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Abstract 

Using mathematical models to simulate dynamic biological processes has a 

long history. In this study, we have employed mathematical modeling to 

understand the behavior of cancer and its interaction with both chemotherapy 

and radiotherapy .We have studied a drug delivery and drug-cell interaction 

model along with cell proliferation. Simulation is done with different values of 

the parameters with a continuous delivery of the drug and assuming that the 

growth rate is not a constant. The numerical result shows that cancer dies after 

short apoptotic cycles if the cancer is highly vascularized. This suggests 

promoting perfusion of the drug. The obtained result is similar to the situation 

where proliferation is not considered since the constant release of drug 

overcomes the growth of the cells and thus the effect of proliferation can be 

neglected. 

Nomenclature 

    Rate at which cancer cells grow 

      Fraction of dying cells each time 

 difference 

      Fraction of dividing cells each time 

 difference 

k   Carrying capacity 

     Cellular uptake rate of the drug per 

 volume 

k    Death rate of tumor cells per unit 

 cumulative drug concentration 

 

 

D   Drug diffusitivity 
2  Laplacian operator 

   Drug concentration  

   Density of cancer cells 

r   Radial distance 

r b   Radius of the blood vessel 

t     Time 

BVF  Blood Volume Fraction 
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INTRODUCTION 

Cancer has become a main problem since it is a major killer disease today. Cancer 

treatment developed over the years includes chemotherapy, radiotherapy and surgery. 

Further research is needed to determine an effective combination of the treatments 

and subsequently improve patient’s response to the treatment.  

Recently Simbawa, 2017 developed a model for cancer growth and response to only 

chemotherapy. The model assumes that the growth rate is constant, which is not 

realistic since growth rate is a function of time. The model only considers treatment 

by chemotherapy only, but empirical studies indicate that a combination of treatment 

strategies is more effective. 

In this study, we extend the model of Simbawa to study the effectiveness of 

combining both chemotherapy and radiotherapy in treating cancer whose growth rate 

is non-constant. 

 

Objectives of the study 

 Develop a model combining both chemotherapy and radiotherapy.  

 Non-dimensionalise the model equations. 

 Numerically solve the non-dimensional model equations to determine the 

effectiveness of combining chemotherapy and radiotherapy in cancer treatment. 

 

Significance of the study 

Mathematical modeling is a powerful tool to test hypotheses, confirm experiments, 

and simulate the dynamics of complex systems.  

Our model provides an insightful tool to explore and predict the growth of cancer as 

well as the response to therapy by using biological and physical properties. The 

results will help oncologists customize therapy for each patient by understanding the 

physical and biological barriers that make some cancer patients not respond to 

therapy. 

The model considers the spatial influences on the dynamics between cancer and 

therapy with continous drug delivery. The model thus can be used to compare drug 

uptake rate for continous infusion and bolus drug delivery. 

Numerous dynamic growth rate functions with applicability to tumor growth are 

discussed. The Gompertz growth is shown to reproduce biological growth that 

decelerates with population size, and is therefore applicable to observed tumor growth 

slowdown with tumor size. 

The models results provide the opportunity to understand the interaction between 

cancer, chemotherapy and radiotherapy. They can be used as a basis to model more 

complicated situations. 



571 Numerical Solution for a Model on Cancer Growth Reduction Using both 

RESEARCH QUESTIONS 

1. Does the combination of chemotherapy and radiotherapy really eliminate the 

cancer cells more effectively? 

2. How can radiotherapy be incorporated into the Simbawa model? 

3. What are the key biological parameters in the model? 

 

LITERATURE REVIEW 

Modeling of cancer growth and treatment has been developed over year by different 

researchers in an attempt to find the most appropriate solution.  

A model of tumor growth and response to radiation in which each tumor cell was 

taken into account individually was introduced (Borkenstein et al, 2004). It was found 

out that short cell cycle time, high growth fraction and tumor angiogenesis all 

increased tumor. Proliferation rates accelerated time dose patterns results to lower 

total doses needed for tumor control but the extent of dose reduction depends on the 

kinetics and radio sensitivity of tumor cell. Tumor angiogenesis affected the radiation 

response. 

