l—l,Tjedx,y(t)>u,x(t)>v)
: 0
j=1

S t—u

:P(r1>t+v)+g / P(Tjedx,tj11>t—x+0)
: 0
j=1

t—u
=P(y >t+v)—P(r>t+v)+/ dH(x)P(t >t —x +v). (10.4.4)
0

Here the first two summands on the right-hand side converge to 0 as ¢t — co. By
the renewal theorem for g(x) = P(t > x + u + v) (see (10.4.1)), the last integral
converges to

1 o0
—/ P(t>x4+u+v)dx.
alJo

The theorem is proved. g

As was the case in the previous section (see Theorem 10.3.2), in the case
Er? = my < oo Theorem 10.4.3 allows us to refine the key renewal theorem.
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Theorem 10.4.4 If all 7; 4 > 0 are identically distributed and Et> = my < oo,
then, as t — 00,

Ho=2+"2 4o
T a 242 oL

Proof From (10.4.4) for u = 0 and Lemma 10.2.3 it follows that x (¢) are uniformly
integrable, for

t
P(x(t) > v) =/(; dHx)P(t >t —x+v) < (c] +62)ZP(‘E >k +v),

k>0
(10.4.5)
and therefore by (4.4.3)
1 oo poo my
Ex(t) —> — P(t > u)dudv=—. (10.4.6)
alo Ju 2a
It remains to make use of Wald’s identity. The theorem is proved. 0

One can add to relation (10.4.6) that, under the conditions of Theorem 10.4.4,
one has

Ex2(t) =o(t) (10.4.7)
as t — oo. Indeed, (10.4.5) and Lemma 10.2.3 imply
t
P(X(t) > v) < (c1 +02)ZP(7: >k+v) < c/ P(t > z+4+v)dz.
0
k<t

Further, integrating by parts, we obtain
oo
Ex’(t) = —/ v dP(x (1) > v)
0

o0 t o0
:2/ vP(X(t)>v)dv<2c[ / vP(t > z+v)dvdz,
0 0 JO
(10.4.8)

where the inner integral converges to zero as 7 — 00:

vP(r>z+v)dv=§ vdP(r<z+v)<§E(t;r>z)—>0.
0 0

This and (10.4.8) imply (10.4.7).
Note also that if only Et exists, then, by Theorem 10.1.1, we have Ex (¢) = o(t)
and, by Theorem 10.4.1 (or 10.4.3),

o0

P(X(t) > v)—> é/ P(t >u+v)du.
0
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Now let, as before, y and x denote random variables distributed according to the
limiting distribution (10.4.3). Similarly to the above, it is not hard to establish that
if ET% < 00, k > 1, then, as t — 00,

Ex* ') > Ex* ! < 0, Ex* (1) = 0(1).

Further, it is seen from Theorem 10.4.3 that each of the random variables y and
x has density equal to a~'P(z > x). The joint distribution of y and x may have no
density. If T has density f(x) then there exists a joint density of y and x equal to
a~! f(x 4 y). It also follows from Theorem 10.4.3 that y and x are independent if
and only if

> 1
/ P(t >u)du=—e"**
. a

for some o > 0, i.e. independence takes place only for the exponential distribution
tel,.

Moreover, for homogeneous renewal processes the coincidence of P(r; > x)
and P(r > x) takes place only when v € I'y. In other words, the renewal pro-
cess generated by a sequence of identically distributed random variables 7y, 7, ...
will be homogeneous if and only if 7; & I'y. In that case no(¢) is called (see also
Sect. 19.4) a Poisson process. This is because for such a process, for each ¢, the
variable 1(t) = no(¢) has the Poisson distribution with parameter ¢ /c.

The Poisson process has some other remarkable properties as well (see also
Sect. 19.4). Clearly, one has x () & I’y for such a process, and moreover, the vari-
ables y(7) and x(¢) are independent. Indeed, by (10.4.4), taking into account that
H (x) has a jump of magnitude 1 at the point x = 0, we obtain for u < ¢ that

t—u

P(y(t) >u, x(t) > U) — o 9(+V) —I—Ot/ e @(t—x+v) dx
0

— o~ autv) _ P(y () > u)P(x (1) > v);
P(y() =1, x(1) > v) =P(t; > 1 +v) = *) =P(y (1) = 1)P(x (1) > v);
P(y (1) > 1) =0.

These relations also imply that the random variable ;) = y(¢) + x(¢) has the
same distribution as min(¢, 71) + 2, where 7; € I'y, j = 1, 2, are independent so
that 7,y & g2 as t — o0.

The fact that y(#) and x(¢) are independent of each other deserves attention
from the point of view of its interpretation. It means the following. The residual
lifetime of the component operating at a given time ¢ has the same distribution as
the lifetime of a new component (recall that 7; €I'y) and is independent of how long
this component has already been working (which at first glance is a paradox). Since
the lifetime distributions of devices consisting of large numbers of reliable elements
are close to the exponential law (see Theorem 20.3.2), the above-mentioned fact is
of significant practical interest.

If 7; can assume negative values as well, the problems related to the distributions
of y(¢) and x(¢#) become much more complicated. To some extent such problems
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can be reduced to the case of nonnegative variables, since the distribution of x (¢)
coincides with that of the variable x*(¢) constructed from a sequence {rj’f > 0},
where 77 have the same distribution as x (0). The distribution of x (0) can be found
using the methods of Chap. 12.

In particular, for random variables ty, 13, ... taking values of both signs, Theo-
rems 10.4.1 and 10.4.3 imply the following assertion.

Corollary 10.4.1 Let 11, 12, ... be non-arithmetic independent and identically dis-
tributed and Ety = a. Then the following limit exists

. 1 o0
tlgg(jP(x(t)>v)=m/U P(x(0)>t)dt, v>0.

For arithmetic T,

lim P(x(k)=i)= ! P(x (O j i >0
kggo (X()—l)—m (X()>l)» >0

10.5 The Law of Large Numbers and the Central Limit
Theorem for Renewal Processes

In this section we return to the general case where 7; are not necessarily identically
distributed (cf. Sect. 10.1).

