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Abstract – The paper deals with an extension of the previous work appearing in a past issue of this 
transaction by the authors on hybrid FEM/MOM technique for analyzing transmission properties of 
arbitrarily shaped apertures on a thick conducting screen. In the present work, the effect of placing 
different dielectric material slabs in the conducting screen cavity on the electromagnetic transmission 
parameters is first analyzed and, then, the effect of interchanging the positions of these dielectric slabs 
relative to the incident field. Validation results for rectangular and cross-shaped slots are presented. Close 
agreement between our data and published data is observed.  Further data has been generated for 
rectangular, circular, diamond-shaped and cross-shaped apertures.  
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1 Introduction 

 
HE FEM technique has been used by many 
workers to evaluate electromagnetic fields in 

closed regions [1] – [2 ] due to its ability to 
accurately model the physical features of an object 
to a scale much smaller than the wavelength of 
interest, particularly when dealing with the 
evaluation of near- field parameters such as , 
surface currents, input impedance and scattering 
parameters. The method also handles quite 
effectively complex inhomogeneities and is less 
computationally intensive than Finite-Difference 
Time-Domain (FDTDM) and Moment Method 
(MOM) because of its sparse and banded matrices.  
 
 

 
 
However, it requires an absorbing boundary for 
unbounded regions in order to satisfy radiation 
conditions at far-fields. On the other hand, MOM  
technique [3 ] – [ 5], is superior in handling 
unbounded problems due to its ability to satisfy 
Sommerfeld radiation conditions at infinity. The 
FDTM requires a fine subdivision of the 
computational domain for good resolution and is 
quite computationally intensive 

However, recently, the greatest progress in 
computational electromagnetics has been in the 
development and application of hybrid techniques, 
such as FEM/MOM (finite element-moment 
method) and FDTM/MOM (finite-difference time-
domain-moment method), Xingchao and Yuan [2] 
and Abungu, et al [6].   

T



2 Problem Formulation  

Fig.1. illustrates the geometry of the 
problem under consideration. The 
configuration consists of a cavity in a thick 
conducting screen having apertures at the top 

and bottom surfaces, denoted by 1Γ  and 2Γ , 

respectively. 
The free space region above and 

below, z > 0 and z < -d planes are, hereafter, 
called regions A and B, respectively, and the 
volume occupied by the cavity (-d< z < 0) 
referred to as region C. Different layers of 
material slabs, each of the same thickness, are 
embedded in region C. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To decouple the fields in the three regions, 

the upper and lower apertures are closed with a 
perfect electric conductor  (PEC) using an 
approach similar to that in [7], the tangential 

electric fields in the aperture planes, 1Γ  and 

2Γ , are replaced with the equivalent magnetic 

currents 1M  in the += 0z and 2M−  in the 
−−= dz  aperture planes, as illustrated in Fig.2.  

The problem geometry is then decomposed 
into 3 regions as illustrated in Fig.3. The 
magnetic field in regions A and B can be 

expressed as superposition of the short-

circuited magnetic field scH , which is the 
incident magnetic field plus the specular 
reflection from the PEC plane, and the 

scattered magnetic field scat
H
r

. On 1Γ  and 2Γ , 

the tangential components of the magnetic 
field can be expressed as 

)(ˆˆ scatsctot HHnHn +×=×                (1) 

  
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

To maintain uniqueness in the solution, the 
tangential components of the magnetic field 

must be continuous across 1Γ  and 2Γ , within 

region C. Let 
  )()( 21 MHMH tottot +−  ; )()( 12 MHMH tottot −+  (2)    

be the magnetic field on  1Γ  and 2Γ ,  

respectively, produced by the equivalent

M1(x,y) 

-M1(x,y) 

M2(x,y) 

-M22(x,y) 

Region A ( z > 0 )

Region B ( z < -d )

Region C

Γ1 

Γ2 

d 

x 

Fig. 2: Equivalent currents introduced in the aperture planes. 
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 currents  - 1M  and 2M . 

By matching the tangential components of the 

exterior and interior magnetic fields on 1Γ  and 

2Γ , Eq. (1) can be expressed as  
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 on  2Γ                  (3) 

for regions A and B, respectively. Eq. (3) is then 
solved using the method of moments following a 
similar procedure as in [5]. The equivalent 
currents are expanded into a series of known 
basis functions weighted by unknown 
coefficients. A set of vector testing functions, 
which are chosen to be the same as the basis 
functions (Galerkin procedure), is introduced. 

2.1 Computing Exterior Admittance 

Matrices- MOM 

 The vector testing functions 
1mW  are distributed 

over 1Γ , and the functions 
2mW  over 2Γ .  

