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KINETIC DERIVATION OF A HAMILTON-JACOBI TRAFFIC

FLOW MODEL ∗

RAUL BORSCHE † , MARC KIMATHI‡ , AND AXEL KLAR§

Abstract. Kinetic models for vehicular traffic are reviewed and considered from the point
of view of deriving macroscopic equations. A derivation of the associated macroscopic traffic flow
equations leads to different types of equations: in certain situations modified Aw-Rascle equations
are obtained. On the other hand, for several choices of kinetic parameters new Hamilton-Jacobi type
traffic equations are found. Associated microscopic models are discussed and numerical experiments
are presented discussing several situations for highway traffic and comparing the different models.
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1. Introduction

Macroscopic models for vehicular traffic have been first introduced by Lighthill
and Whitham [23]. These models are based on the continuity equation for the density
ρ closing the equation by an equilibrium assumption on the mean velocity u, where
u is approximated by a uniquely determined equilibrium value, [23]. An additional
momentum equation for u has been introduced by Payne and Whitham in [19, 23] in
analogy to fluid dynamics. To avoid certain inconsistencies, like wrong way traffic, of
models such as the Payne/Whitham model a new macroscopic model has been intro-
duced by Aw and Rascle [3], see also [1] or [10]. These models have been subsequently
improved, for example, in [6, 7].

Kinetic equations for vehicular traffic can be found, for example, in [20, 18, 17,
14, 13]. Procedures to derive macroscopic traffic equations including the Aw/Rascle
model from underlying kinetic models have been performed in different ways by several
authors, see, for example, [11] and [16]. These procedures are developed in analogy
to the transition from the kinetic theory of gases to continuum gas dynamics.

In the present paper these derivations are reviewed. A closer analysis shows
that Aw-Rascle type traffic equations can be derived from kinetic problems for cer-
tain choices of kinetic parameters. For other choices, however, new equations with
Hamilton-Jacobi terms are derived.

The paper is arranged in the following way: In Section 2 different reduced kinetic
models are presented. Section 3 contains the derivation of the macroscopic models
mentioned above. Section 4 contains the associated microscopic traffic flow models.
Finally, in Section 5 numerical results are given comparing the derived macroscopic
equations for several nonhomogeneous traffic flow situation.

2. Kinetic Models

The kinetic models presented in this section are based on work in [15, 13] and
describe highway traffic in a cumulative way averaging over all lanes. These models
are given by integro-differential and Fokker-Planck type equations respectively. In
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particular, the Fokker-Planck type models are changed allowing only for densities
below a maximal density and for a better comparison of the models.

2.1. Correlations and the reduced density

The basic quantity in a kinetic approach is the single car distribution f(x,v)
describing the (number) density of cars at x with velocity v. The total density ρ on
the highway is defined by

ρ(x) =

∫ w

0

f(x,v)dv,

where w denotes the maximal velocity. Let F (x,v) denote the probability distribution
in v of cars at x, i.e. f(x,v)=ρ(x)F (x,v). Then , the mean velocity is

u(x) =

∫ w

0

vF (x,v)dv.

An important role is played by the distribution f (2)(x,v,h,v+) of pairs of cars
being at the spatial point x with velocity v and leading cars at x+h with velocity
v+. This distribution function has to be approximated by the one-vehicle distribution
function f(x,v). Usually, a chaos assumption is used,

f (2)(x,v,h,v+)= q(h,v;f)f(x,v)F (x+h,v+),

compare Nelson [17]. For a vehicle with velocity v the function q(h,v;f) denotes
the distribution of leading vehicles with distance h under the assumption that the
velocities of the vehicles are distributed according to the distribution function f .

Moreover, we introduce thresholds for braking (HB) and acceleration (HA):

HX =HX(v) = H0+vTX , X=B,A.

TB <TA are reaction times. H0 denotes the minimal distance between the vehicles.
For simplicity we choose HA and HB in the following as constants.

The distribution of leading vehicles q(h,v;f) is prescribed a priori. The main
properties, which q(h,v;f) has to fulfill are positivity,

∫ ∞

0

q(h,v;f)dh = 1,

and
∫ w

0

∫ ∞

0

hq(h,v;f)dhF (v)dv =
1

ρ
. (2.1)

Equation (2.1) means that the average headway of the cars is 1/ρ. Here, the leading
vehicles are assumed to be distributed in an uncorrelated way with a minimal distance
HB from the car under consideration, see Nelson [17]:

q(h,v;f) = q(h;ρ)= ρ̃e−ρ̃(h−HB)χ[HB ,∞)(h).

The reduced density ρ̃ has to be defined in such a way, that (2.1) is fulfilled. One
obtains

ρ̃ =
ρ

1−ρ
∫ w

0
HBF (v)dv

=
ρ

1−ρHB
. (2.2)
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Remark 2.1. The reduced density ρ̃ must be positive, i.e.

ρ <
1

HB

We note that

q(HA;ρ) = ρ̃e−ρ̃(HA−HB)

and

q(HB;ρ) = ρ̃ .

Moreover, from phenomenological considerations the probability of braking can
be derived as

PB =1−(1−ρHB)e
−ρ̃HB ,

see [9]. These basic considerations can be used to develop different kinetic models.