10.5.1 The Law of Large Numbers
First assume that 7; > 0 and put

n
a, = Etg, Ay, ::Zak.
k=1

Theorem 10.5.1 Let tp > 0 be independent, Tty — ay uniformly integrable, and
n_lAn —a>0asn— o0o. Then,ast — 00,

n) p 1
R
t a
Proof The basic relation we shall use is the equality
{n@®)>n}={T, <1}, (10.5.1)

which implies

(n(t) 1 ) ( t )
Pl ———>¢)|=P )’](t)>_(+3) ZP(TnSI)’
t a a
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where for simplicity we assume that n = é(l + ¢) is an integer. Further,

P, <n=p( <@
= n  1l4e¢

=P Tn_A”< a _ﬂ <P LAn<_E
n “14e¢ n )~ n - 2

for n large enough and & small enough. Applying the law of large numbers to the
right-hand side of this relation (Theorem 8.3.3), we obtain that, for any ¢ > 0, as

t — oo,
1
P(—”(t) _ s f) 0.
t a a

The probability P(@ — % < —%) can be bounded in the same way. The theorem

is proved. O

10.5.2 The Central Limit Theorem

Put
n
2. 2 2. 2
oy '=E(tx —ay)® = Var, B, = Zok.
k=1

Theorem 10.5.2 Let 1y > 0 and the random variables t; — ay satisfy the Lindeberg
condition: for any § > 0 and n — oo,

n
S E(lu - als [u —al > 8B,) = o(B2).
k=1

Let, moreover, there exist a > 0 and o > 0 such that, as n — 00,

n
An:=Y ax=an+o(/n), B2 =0n+o(n). (10.5.2)
k=1
Then
t)—t
U VLN (10.5.3)
oy/t/a’

Proof From (10.5.1) we have

(10.5.4)

T, — A, t—A,
P(n(1) >n)=P(T, <1) =P( < )

B, — By
Let n vary as t — oo so that
t—A,
RN
B,
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for a fixed v. To find such an n, solve for »n the equation

t—an
o/n =Y
This is a quadratic equation in n, and its solution has the form
n:éii—iﬁ(l—{—O(%)). (10.5.5)
For such n, by (10.5.2),
t— A,

[_vo (1+o0(1))

This equality means that we have to choose the minus sign in (10.5.5). Therefore,
by (10.5.4) and the central limit theorem,

n() —t/a

oy/t/a’

Changing —v to u, by the continuity theorems (see Lemma 6.2.2) we get

n) —t/a

The theorem is proved. d

P(n(t)>n)=P< >—v—|—0(1)>—>d5(v)=1—®(—v).

Remark 10.5.1 In Theorems 10.5.1 and 10.5.2 we considered the case where A,
grows asymptotically linearly as n — oo. Then the centring parameter ¢ /a for n(t)
changes asymptotically linearly as well. However, nothing prevents us from consid-
ering a more general case where, say, A, ~ cn®, « > 0. Then the centring parameter
for n(¢) will be the solution to the equation cn® =1, i.e. the function (¢ /c) /e (under
the conditions of Theorem 10.5.2, in this case we have to assume that B,, = 0(A;)).
The asymptotics of the renewal function will have the same form.

In order to extend the assertions of Theorems 10.5.1 and 10.5.2 to 7; assuming
values of both signs, we need some auxiliary assertions that are also of independent
interest.

10.5.3 A Theorem on the Finiteness of the Infimum of the
Cumulative Sums

In this subsection we will consider identically distributed independent random vari-
ables 71, 17, .. .. We first state the following simple assertion in the form of a lemma.

Lemma 10.5.1 One has E|t| < oo if and only if

o
ZP(|7:| > j) < 0.
j=1
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The Proof follows in an obvious way from the equality

o
E|z| :/ P(|t| >x)dx
0

and the inequalities

ip(m > j) 5/(;OOP(|1'| >x)dx§1+§:P(|r| > j). O

j=1

Let, as before,

n
Tn = Z‘[j.
j=1

Theorem 10.5.3 If 7; Lt are identically distributed and independent and Et > 0,
then the random variable Z = infy>o Ty is proper (finite with probability 1).

Proof Let n1 = n(1) be the number of the first sum 7} to exceed level 1. Consider
the sequence {t;" = 7, 14} that, by Lemma 10.2.1, has the same distribution as {zy}
and is independent of 11, 71, ..., T, . For this sequence, denote by 1 the subscript
k for which the sum 7} = Zﬁ:l ¥ first exceeds level 1. It is clear that the random
variables 1y and 7; are identically distributed and independent. Next, construct for
the sequence {7/* = 7y, y5,+«} the random variable n3 following the same rule,
and so on. As a result we will obtain a sequence of Markov times 71, 12, ... that
determine the times of “renewals” of the original sequence {7}, associated with
attaining level 1.
Now set
Zy :=min Ty, Zy:=min T}, ...
k<m k<ny

Clearly, the Z; are identically distributed and
Z=inf{Z, Ty, + Z2, Ty 4, +Z3,...},

where by definition T}, > 1, T;;; 44, > 2 and so on. Hence

o0 o0
(Z < —Ny = {Zes + Ty gopme < —Ny € | J(Zie + k< =N},
k=0 k=0
o o
P(Z <—N) < ZP(Zk +k<—N)= Z P(Z <—)).
k=1 j=N+1

This expression tends to 0 as N — oo provided that E| Z1| < oo (see Lemma 10.5.1).
It remains to verify the finiteness of EZ{, which follows from the finiteness of
Eny =En(1) = H(1) < c (see Example 4.4.5) and the relations
Ul
E[Z||<E) |tj|=EnElr| < oo
j=1
(see Theorem 4.4.2). O
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10.5.4 Stochastic Inequalities. The Law of Large Numbers and the
Central Limit Theorem for the Maximum of Sums of
Non-identically Distributed Random Variables Taking
Values of Both Signs

In this subsection we extend the assertions of some theorems of Chap. 8 to maxima
of sums of random variables with a positive “mean drift”. To do this we will have to
introduce some additions restrictions that are always satisfied when the summands
are identically distributed. Here we will need the notion of stochastic inequalities
(or inequalities in distribution). Let & and ¢ be given random variables.