 
Taking the inner product of Eq. (3) with the 
testing functions and taking the advantage of the 

linearity of the operators result in on 1Γ  given by 

Eq. (6)  
 similar expression can be derived for fields on 

2Γ , with the equivalent magnetic currents 1M  

and 2M  given as 
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2.1.1 Matrix Elements Evaluation 
 

As explained in [9], following Galerkin 

procedure ( mm MW = ), a typical matrix 

element for the rth region is given by 
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where the notation 
+

mT

ds)(  has been 

introduced for compactness. 
In terms of the electric vector potential )(rF  

and the magnetic scalar potential )(rφ , the 

magnetic field )( n
r MH  can be written as (13) 

 

Applying two-dimensional divergence theorem to 
 

 
   Eq. (12), leads to 
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Eqn. (16) contains quadruple integrals; a double 
integral over the field triangles ±

mT  and a double 

integral over the source triangles ±
nT  involved in the 

computation of )(rFn  and )(rnφ . In order to reduce  

 
 
the numerical computations, the integrals over ±

mT  

can be approximated by the values of integrals at the  
centroids of the triangles. This procedure yields 
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In (17), ±c

mρ  are the local position vectors to the 

centroids of ±
mT  and ±c

mr  = 3/)( 321 ±±± ++ mmm rrr  are the 

position vectors of centroids of ±
mT  with respect to 

the global coordinate system. 
 Similarly, as explained in [9], using the 
centroid approximation in Eqn. (11), an element of 
excitation vector can be written as 
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2.2 Computing Interior Admittance Matrix 

YC- FEM 

Within the cavity region, the magnetic fields must 
satisfy the vector Helmholtz equation 
 

0
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where H  is the total magnetic field. The cavity 
region is defined as a closed space confined by PEC 
walls, which will be referred to as the domain V .  A 
functional described by the inner product of the 
vector wave equation and the vectors testing 

function, H , is expressed as 

( ) dVHHkHHHF r

r

 







∗−×∇×∇∗= *2* 1 µ

ε
       (22) 

is defined. The solution of the boundary-value 
problem is then found variationally, by solving for 
the magnetic field at a stationary point of the 
functional via the first variation 

( ) 0=HFδ               (23) 

The functional has a stationary point (which occurs at 
an extremum ) and equations (21) and (22) can be 
used to derive a unique solution for the magnetic 
field. For an arbitrary volume,V , the solution of the 
above variational expression cannot be found 
analytically and is derived via the FEM.  To this end, 
the domain V  is discretized into a finite number of 
subdomains, or element domains, eV . Finite elements 

are chosen with lower degree that are compatible 
with the required regularity to minimize 
computational costs. Isoparametric tetrahedron 
elements (triangles on the surfaces and tetrahedrons 
for the volumes) with linear basis functions for the 
integral operators and for the differential surface and 
volume operators are chosen. 

It is assumed that each element domain eV  has a 

finite volume and that the material profile within this 
volume is constant.  Within each element domain the 

vector magnetic field is expressed as eH .  If there 

are eN  element domains within V , the functional can 

be expressed in terms of the approximate magnetic 
fields as  

                                                                         

 
 
Applying the vector identity 
                                

and the divergence theorem, (12 ) can be written as 
                        

   
 
implying contribution from only regions of implied 
magnetic current sources, i.e., at the apertures only.  
The approximate vector field in each element domain 
is represented as 
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and iλ  is the barycentric function of node 

i expressed as  
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where iA
r

 is the inwardly directed vectorial area of 

the tetrahedron face opposite to node i , eV  the 
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element volume, and r
r

 the position vector.  Also, br
r

 

is the position vector of the barycenter of the 
tetrahedron defined as 
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in which ir
r

 is the position vector of node i . 

 Using equations (29) in (28) leads to: 
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equation (22 ) becomes 
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By enforcing the continuity of the magnetic field, a 
global number scheme can be introduced.  The 
following symmetric and highly sparse matrix results 
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where: bα  are coefficients weighting the edge 

elements lying in the aperture plane 1Γ  and 2Γ .  eα  

are coefficients weighting the remaining edge 
elements in region C. 

2.2.1 Computing Interior Matrix [ ]C
Y  

The computation of the nth column of [ ]C
Y  in (6) and 

(7) is performed by perturbing the cavity with an 
equivalent current basis function nM . Then, with the 

use of (21), the interior tangential magnetic fields in 

the aperture planes, 1Γ  and 2Γ , are computed. The 

first N row elements of the nth column of [ ]C
Y  are 

then computed by taking the inner product of the 

aperture field on 1Γ , successively with the N  testing 

functions NW . The next P  row elements of the nth 

column are computed by taking the inner product of 

the aperture field on 2Γ  with the P  testing functions 

QW . Similarly, the remaining P  columns of [ ]C
Y  can 

be computed by perturbing the cavity with equivalent 

current basis functions pM .     

2.3 Complete Admittance Matrix  

The complete admittance matrix from Eq. (13) can be 
expressed as  
The advantage of using this function is that the 
admittance matrices of the interior and the exterior 
regions can be constructed independently.   

 
The aperture admittance matrices [ ]A

Y  and [ ]B
Y  are 

computed by solving the problem of the equivalent 
magnetic currents radiating into a half-space.  The 
aperture admittance matrix [ ]C

Y  is computed by 

solving the interior cavity problem.  
Figs. 4 and 5 define the dimensions of cross-shaped 
and diamond-shaped aperture problems analyzed in 
this work. 
 