It has been hypothesized that continually releasing drug molecules into a tumor over 

an extended period of time may significantly improve the chemotheraupic efficacy by 

overcoming physical transport limitations of conventional drug treatment (Wang et al, 
2016). 

Much emphasis were also done to predict treatment response for combined chemo- 

and radiation therapy for non-Small cell lung cancer patients using a bio-

mathematical model (Geng1 et al, 2017).They predicted Kaplan–Meier survival 

curves and found out that there was an improvement in overall survival for 3 and 

5years for stage III patients. 

Lately the behavior of cancer and its interaction with chemotherapy was modeled 

(Simbawa, 2017).The model incorporated drug delivery and drug-cell interaction 

along with cell proliferation. The model assumed that the growth rate was a constant. 

The numerical results showed that cancer dies after short apoptotic cycles if the 

cancer was highly vascularized or if the penetration of the drug was high.  

In this project we propose to model cancer growth and treatment using both 

chemotherapy and radiotherapy. Drug delivery and drug cell interaction will be 

incorporated along with cell proliferation. We propose to model growth rate as a 

function of time and not a constant. We will numerically simulate the model for 

different biological parameters with continuous drug delivery to obtain the most 

effective solution. 
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MODEL FORMULATION 

Assumptions 

The following assumptions are made during this study 

 Cancer cells are not resistant to drugs. 

 Drug administration is continous. 

 Growth rate is a function of time and not a constant. 

 

GOVERNING EQUATIONS 

1. Diffusion equation 

One of the most important equations is the drug diffusion equation. It represents 

diffusion of the drug into the cancer cells after it is delivered through the blood vessel 

and the binding rate to cancer cells. (Simbawa, 2017) 

 




uD
t




 2
……………………………………………………….... (1) 

Where  D  is the drug diffusivity and u  is the cellular uptake rate of drug per-

volume. 

 

 2. Death rate equation 

Another useful equation is the death rate caused by the drug and the growth rate of 

cancer cells. (Simbawa, 2017) 

 



t

ku dxxtx
t

0

),(),(),( 
 

……………………………………. (2) 

where ),(  x  is the drug concentration, ),(  x is the density of cancer cells, k  is 

the death rate of tumor cells per unit cumulative drug concentration,
 u  is the cellular 

uptake rate of drug per-volume and   is the growth rate of cancer cells. Note that x  

is a vector i.e. zxxrxzrx zr ˆˆˆ),,(   


. 

 

The model equations (1) and (2) are preferred over others because it has a 

proliferation term which is one of the key features and also it has a detailed equation 

for diffusion of drugs and uptake by the cancer cells. However, the model assumed 

that the growth rate is constant which is not realistic. 
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 Specific Model Equations. 

 We assume that diffusion rate of the drug is faster than the cell cycle,then the time 

derivative in equation(1)is replaced by zero. 

Thus  

 )3.(....................................................................................................0 2  uD   

 

 In this study, we model growth rate   as a function of time and not a constant by  

 using Gompertz growth model   

)(
log)(
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t
kt

td
td


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
 …………………………………………………………….. (4) 

 

Where,  is the evolution of the tumor cell number (i.e. volume times cell density), t  

is the tumor volume and k is the carrying capacity.  and k are the specific 

parameters determining the growth curve of the tumor. 

 

Moreover, we extend the model by introducing radiotherapy effect (Geng et al, 2017) 

as a means of achieving a more effective cancer treatment strategy; 

  )(
)( 2 ttt

dt
td




 ………………………………………………………. (5) 

Where,   is fraction of dividing cells in each time interval and   is fraction of dying 

cell in each time interval. 