Definition 10.5.1 We will say that { majorises (minorises) & in distributionand de-

note this by & % ¢ (& % ¢) if, for all ¢,
PE=n <P =1 (PE=0)=P(¢ =1).

d d
Clearly, if &€ < ¢ then —& > —¢. We show that stochastic inequalities possess
some other properties of ordinary inequalities.

Lemma 10.5.2 If {£172, and {¢}}2, are sequences of independent (in each se-

d
quence) random variables and &, < {, then, for all n,

d _

Sy < Zn, Sn < Zn,

A

where

n n
So=D & Zu=) Sp=max S,  Zy=maxZ.
k=1 k=1 - =

d d
Similarly, if & > i, then ming <, Sk > ming <, Zy.

Proof Let Fi(t) :=P(& < t) and G(¢) := P(¢ < t). Using quantile transforma-
tions F, k(_l) and G,(:l) (see Definition 3.2.4) and a sequence of independent random
variables {wk},‘:ozl , wx € Up,1, we can construct on a common probability space the
sequences & = Fk(_l)(wk) and ¢ = G,((_l)(a)k) such that & 4 & and gf 4 Cx (the
distributions of &7 and & and of ¢ and ¢/ coincide). Moreover, & < ¢/, which is
a direct consequence of the inequality Fi(¢) > Gy(¢) for all #. Endowing with the
superscript * all the notations for sums and maximum of sums of random variables
with asterisks, we obviously obtain that

s Lsr<z2 Lz, 5. L5 <7027,

The last assertion of the lemma follows from the previous ones. The lemma is
proved. U

Below we will need the following corollary of Theorem 10.5.3.
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d
Lemma 10.5.3 Let & be independent, & > ¢ for all k and E¢ > 0. Then, for all n,
the random variable

D, i=§n—5n20

d
is majorised in distribution by the random variable —Z: D, < —Z, where Z :=
infZy, Zy := Zl;=1 i and & are independent copies of ¢ .

Proof We have

EI’l = maX(O, Slv RN Sn) = Sn + max(ov _SVH _‘i:ﬂ - %‘n—ls sy _Sn)
= Sn - min(07 gl’lﬂ gn +$l’l—lv ey Sn)a

where, by the last assertion of Lemma 10.5.2,

d d
—D, =min(0,&,,&, +&,-1,...,Su) > I]gliIle >Z, D, <-Z.
<n

The fact that Z is a proper random variable follows from Theorem 10.5.3 on the
finiteness of the infimum of partial sums. The lemma is proved. g

If & 4 & are identically distributed and a = E£ > 0, then we can put £ = ¢. The
above reasoning shows that in this case the limit distribution of S, — S, as n — 0o
exists and coincides with the distribution of the random variable Z (the random
variables S, — S, themselves do not have a limit, and, by the way, neither do the
variables 2229 in the central limit theorem).

Jn
Lemma 10.5.3 shows that, for & % ¢ and E¢ > 0, the random variables S, and
S, differ from each other by a proper random variable only. This makes the limit
theorems for S,, and S, essentially the same.
We proceed to the law of large numbers and the central limit theorem for S,,.

Theorem 10.5.4 Letay =E& >0, A, = 22:1 ar and A, ~an asn — 0o, a > 0.

d
Let, moreover, & — ay be uniformly integrable for all k and & > ¢ with E¢ > 0.
Then, as n — o0,

Sn p
— —>d.
n

Note that the left uniform integrability of & — ai follows from the inequalities

d
&>¢.
Proof By Lemma 10.5.3,

_ d
S, =S,+D,, whereD, >0, D,<—Z. (10.5.6)
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Therefore,

where by Theorem 8.3.3, as n — o0,
Sn - An p
—

It is also clear that

The theorem is proved. g

In addition to the notation from Theorem 10.5.3, put

n
ot :=E(& — ), B> :=Zakz.
k=1

Theorem 10.5.5 Let, for some a > 0 and o > 0,
A, =an+o(J/n), B,%:azn—i—o(n),
d
and let the random variables & — ay satisfy the Lindeberg condition, & > ¢ with
E¢ > 0. Then

S, —an

o/n

e . (10.5.7)

Proof By virtue of (10.5.6),
S,—an S,—A, B, A, —an D,

o Jn = B, .a\/ﬁ+ on +Uﬁ’ (10.5.8)

where, by the central limit theorem,
Sn — An
B, & <I>()’1.
Moreover,
By e D,
oa/n ' o/n ’ o/n

This and (10.5.8) imply (10.5.7). The theorem is proved. Il

10.5.5 Extension of Theorems 10.5.1 and 10.5.2 to Random
Variables Assuming Values of Both Signs

We return to renewal processes and limit theorems for them. In Theorems 10.5.1
and 10.5.2 we obtained the law of large numbers and the central limit theorem for
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the renewal process 7(¢) defined in (10.1.1) with jumps 7 > 0. Now we drop the
last assumption and assume that 7; can take values of both signs.

Theorem 10.5.6 Let the conditions of Theorem 10.5.1 be met, the condition ty, > 0

d
being replaced with the condition Tty > ¢ with E¢ > 0. Then

nw » 1 (10.5.9)
t a

If 7 4 T are identically distributed and Et > 0, then we can put ¢ = t. There-
fore Theorem 10.5.6 implies the following result.

Corollary 10.5.1 [f 1y are independent and identically distributed and Et = a > 0,
then (10.5.9) holds true.

Proof of Theorem 10.5.6 Here instead of (10.5.1) we should use the relation
k
[n@) > n} ={T, <1}, TFTng, Tkzzzrj. (10.5.10)
J:

Then we repeat the argument from the proof of Theorem 10.5.1, changing in it 7},
to T, and using Theorem 10.5.4, which implies that T',, and T, satisfy the law of
large numbers. The theorem is proved. 0

Theorem 10.5.7 Let the conditions of Theorem 10.5.2 be met, the condition T > 0

d
being replaced with the condition Ty, > ¢ with E¢ > 0. Then (10.5.3) holds true.