3 Results and Conclusions 

The formulation has first been validated by 
considering problems of rectangular, circular, 
diamond-shaped and cross-shaped apertures on thin 
conducting screens, as given in Table 1, based on the 
results of Konditi and Sinha [5] and for arbitrarily –
shaped apertures on thick conducting screen of 
Abungu, et al [6] based on hybrid FEM-MOM, 
respectively. The results are seen to be in good 
agreement.   

Thereafter, circular cross-shaped and diamond-
shaped apertures in a screen of varying thickness and 
having two different dielectric layers filling the 
cavity have been studied. In each case equivalent 
magnetic current distributions and transmission 
cross-sections have been calculated. Relative 
permittivities for glass, titanium dioxide and air are 
taken as, 4.0, 96.0, and1.0, respectively. 

The results obtained for different 
commutation of dielectric materials in the cavity 
region have been presented.  Parameters computed 
are transmission cross-sections and equivalent 
magnetic currents. 

 It is observed in Figs. (6,7,8,9), that the 
thicker the cavity region the lower the transmission 
cross-section. Further, it has been established that the 
transmission cross-sections and magnetic current 
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magnitudes are larger if the incident wave approaches 
from the higher dielectric constant material toward 
the lower dielectric constant medium. This could be 
due to resonance occurring when an EM wave moves 
from higher dielectric constant material into a lower 
dielectric constant material. The phase of the 

equivalent magnetic current M , on the other hand, is 
independent of the commutation of the dielectric 
slabs in the cavity region. This phenomenon seems to  
be consistent with Floquet’s theorem, which states 
that given a plane wave incident on a periodic 
structure, all observable quantities will have the same 
periodicity as the structure and will have a cell-to-cell 
phase shift equivalent to that of the periodic structure. 
. 
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Table 1: Validation Data 
 

 

 

 

 
 

 

 

 

 

 

 

 

 
Konditi & Sinha [3] - MOM 

Screen Thickness, t = 0.0λ 

Abungu et al [5] Based on Hybrid 
FEM/MOM 

            Screen thickness, t = 0.001λ 

1 Problem & Dimensions 

Peak 
Equivalent 
Magnetic 

Current ( M ) 

Transmission 
Coefficient 

Peak Equivalent 
Magnetic Current 

( M ) 

Transmission 
Coefficient 

Rectangular 
λ/20 x λ/2 

13.4 0.33 13.2 0.32 

Cross-shaped (Aw = 2L/3, L = h = 2λ/3) 3.3 1.3 3.1 1.2 

Diamond-shaped 
L/λ = 0.8 

22.0 0.77 - - 

Circular 
1.25 1.65 1.15 1.55
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h 
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Fig. 4:  Cross-shaped slot dimensions 

y 

x 

L/2 L/2 

h/2 

h/2 

Fig.5:  Diamond-shaped slot dimensions 



 

 

Fig.6: x-directed Surface Magnetic Current  Distributions at y/h = -0.0625 for Aw = L/4 for 
Cross-shaped slots in a Conducting Screen of thickness t. 

(a) A:air, B:glass, C:titanium dioxide, D:air, t = 0.001λ
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(b) A:air, B:titanium dioxide, C:glass, D:air, t = 0.001λ
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(c)  A:air, B:glass, C:titanium dioxide, D:air, t = 0.01λ
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(e) A:air, B:glass, C:titanium dioxide, D:air, t = 0.1λ
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(a) A:air, B:glass, C:titanium dioxide, D:air, t = 0.001λ
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(c)  A:air, B:glass, C:titanium dioxide, D:air, t = 0.01λ
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(e) A:air, B:glass, C:titanium dioxide, D:air, t = 0.1λ
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(f) A:air, B:titanium dioxide, C:glass, D:air, t = 0.1λ
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(d) A:air, B:titanium dioxide, C:glass, D:air, t = 0.01λ
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Fig. 7: Transmission Cross-sections τθy/λ2 and τxx/λ2 for inhomogeneously filled  
Cross-Shaped Slots, L = h = 2λ/3, Aw = L/4, in a Conducting Screen of thickness t. 



 

 

(a) A:air, B:glass, C:titanium dioxide, D:air, t = 0.001λ
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Fig. 8: x-directed Surface Magnetic Current Distributions at y/h = -0.0833 for Diamond-shaped slots with 
 h/λ = 0.3556 and L/λ = 0.8  in a Conducting Screen of thickness t. 



 

 

 

 

(a) A:air, B:glass, C:titanium dioxide, D:air, t = 0.001λ
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(c)  A:air, B:glass, C:titanium dioxide, D:air, t = 0.01λ
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(e) A:air, B:glass, C:titanium dioxide, D:air, t = 0.1λ
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(f) A:air, B:titanium dioxide, C:glass, D:air, t = 0.1λ
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(d) A:air, B:titanium dioxide, C:glass, D:air, t = 0.01λ
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Fig. 9: Transmission Cross-sections τθy/λ2 and τxx/λ2 for inhomogeneously filled Diamond-Shaped  
Slots, L/λ = 0.8, in a Conducting Screen of thickness t. 

 