 

 Using Gompertz model (4) on equation (2) we obtain; 

0
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On introducing radiotherapy effect (5) we obtain 
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 …………………. (7) 

 

 The specific model equations are therefore equations (3) and (7) 
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Specification of the initial and boundary conditions 

We assume that the domain surrounding the blood vessel is cylindrical. Thus we let 

the system depend on two parameters: time t  and radial distance r  .Initially, we 

suppose that is homogenous. At the blood vessel, there is a constant rate of drug 

release 0  for example through nanocarriers.If r there is no flux (the tumor is 

infinitely sized).Accordingly, we have the following initial and boundary conditions: 

0)0,(  x  

0),(  trb                      
………………….……………. (8) 

0
x

n   

 

Where br is the radius of the blood vessel. 

Non-dimensionalization of the model 

Before we numerically solve the model, we non-dimensionalize the system to obtain 

the key biological parameters. Let   0 ,   0 ,
Lxx 


, L
r

r b
b   and 

Ttt 
 

where   ,  , x   and br are dimensionless. L  is the diffusion  length of the drug. 

 

For
0

DL  , then equation (3) becomes, 
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For equation (7), we also consider tTt  ,   T    

Taking 2

1

00 )(


  kT  ,we obtain: 

 
20

0 0 0

0

log

t K
d t t

t


        


                         
  ……………….……………. (10) 

 

Where 3

0

2

00

0

0 ,,, TTTKK 


  

  



575 Numerical Solution for a Model on Cancer Growth Reduction Using both 

The initial and boundary conditions (8) becomes; 

)11.....(....................................................................................................1)0,(  x   

)12....(....................................................................................................1),(  trb  

In one dimension, rrx ˆ


 and thus the second boundary condition becomes, 

0r

d
dr








 ….…………………………………….………….……………. (13) 

 

We assume that cancer cells depend on the closest blood vessel, which has the 

dimensionless radius .
L
rb Therefore, we estimate the dimensionless radius of the 

cylindrical region supported by   the blood vessel by 
)( BVFL

rb .BVF is the blood 

volume fraction (the ratio of blood to the volume of the tumor),which is less than 1.A 

higher BVF represents a highly vascularized tumor, this means that there are more 

blood vessels and therefore more treatment will be delivered to the tumor. Therefore 

(13) can be written as 
   

)14.........(..................................................0
)(





 BVFLrr brd

d
 

      In the chapters below we drop the prime for simplicity. 

     

 Calculating the ratio of viable cancer mass to the initial mass 

First, we integrate the density of the viable cancer cells at each time step over the 

cylindrically symmetric domain around the blood vessel (after drug diffusion) .This is 

done during the numerical simulation.Then,we calculate the ratio of the viable cancer 

mass M to the initial mass 0M  as follows: 
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The initial mass is equal to the volume of the tumor, since 1 at 0t , which is 

given by 
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Discretization of the specific equations 

1. The diffusion equation 

In cylindrical coordinates for a 2 dimensional case and considering the problem in one 

dimension,equation (9)reduces to; 

)16.(............................................................
1
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
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Note that the primes are dropped for simplicity.
 

To dicretize  , we first subdivide the intervals of r and t  i.e.
 

Niriri ....................,.........3,2,1,0, 
 

Kktktk .................,.........3,2,1,0,   
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Using Taylor expansion we evaluate the central difference approximation for first and 

second derivative as follows: 
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Where; 

1


N
Lr

. 

N is the total number of spatial nodes including those on the boundary. 

Substituting equations (17) and (18) into equation (16) gives: 
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Rearranging, 
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Subject to the discretized boundary conditions below; 
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2. The death rate equation 

To solve equation (10), we first approximate the integral part of the equation using 

Simpson’s 
3

1
formulae. 