Proof Here we again have to use (10.5.10), instead of (10.5.1), and then repeat the
argument proving Theorem 10.5.2 using Theorem 10.5.5, which implies that the

distribution of Z2=% a5 well as the distribution of =42 converges to the standard
o/n o/n
normal law @ ;. The theorem is proved. 0

Remark 10.5.2 (An analogue of Remarks 8.3.3, 8.4.1 and 10.1.1) The assertions of
Theorems 10.5.6 and 10.5.7 can be generalised as follows. Let Ty be an arbitrary
random variable and random variables T,;" ‘= T14k, k > 1, satisfy the conditions
of Theorem 10.5.6 (Theorem 10.5.7). Then convergence (10.5.9) (10.5.3) still takes
place.

Consider, for example, Theorem 10.5.7. Denote by A, the event

t)—ajt
A, = {M - x}.
oy't/a’
Then the foregoing assertion follows from the relations

P(A) =E[P(A|n); |nil < N]+rw,
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where ry < P(|71| > N) can be made arbitrarily small by the choice of N, and by
Theorem 10.5.7

P(ALl71) P("*(t_“)_t_TnJro( ! )<x>—>(l>(x)
1) =P\ —F/——— —
’ o/t — 1)/ Vi
as t — oo for each fixed 71, |71| < N. Here n*(¢) is the renewal process that corre-
sponds to the sequence {z;}. g

10.5.6 The Local Limit Theorem

If we again narrow our assumptions and return to identically distributed i 4 >0
then we can derive local theorems more precise than Theorem 10.5.2. In this sub-
section we will find an asymptotic representation for P(n(¢) =n) as t — co. We
know from Theorem 10.5.2 what range of values of n the bulk of the distribution
of n(t) is concentrated in. Therefore we will from the start consider not arbitrary n,
but the values of n that can be represented as

t t
ne [_+w /_3], o = Var(o), (10.5.11)
a a

for “proper” values of v ([s] in (10.5.11) is the integer part of s), so that
(t —an) < 1 )
=v+ 0| — 10.5.12
o/n Jt ( )

(see (10.5.5)). For the proof, it will be more convenient to consider the probabilities
P(n(t) =n + 1). Changing n + 1 to n amends nothing in the argument below.

Theorem 10.5.8 If t > 0 is either non-lattice or arithmetic and Var(t) = 02 < o0,
then, for the values of n defined in (10.5.11), as t — o0,

3/2

oA 21t

where in the arithmetic case t is assumed to be integer.

P(n(t)=n+1)~ eV, (10.5.13)

Proof First let, for simplicity, T have a density and satisfy the conditions of the local
limit Theorem 8.7.2. Then

t
P(n()=n+1)= /O P(T, € du)P(t >t —u), (10.5.14)

where by Theorem 8.7.2, as n — oo,

du (u — na)?
P(T,, —naed(u —na)) = UM[GXP{_W} +0(1):|
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uniformly in u. Change the variable u =t — z. Since for the values of n we are
dealing with one has (10.5.12), the exponential

(u—na)2 1 z 2
)

remains “almost constant” and asymptotically equivalent to eV*/2 for lz] < N,
N — 00, N = o(/n). Hence the integral in (10.5.14) is asymptotically equivalent
to

N
U o2 [T pe s ndz~ vi2,

o+/2mn 0 oA/2nn

e

Since n ~t/a as t — oo, we obtain (10.5.13).

If = has no density, but is non-lattice, then we should use the integro-local Theo-
rem 8.7.1 for small A and, in a quite similar fashion, bound the integral in (10.5.14)
(with ¢, which is a multiple of A) from above and from below by the sums

t/A—1
> P(Ty € AlkA)P(r > 1 — (k+1)4)
k=0

and

t/A-1
Z P(T, € Alk2))P(x > t — kA),
k=0

respectively. For small A both bounds will be close to the right-hand side
of (10.5.13).

If 7 has an arithmetic distribution then we have to replace integral (10.5.14) with
the corresponding sum and, for integer # and ¢, make use of Theorem 8.7.3.

The theorem is proved. g

If examine the arguments in the proof concerning the behaviour of the correction
term, then, in addition to (10.5.13), we can also obtain the representation

P(5(t) =n) = a 2 4o L (10.5.15)
7 oA 2mt \/;

uniformly in v (or in n).

10.6 Generalised Renewal Processes

10.6.1 Definition and Some Properties

Let, instead of the sequence {7; j’i |» there be given a sequence of two-dimensional
independent vectors (T j.&j), Tj =0, having the same distribution as (z, ). Let, as
before,
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k k
Sk=Z$j, Tk=zrj, So=Tp=0,
j=1 j=1
n(t) = min{k : T, > t}, v(t) =max{k: T <t} =n() — 1.

Definition 10.6.1 The process
Swy@) =gt + Svq)

is called a generalised renewal process with linear drift q.

The process S,)(t), as well as v(2), is right-continuous. Clearly, S, (t) = gt for
t < 71. Attime ¢t = 7y the first jump in the process S, (¢) occurs, which is of size &;:

Sw(t1 —0)=gqr1y, Swy(T1) =q11 + 1.

After that, on the interval [T7, 72) the value of S,)(t) varies linearly with slope g.
At the point 7>, the second jump occurs, which is of size &>, and so on.
Generalised renewal processes are evidently a generalisation of random walks Si
(for ; = 1, g = 0) and renewal processes n(¢) = v(t) + 1 (for §; = 1, ¢ = 0). They
are widespread in applications, as mathematical models of various physical systems.
Along with the process S(,)(#), we will consider generalised renewal processes
of the form

St =qt + Sy =S + &0

that are in a certain sense more convenient to analyse since 7(f) is a Markov time
with respectto 7, = o (ty, ..., t; &1, ..., &,) and has already been well studied.

The fact that the asymptotic properties of the processes S(¢) and S(,)(f), as
t — 00, (the law of large numbers, the central limit theorem) are identical follows
from the next assertion, which shows that the difference S(¢) — S(,)(¢) has a proper
limiting distribution.

Lemma 10.6.1 If Et < 00, then the following limiting distribution exists
. E(t; £ <v)
rlggo P&, <v)= T Er
The lemma implies that &, /b() L5 0for any function b(t) — oo as t — 00.

Proof By virtue of the key renewal theorem,

S t
P&, <v) = Z/ P(Ti € du)P(t >t —u, & <v)
k=00

t o0
=/dH(t)P(r>t—u,E<v)—>if P(t>u,& <v)du
0 Et Jo

_E@é§<v)
- Er '
The lemma is proved. g
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As was already noted, () is a stopping time with respect to
Fn=0(1,.... i &1, ..., En).
Therefore, if (7}, &;) are identically distributed, then by the Wald identity (see The-
orem 4.4.2 and Example 4.4.5)
t
ES(1) = gt +asEn(r) ~ gt + == (10.6.1)
a

as t — 0o, where ag = E£ and a = Ez. The second moments of S(¢) will be found
in Sect. 15.2. The laws of large numbers for S(#) will be established in Sect. 11.5.

10.6.2 The Central Limit Theorem

In order to simplify the exposition, we first assume that the components 7; and &; of

d . . . .
the vectors (z;,&;) = (7, &) are independent. Moreover, without losing generality,
we assume that g = 0.

Theorem 10.6.1 Let there exist 02 = Vart < 00, ag = Var(§) < oo with o +
og > 0. If the coordinates v and & are independent then, as t — 00,

S(t)—rt
os/t

where r = ag /a and 03 =a V(o2 +r%6%) =a! Var(€ — rt). The same assertion
holds true for S, (t) as well.

S @01,

Proof 1f one of the values of o and o is zero, then the assertion of the theorem
follows from Theorems 8.2.1 and 10.5.2. Therefore we can assume that o > 0 and
oz > 0. Denote by & = o (1y, 12, ...) the o-algebra generated by the sequence {r;}
and by A; C & the set

A ={|n@) —t/a| <t'*TE} e €(0,1/2).
Since by the central limit theorem P(A;) — 1 as t+ — oo, for any trajectory 7n(-)
in A; we have n(t) — 0o as t — 00, and the random variables
S(t) —agn(r)
o /()

are asymptotically normal with parameters (0, 1) by the independence of {£;}
and {z;}. In other words, on the sets A,

Z(t) =

E(e“z(’)|®) S e 2 a5t 0.
Since

o/t

t t
U(t)=_+ 3/2 §17 ft@‘bo,la and 77(1‘)’\“_
a a a
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on the sets A; € &, we also have on the sets A, the relation

. ago/t
iMS() —rt — Z}#Q) -32/2
E(eXP{ o¢ /t]a }‘QS) - ’

Since the random variables ¢; and 1(¢) are measurable with respect to &, the corre-
sponding factor can be taken outside of the conditional expectation, so that

i S@) —rt) 22 irro
E(exp{T \/t/a“@)we)(p{_EJr o gl}'
iA(S(t) — 22 i
Eexp{%} =0(1)+E(exp{—7 + %Q}; At>
A2 ro 2
=o(1)+exp{——|:l+<—> “
2 O’g

1 s tas ®
ﬁ (f)—7 & 0,03

2 ‘75;'2 ro\’ “If.2, 202
oy =—1+|— =a [0§+r ]

0¢

Hence

This means that

where

The assertion corresponding to S(,)(f) follows from Lemma 10.6.1. The theorem
is proved. 0

Note that Theorems 8.2.1 and 10.5.2 are special cases of Theorem 10.6.1. If
ag =0, then S(¢) is distributed identically to Sj;/4) and is independent of .

Now consider the general case where 7 and & are, generally speaking, dependent.
Since Ty =t + x (), we have the representation

S@) —rt="Zyu) +rx(@), (10.6.2)
where

“ t
Zn:Zij {j:%‘j—rl’j, Eé‘j:(), &\/;l)()

as t — oo (x(¢) has a proper limiting distribution as t — 00). Moreover, we will
use yet another Wald identity

j=1

EZ?

n() =d°En(t), d*=E{*, (=£-rt, (10.6.3)

that is derived below in Sect. 15.2.
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Theorem 10.6.2 Let (z;,&;) 4 (1,&) be independent identically distributed and

such that 0% = Var(t) < oo and U%_Z = Var(¢) < oo exist. Then

S@)—rt
o5/t

where r = ag fa and O’S2 = a~'d?. The random variables

e 99,1,

S(,,)(t)—rt Z,,(r)
v and i have

the same limiting distribution.

Proof 1t is seen from (10.6.2) that it suffices to prove that

Zn()
os/t

The main contribution to Z, ) comes from Z,, with m = [é —2N/t], N = oo,

N = o0(y/1), where
=T e o

The remainder Z,, ;) — Zy,, for each fixed

@q)o’].

Tp€ly:=[t—3aNt, t —aN+/t], P(T, € Iy) > 1,

has the same distribution as Z,;_r,,), and its variance (see (10.6.3)) is equal to
d’En(t — Ty) ~ 2L 3N = o(?).
a

Since EZ;;_7,,) =0, we have

ZyGt—Tn) P
——" 50 10.6.4
NG ( )

as t — 0o. The theorem is proved. O

Note that, for N — oo slowly enough, relation (10.6.4) can be derived using
not (10.6.3), but the law of large numbers for generalised renewal processes that
was obtained in Sect. 11.5.

Theorem 10.6.1 could be proved in a somewhat different way—with the help
of the local Theorem 10.5.3. We will illustrate this approach by the proof of the
integro-local theorem for S(¢).

10.6.3 The Integro-Local Theorem

In this section we will obtain the integro-local theorem for S(¢) in the case of non-
lattice &. In a quite similar way we can obtain local theorems for densities (if they
exist) and for the probability P(S(7) = k) for ¢ = O for arithmetic &;.
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Theorem 10.6.3 Let the conditions of Theorem 10.6.1 hold and, moreover, & be
non-lattice. Then, for any fixed A > 0, as t — o0,

A X 1
P(S(1) —rt € Alx)) = p—" ¢(m) +0<$>, (10.6.5)

where the remainder term o(1/+/t) is uniform in x.