 Let; 
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Putting equation (22) into equation (10), we obtain, 

 

Letting; 
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We can solve (23) using the 4th order Runge Kutta method as outlined below.  
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 After obtaining the discrete values of , we then approximate the integral part of 

equation (23) using Simpsons 
3

1
 rule. 
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RESULTS AND DISCUSSION 

To the model equations representing the interaction between cancer density and drug 

concentration, we added radiotherapy effect at a non constant growth rate. We now 

perform numerical simulations for different values of parameters such as the ratio of 

radius of the blood vessel to the diffusion length of the drug and blood volume 

fraction. In the simulations we considered two cases i.e. without and with 

radiotherapy effect. 

We numerically solve equations 9-12 and 14 using, 25.0Lrb , 05.0BVF , 10 r ,

10 k , 

05.00  , 05.00   , 10  (initial condition), 1.0br (initial), 1Nr  for N=100 

subdivisions , 00 T , 10NT for N=100 subdivisions 

 

Fig 1(a): Variation of cancer density with time without radiotherapy 

From this result, it can be realized that cancer density decreases with time. This is due 

to increased drug concentration with time as well as nutrients competition. It is also 

noticeable that far away from the blood vessel, the cells proliferate. This is because 

there is lowered local drug concentration. In addition, these cells may also experience 

other micro-environmental conditions such as low nutrient competition. 
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Fig 1(b): Variation of cancer density with time with radiotherapy. 

 

With the introduction of radiotherapy,  cancer density decreases even further with 

time though at the beginning of the simulation, cancer cells near the blood vessel wall 

die (due to drug penetration) and further away cells proliferate. Cancer density is 

much lower here compared to fig 1(a).This means that adding radiotherapy to the 

treatment leads to more effective treatment. 

 

Fig 2: Variation of drug concentration with time 

This result indicates an increase in drug concentration with time. The drug 

concentration increases with time since there is continous drug administration. This 

drug concentration though decreases with increased distance from the point of 

administration. Continous drug administration is preferred over bolus. This is because 

cancer cells might proliferate between doses in the case of bolus treatment. 
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Continuous drug delivery will overcome proliferation.  

 
             Figure 3 (a): Ratio of viable cancer mass to the initial mass with varying 

Lrb  without radiotherapy. 

 

The results of the ratio of viable cancer mass to the initial mass with variations in 

Lrb  ( fixing BVF) without radiotherapy  shows that high ratio is achieved at low  

values of Lrb  . From the results we found out that at low value of Lrb , there is more 

blood diffusion and thus more effective treatment. Increase in Lrb
 
means there is 

less drug diffusion and cancer progress more and drug needs to be given more period 

of time. 

 

Figure 3(b): Ratio of viable cancer mass to the initial mass with varying  Lrb  with 

radiotherapy. 
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 On varying Lrb ,fixing BVF and  with radiotherapy cells die after a short period of 

time i.e. ten cycles. This is a clear indicator that radiotherapy brings about a more 

successive treatment. 

 

Figure 4(a): Ratio of viable cancer mass to the initial mass with varying BVF 

withoutradiotherapy. 

 

The above result is obtained on varying BVF (fixing Lrb ).Increased BVF represents 

highly vascularized cancer cells thus high drug penetration. High BVF thus leads to 

more treatment.Without radiotherapy cells need to be given more period of time.  

 

Figure 4(b): Ratio of viable cancer mass to the initial mass with varying BVF with 

radiotherapy. 
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On varying BVF (fixing Lrb ) and introducing radiotherapy,cells die after ten 

cycles.Increased BVF represents highly vascularized  tumors. We also found out that 

a continuously administered drug is more effective if the tumor is highly vascularlized 

(which means more exposure to the treatment) or if the drug penetration is high. 

 On considering the ratio of the viable cancer mass to the initial mass, it is noticeable 

that with radiotherapy the drug overcomes proliferation and cancer is killed in a short 

time. From the results it seems that at low value of Lrb , high BVF and with 

radiotherapy effect, treatment is more successful.  

 

Figure 5: Ratio of viable cancer mass to the initial mass with and without 

radiotherapy. 