Proof Since £ is non-lattice, one has og > 0. If ¢ = 0 then the assertion of the
theorem follows from Theorem 8.7.1. Therefore we will assume that o > 0. By the
independence of {£;} and {z;},

o
P(S(t)—rt € Alx)) =Y P(n(t)=n)P(S, —rt € Alx))= >+ >,

n=1 neM; n¢M;
where M, = {n: |n —t/a| < t'2N ()}, N(t) = 00, N(t) = 0(+/1) as t — 00. We
know the asymptotics of both factors of the terms in the sum from Theorems 8.7.1
and 10.5.8 (see also (10.5.15)). It remains to do the summation, which is unfortu-
nately somewhat cumbersome. At the same time, it presents no substantial difficul-
ties, so we will sketch this part of the proof. If we putan — ¢ =: u,

PL() A { (x —ru)z} Py(t) a’/? { u? }
= —=¢CX —— (, 2 = ex —_ 1,
! o/ 2mn P 2n0$2 o2mt Pl" 202
then
1
P(S, —rt € Alx)) = Pi(1) +o(ﬁ).
Furthermore,

P(n(t)=n) = P(1) + (L)
nt)=n)=r o \/;

for n € M, and N(t) — oo slowly enough as r — oo. Clearly,

> =o()
n¢M; ﬁ
Since the sums of P;(¢) and P>(¢) are bounded in n by a constant, we have

3 =o<%> + Y PP,
neM;

neM;
The exponent in the product Py () P>(t), taken with the negative sign, is equal to
1 [(x—ru)? u? a[(d*u—rxc®? x2
2n 052 o? 2t dzazaé2 ]
where d? =r202 + ag. Since, for x = o(s/ N(t)),
a’?d { a(d®u — rxo?)? } .
- expj— "t —
V2wtoog P 2ta’2020‘§2

neA;
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as t — oo and this sum does not exceed 1 + o(1) for all x (this is an integral sum
that corresponds to the integral of the density of the normal law), it is easy to de-
rive (10.6.5) from the foregoing. g

We will continue the study of generalised renewal processes in Sect. 11.5.



Chapter 11
Properties of the Trajectories of Random Walks.
Zero-One Laws

Abstract The chapter begins with Sect. 11.1 establishing the Borel-Cantelli and
Kolmogorov zero-one laws, and also the zero-one law for exchangeable sequences.
The concepts of lower and upper functions are introduced. Section 11.2 contains
the first Kolmogorov inequality and several theorems on convergence of random se-
ries. Section 11.3 presents Kolmogorov’s Strong Law of Large Numbers and Wald’s
identity for stopping times. Sections 11.4 and 11.5 are devoted to the Strong Law of
Large Numbers for independent non-identically distributed random variables, and to
the Strong Law of Large Numbers for generalised renewal processes, respectively.

11.1 Zero-One Laws. Upper and Lower Functions

Let, as before, S, = Z'}Zl &; be the sums of independent random variables
&1, &, .... In this chapter we will consider properties of the “whole” trajectories
of random walks {S,}.

The first limit theorem we proved for the distribution of the sums of independent

identically distributed random variables was the law of large numbers: S, /n LA E§.
One could ask whether the whole trajectory S, /n, Sy4+1/(n + 1), ..., starting from
some n, will be close to E§ with a high probability. That is, whether, for any & > 0,
we will have

lim P(sup & —E&
n—00 k>n k
This is clearly a problem on almost sure convergence, or convergence with probabil-
ity 1. A similar question arises concerning generalised renewal processes discussed
in Sect. 10.6.

Assertion (11.1.1), which is called the strong law of large numbers and is to be

proved in this chapter, is a special case of the so-called zero-one laws. As the first
such law, we will now present the Borel-Cantelli zero-one law.

<5> =1 (11.1.1)

11.1.1 Zero-One Laws

Theorem 11.1.1 Let {A,};2 | be a sequence of events on a probability space
(£2,5,P), and let A be the event that infinitely many events Ay occur, i.e.

A.A. Borovkov, Probability Theory, Universitext, 315
DOI 10.1007/978-1-4471-5201-9_11, © Springer-Verlag London 2013
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A=, U, Ak (the event A consists of those w that belong to infinitely many
Ap).

IFY 12 P(Ap) < 00, then P(A) = 0. If Y 32 P(Ar) = oo and the events Ay are
independent, then P(A) = 1.

Proof Assume that ) ;- P(Ag) < oco. Denote by n =Y 2, I(Ax) the number of
occurrences of events Ax. Then En = Z,fil P(Aj) < co which certainly means that
n is a proper random variable: P(n <oco) =1 —-P(A) = 1.

If Ay are independent and Z,fil P(Aj) = 00, then, since Ay = 2 \ Ay are also
independent, we have

o o0
P(A) :nl_i)n;OP< U Ak> :nli)rgoP(Q - ﬂZk)
k=n

k=n
(.¢] . m o
—1—,11;%01’(0/*1«)—1—n£f20,nlgmooP(ﬂ )
k=n k=n
o0
=1 Jim [T P
k=n
Using the inequality In(1 — x) < —x we obtain that
o0 o
[T(1-Pw@p) = exp{— ZP(Ak)}-
k=n k=n
Hence
o
[T -P@p)<e>=0, PA)=L.
k=n
The theorem is proved. O

Remark 11.1.1 1t follows from Theorem 11.1.1 that, for independent events Ay,
the assertions that En < oo and that P(n < oo) =1 are equivalent to each other.
Although in one direction this relationship is obvious, in the opposite direction it
is quite meaningful. It implies, in particular, that if n < co with probability 1, but
En = oo, then Ay are necessarily dependent.

Note also that the argument proving the first part of the theorem has already been
used for the same purpose in the proof of Theorem 6.1.1.

Assume that {£,}°° | is a sequence of independent random variables given on
(£2, 5, P). Denote, as before, by o (&1, ..., &,) the o-algebra generated by the first
n random variables &1, ...,&,, and by o(§,,...) the o-algebra generated by the
random variables &,, &,41, &40, . ...

Definition 11.1.1 An event A is said to be a tail event if A € 0(§,,...) for any
n>0.
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For example, the event

a=Utea>m

n=1k=n

meaning that there occurred infinitely many events {§; > N} is clearly a tail event.

Theorem 11.1.2 (Kolmogorov zero-one law) If A is a tail event, then either
P(A)=00rP(A) =1.

Proof Since A is a tail event, A € 0 (§,+1,...), n > 0. Therefore the event A is
independent of the o-algebra o (§1,...,&,) for any n. Hence (see Theorem 3.4.3)
the event A is independent of the o-algebra o (&1, ...). Since A € o (§1,...), it is
independent of itself:

P(A) =P(AA) =P(A)P(A).
But this is only possible if P(A) =0 or 1. The theorem is proved. 0

Put S = sup{0, S1, S2, ...}, where S, =Y ;_; &. An example of an application
of the above theorem is given by the following

Corollary 11.1.1 If &, k=1,2,..., are independent, then either P(S = 00) =1
orP(S <o0)=1.

The Proof follows from the fact that {S = oo} is a tail event. Indeed, for any n
{§ =00} = {sup(S,,_l, Sny..) = oo}
= {sup(0, Sy — Sp—1,...) =00} €0 (&....). 0

Further examples of tail events can be obtained if we consider, for a sequence
of independent variables &, &, ..., the event {the series Y 1 & is convergent}.
Theorem 11.1.2 means that the probability of that event can only be 0 or 1.

If we consider the power series Y peq 7F&, where & are independent, we will
see that the convergence radius p = limsup,_, o, [&k | ~1/% of this series is a random
variable measurable with respect to the o -algebra o (&,,...) forany n ({p < x} €
o(&,,...), 0 <x < o00). Such random variables are also called tail random vari-
ables. Since by the foregoing one has F,(x) = P(p < x) =0 or 1, this implies
that p, as well as any other tail random variable, must be equal to a constant with
probability 1.

Under the assumption that the elements of the sequence {£}72 | are not only in-
dependent but also identically distributed, Kolmogorov’s zero-one law was extended
by Hewitt and Savage to a wider class of events.

Let w = (x1, x2,...) be an element of the sample space (R°°,B°°, P) for the
sequence & = (£1,&2,...) (R* is a countable direct product of the real lines Ry,
k=1,2,...,B%° =0(&,...) is generated by the sets ]—[,/(V=1 By eo(&r,....EN),
where By € o (&) are Borel sets on the lines Ryg).
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Definition 11.1.2 An event A € B> is said to be exchangeable if
(X1, X2, 0oy Xp—1, X, Xpg1 .- .) €A

implies that (x,, x2,...,X,—1, X1, Xp+1...) € A for every n > 1. It is evident that
this condition of membership automatically extends to any permutations of finitely
many components. Examples of exchangeable events are given by tail events.

Theorem 11.1.3 (Zero-one law for exchangeable events) If &, are independent and
identically distributed and A is an exchangeable event, then either P(A) =0 or
P(A)=1.

Proof By the approximation theorem (Sect. 3.5), for any A € B> there exists a
sequence of events A, € o (&1, ..., &,) such that

P(A,AUAA,) =0

as n — oo.
Introduce the transformation

Tho=T,(x1,x2, ...) = (Xpg1s - X2, X015 oo Xy X2 1 - - )

and put B,, = T, A,. If A is exchangeable, then 7,, A = A and, for any B € 6>, one
has P(T, B) = P(B) since &; are independent and identically distributed. Therefore
P(B,A) =P(T,A,A) = P(A,A), and hence B, will also approximate A, which
obviously implies that C, = A, B, will have the same approximation property. By
independence of A, and B,, this means that

P(A) = lim P(A,B,) = lim P*(4,) =P*(A).
n— 00 n— 00

The theorem is proved. d

11.1.2 Lower and Upper Functions

Theorem 11.1.3 implies the following interesting fact, the statement of which re-
quires the next definition.

Definition 11.1.3 For a sequence of random variables {1,};°;, a numerical se-
quence {a,},2 , is said to be an upper sequence (function) if, with probability 1,
there occur only finitely many events {n, > a,}. A sequence {a,}7° , is said to be a

lower sequence (function) if, with probability 1, there occur infinitely many events
{nn > an}.

Corollary 11.1.2 If & are independent and identically distributed, then any se-
quence {a,} is either upper or lower for the sequence of sums {S,};° | with

Sp = ZZ:] £k
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In other words, one cannot find an “intermediate” sequence {a,} such that the
probability of the event A = {S,, > a, infinitely often} would be equal, say, to 1/2.

Proof To prove the corollary, it suffices to notice that the event A is exchangeable,
because swapping & and &, in the realisation (£1, &>, ...) influences the behaviour
of the first n sums Sy, ..., S, only. O

A similar fact holds, of course, for the sequence of random variables {En}f;]
itself, but, unlike the above corollary, that assertion can be proved more easily, since
B = {§,, > a infinitely often} is a tail event.

Remark 11.1.2 In regard to the properties of upper and lower sequences for sums
{Sn} we also note here the following. If P(§&; = ¢) # 1, and {a,} is an upper (lower)
sequence for {S,}, then, for any fixed £ > 0 and v, the sequence {b,, = a,+r + v}’f‘;l
is also upper (lower) for {S,}. This is a consequence of the following relations. Let

v1 > v be such that
P¢ >v) >0, PE <) > 0.

Then, for the upper sequence {a, } and the event A = {S,, > a, infinitely many times},
we have

0=P(A) =P > v)P(Al5] > v))
> P& > v1)P(S, > any1 — vy infinitely many times).

This implies that the second factor on the right-hand side equals 0, and hence the

sequence {a,+1 — vy} is also an upper sequence. On the other hand, if &’ 4 £ is
independent of & then

0=P(A) > P(§' + S, > & + ay infinitely many times; &' < v;)
> P& < v)P(S,+1 > ay, + vy infinitely many times)
=P < vp)P(S, > ay—1 + vy infinitely many times).