Comparing the ratio of viable cancer mass to the initial with and without radiotherapy, 

it is noticeable that with radiotherapy, treatment is achieved after ten cycles but 

without radiotherapy more time is needed. 

 

CONCLUSION AND RECOMMENDATIONS 

 From the results, it can be concluded that combining chemotherapy and radiotherapy 

eliminates cancer cells more effectively.  This is achieved with low value of the ratio 

of radius of the blood vessel to the diffusion length of the blood and high values of 

blood volume fraction. However, we need to know the extent that these values can be 

decreased and increased for better results. This will guide the oncologists to choose 

the optimal therapy with minimal suffering to the patient. Our model was studied with 

continous delivery of the drug from the blood vessel. Future work can also include 

investigating the situation where the drug is given as a bolus dose in repeated cycles 

and then compare the two results. One can also investigate on the cancer stage   in 

which this treatment can work better. 



583 Numerical Solution for a Model on Cancer Growth Reduction Using both 

REFERENCES 

 1    Borkenstein, K., Levegrun, S., and Peschke, P.,2004, “Modeling and computer 

simulations of tumor growth and tumor response to radiotherapy”, Radiat Res 

vol.162, no.1, pp.71–83. 

 2   Enderling, H., and Chaplain M.A.J., 2014, “Mathematical modeling of tumor 

growth and treatment”, Current Pharmaceutical Design, vol. 20, no. 30, pp. 

4934–4940.  

 3    Marinis, A., 2015, “Using partial differential equations to model the growth of 

cancer tumor”,Lakehead  University,Thunder Bay,Ontorio,Canada. 

 4    Watanabe, Y.,Dahlman, E.,Leder ,Z.,and Susanta K.H., 2016, “A 

mathematical model of tumor growth and its response to single 

irradiation”,University of Minnesota,USA:dol 10.1186|s12976-016-0032-7. 

 5    Geng, C.,Paganetti ,H., and Grassberger, C., 2017, “Prediction of Treatment 

Response for Combined Chemo-and Radiation Therapy for Non Small Cell 

Lung Cancer Patients Using a Bio-Mathematical Model” , Scientific Reports 

7,Article No.13542.ISSN 2045-2322.  

 6    Simbawa, E., 2017, “Mechanistic Model for Cancer Growth and Response to 

Chemotherapy”, Computational and Mathematical Methods in Medicine, 

vol.2017, Article ID.3676295. 

 7    Causon ,D.M., and Mingham ,C.G., 2010, “Introductory finite difference 

methods for PDEs”, Bookboon.  

 8    Burden, R., and Faires, J., 2011, “Numerical Analysis”, Brooks/Cole Boston, 

Mass, USA, 9th edition. 

  9   Tannock, I.F., 2001, “Tumor physiology and drug resistance”, Cancer and 

Metastasis Reviews, vol. 20, no. 1-2, pp. 123–132 . 

 10   Ambrosi, D., and Mollica, F., 2002, “On the mechanics of a growing 

tumor”.International journal of engineering science, 40(12), 1297-1316. 

 11   Grassberger, C., and Paganetti, H., 2016, “Methodologies in the modeling of 

combined chemo-radiation treatments”, Physics in Medicine and Biology 

344–369, https://doi.org/10.1088/0031-9155/61/21/R344. 

 12    Clare, S .E. Nakhlis, F., and Panetta, J .C. 2000, “The use of mathematical 

models to determine relapse and to predict response to chemotherapy in breast 

cancer Breast Cancer” Molecular biology of breast cancer metastasis Res. 2 

430–5. 

 13   Barazzuol, L.,Burnet, N .G., Jena ,R., Jones, B., Jefferies ., S .J., and 

Kirkby, N. F.,2010, “A mathematical model of brain tumour response to 

radiotherapy and chemotherapy considering radiobiological aspects” ,J. Theor. 

Biol. 262 553–65.  

 



584 Purity Kioro Gikunda,  Dr. Mark Kimathi, Dr Mary Wainaina 

 

 

 

 

 

 

 

 