Here the second factor on the right-hand side equals 0, and hence the sequence
{an—1 + v2} is also upper. Combining these assertions as many times as necessary,
we find that the sequence {a,+r + v} is upper for any given k and v. O

From the above remark it follows, in particular, that the quantities limsup,,_, ., Sx
and liminf,,_, 5 S, cannot both be finite for a sequence of sums of independent
identically distributed random variables that are not zeros with probability 1. Indeed,
the event B = {limsup,_, ., S» € (a, b)} is exchangeable and therefore P(B) =0 or
P(B) = 1 by virtue of the zero-one law. If P(B) were equal to 1, (b, b, ...) would be
an upper sequence for {S,}. But, by our remark, (a, a, ...) would then be an upper
sequence as well, which would mean that

P(limsupSn fa) =1,

n—o00
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which contradicts the assumption P(B) = 1. O

The reader can also derive from Theorem 11.1.3 that, for any sequences {a,}
and {b,}, the random variables
Sn —dy Sn —dan

lim sup and liminf
n—00 n n—od n

are constant with probability 1.

11.2 Convergence of Series of Independent Random Variables

In the present section we will discuss in more detail convergence of series of inde-
pendent random variables. We already know that such series converge with proba-
bility 1 or 0. We are interested in conditions ensuring convergence.

First of all we answer the following interesting question. It is well known that the
series Y oo, n~% is divergent for « < 1, while the alternating series > oo | (—1)"n~%
converges for any « > 0 (the difference between neighbouring elements is of order
an_"‘_l). What can be said about the behaviour of the series ZZ';I S,n~%, where
8y are identically distributed and independent with E§,, = O (for instance, §, = 1
with probabilities 1/2)?

One of the main approaches to studying such problems is based on elucidat-
ing the relationship between a.s. convergence and the simpler notion of conver-
gence in probability. It is known that, generally speaking, convergence in prob-

ability &, L & does not imply a.s. convergence. However, in our situation when
tn =8y = Zzzl &k, & being independent, this is not the case. The main assertion
of the present section is the following.

Theorem 11.2.1 If & are independent and S, =Y _j_, &, then convergence of S,
in probability implies a.s. convergence of Sy,.

We will prove that S, is a Cauchy sequence. To do this, we will need the follow-
ing inequality.

Lemma 11.2.1 (The First Kolmogorov inequality) If &; are independent and, for
someb > 0andall j <n,

P(|S, —Sj|=b)<p <1,
then

P(max|S-|>x)<;P(|S,,|>x—b). (11.2.1)
j<n = “1-p
Corollary 11.2.1 IfE&; =0 then

P(max|Sj| zx) <2P(1S,] > x — /2 Var(s,)).

j<n
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Kolmogorov actually established this last inequality (Lemma 11.2.1 is an in-
significant extension of it). It follows from (11.2.1) with p = 1/2, since by the
Chebyshev inequality

Var(S, — S;) 1
P(|S, —S; >‘/2V S < I <,
(1Sn =81 = ar($y)) < 2Var(S,) ~2

Proof of Lemma 11.2.1 Let
n:i= {mink >1: |8 Zx}.

Put Aj:={n=j},j=1,2,....Clearly, A; are disjoint events and hence

n n
P(Sy] >x —b) = > P(ISy| >x —b; Aj) = Y P(ISy — S| <b; Aj).
j=1 j=1

(The last inequality holds because the event {|S, — S;| < b}A; implies {|S,| >
x—b}A;)ButA;eo(éy,...,&;)and {|S, —S;| <b}eo(§jy1,...,&). Therefore
these two events are independent and

P(ISy| > x —b) = Y "P(A;)P(|S, — S| <b)
j=I1

= (1= p) Yo P(A) = (1= p)P(max|S;| = x).
1 2

The lemma is proved. O

Proof of Theorem 11.2.1 1t suffices to prove that {S,,} is a.s. a Cauchy sequence, i.e.
that, for any ¢ > 0,

P(sup|Sn—Sm| >25) -0 (11.2.2)

n>m

as m — oo. Let

AL ={1Sn = Sul >}, AL = AL,

n,m
n>m

Then relation (11.2.2) can be written as
P(AZ) -0 (11.2.3)

as m — 00.
Since {S,} is a Cauchy sequence in probability, one has

pmam = sup P(AS ) —0

m<n<M

as m — oo and M — oo, so that p,, s < 1/2 for all m and M large enough. For
such m and M we have by Lemma 11.2.1, for a = ¢ and x = 2¢, that
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M
P( sup |Sn—Sm|>25>=P< U Af,f,n)

m=n=<M n=m+1

< B(a},,) <2P(4},).
I — pmm ’ ’

By the properties of probability,

M
P(A,f)lei_]:]ooP( U A,%f’n)SZIimsupP(Afw’m). (11.2.4)

n=m—+1 M— o0
Denote by S the limit (in probability) of the sequence S,,, and
B :={|Sy — S| > ¢}.
Then P(BE) — 0 as n — 0o, A%, C B%/* U BE/?, and by (11.2.4)

P(A%) <2P(B;/*) >0 asm — oco.

Relation (11.2.3), and hence the assertion of the theorem, are proved. Il
Corollary 11.2.2 IfE&, =0 and Zfo Var(&) < oo, then S, converges a.s.

Proof The assertion follows immediately from Theorem 11.2.1 and the fact that
{Sn} is a Cauchy sequence in mean quadratic (E(S,, — Sp)? = ZZ:mH Var(é;) — 0
as m — oo and n — 00) and hence in probability.

It turns out that if E& = 0 and |&]| < ¢ for all k, then the condition
> Var(§;) < oo is necessary and sufficient for a.s. convergence of Sy

Corollary 11.2.2 also contains an answer to the question posed at the beginning
of the section about convergence of Y _8,n~%, where 8, are independent and identi-
cally distributed and E§,, = 0.

Corollary 11.2.3 The series Y 8na, converges with probability 1 if Var(§) =

0% <ooandy a? < oo.

Thus we obtain that the series ) _ §,n~%, where 8, = =1 with probabilities 1/2,
is convergent if and only if & > 1/2.
An extension of Corollary 11.2.2 is given by the following.

Corollary 11.2.4 (The two series theorem) A su