2.2. Models based on Integro-differential equations

A first kinetic model is derived using classical Boltzmann arguments. It is given
by the following evolution equation for the distribution function f , see [16, 9]:

∂tf+v∂xf =C+(f) (2.3)

=
[

qBPB(G
+
B−L+

B)(f)+qA(G
+
A−L+

A)(f)
]

with

G+
B(f)=

∫ ∫

v̂>v̂+

|v̂− v̂+|σB(v; v̂, v̂+)f(x,v̂)F (x+HB , v̂+)dv̂dv̂+

L+
B(f)=

∫

v̂+<v

|v− v̂+|f(x,v)F (x+HB , v̂+)dv̂+

G+
A(f)=

∫ ∫

v̂<v̂+

|v̂− v̂+|σA(v; v̂, v̂+)f(x,v̂)F (x+HA, v̂+)dv̂dv̂+

L+
A(f)=

∫

v̂+>v

|v− v̂+|f(x,v)F (x+HA, v̂+)dv̂+

GB,LB stand for gain and loss terms resulting from braking interactions, GA,LA

result from accelerating interactions. Reaching the braking line the vehicle brakes,
such that the new velocity v is distributed with a distribution function σB depending
on the old velocities v̂, v̂+. For acceleration, the new velocity is distributed according
to σA.
Remark 2.2. In [9] additionally a relaxation term is introduced, describing a random
behaviour of the drivers. It is given by

GS(f)−LS(f) = ν(

∫ w

0

σS(v,v̂)f(x,v̂)dv̂−f(v)).

This term is necessary as long as one is interested in a more detailed investigation of
the stationary solutions of the kinetic model and the resulting fundamental diagrams.
However, in the present investigation we aim at deriving different macroscopic equa-
tions without relaxation terms on the right hand side. For such a derivation it is
sufficient to consider the simplified version above. For further remarks on this Boltz-
mann/Enskog approach to traffic flow modelling see [16].



4 Hamilon-Jacobi traffic model

Example 1. For the probability distributions σA,σB we choose the following
simple expressions, see [9]:

σB(v,v̂, v̂+) =
1

v̂− v̂+
χ[v̂+,v̂](v) (2.4)

and

σA(v,v̂, v̂+) =
1

v̂+− v̂
χ[v̂,v̂+](v). (2.5)

This means we have an equidistribution of the new velocities between the velocity of
the car and the velocity of its leading car.

Example 2. Another possible choice is, see [16]

σB(v,v̂)=
1

v̂(1−β)
χ[βv̂,v̂](v)

and

σA(v,v̂)=
1

min(w,αv̂)− v̂
χ[v̂,min(w,αv̂)](v).

2.3. Models based on Vlasov-Fokker-Planck equations

In [13] a kinetic model based on a VlasovFokker-Planck approach has been devel-
oped:

∂tf+v∂xf =C+(f)=−∂v
(

B[f ]f
)

. (2.6)

Here, f stands again for a traffic distribution function. We denote by ρ,u again
the macroscopic density and speed associated with f.

To define the braking and acceleration behaviour of drivers in response to traffic
situations, we use the following braking/acceleration forces as functions of the traffic
conditions. Slightly changing the approach in [13], i.e. adding the parameters qB and
qA, we consider

B[f ](t,x,v) =



















−qBPBcη|v−uB|η v > uB

qAcη|u
A−v|η v ≤ uB and v ≤ uA

0 else

(2.7)

Again we look at two examples, i.e. η=1 and η=2. Here cη = vref with vref a
reference velocity if η=1 and cη dimensionless if η=2 and

ρX = ρ(x+HX ,t), uX = u(x+HX ,t) (2.8)

for X=A,B.
Remark 2.3. Similar to the case of the integro-differential equation, we use for the
present investigation a simplified version of the kinetic model, see also [12]. In the
original version of the model in [13] a diffusion term

∂v(D[f ]∂vf)
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with

D[f ](ρ,u,v)=

[

σ(ρB ,uB)|v−uB |γ v>uB

σ(ρA,uA)|v−uA|γ else

]

with γ≥ 1 has been added to the right hand side of the above equation. Details of the
function σ(ρ,u) can be found in reference [13]. For the presentation here we neglect
this diffusion term. It is however necessary to obtain smooth homogeneous solutions.

3. Derivation of Macroscopic Models

In this section macroscopic equations for density and mean velocity are derived
following the procedure in [16]. Among these equations are new Hamilton-Jacobi type
traffic equations which have not been discussed up to now in literature. This section
shows that the resulting equations do not depend on the the different kinetic models
used, but rather on the type of interaction terms. Using simplified closure relations
explicit results are obtained compared to the numerical closures in [16]. However, the
resulting equations are still more detailed than the usually used macroscopic models.

3.1. Balance Equations

Multiplying the inhomogeneous kinetic equation (2.3) or (2.6) with 1 and v and
integrating it with respect to v one obtains the following set of balance equations:

∂tρ+∂x(ρu)=0 (3.1)

∂t(ρu)+∂x(P +ρu2)+E=0

with the ’traffic pressure’

P =

∫ w

0

(v−u)2fdv, (3.2)

and the flux term

E = −

∫ w

0

vC+(f)(x,v,t)dv. (3.3)

To obtain closed equations for ρ and u one has to specify the dependence of P
and E on ρ and u.

3.2. Closure and resulting macroscopic equations

To approximate the distribution function we use the simplest possible one node
quadrature ansatz disregarding fluctuations in the distribution function. That means,
we use f(v)∼ρδu(v) for the distribution function in (3.2) and (3.3) to approximate
the true distribution f and to close the equations, compare [12] for such an ansatz in
the traffic case or [5] for a similar procedure for interacting particle systems. Using
this Ansatz, one obviously neglects the variance of the distribution function. However,
the main features of the resulting macroscopic equation are preserved. We obtain for
the traffic pressure

P ∼ 0.

We are left with the Enskog term E. It is approximated by considering expression
(3.3) for E and substituting the closure for f . One obtains different expressions
depending on the kinetic model under consideration.
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3.2.1. Integro-differential equations In the case of integro-differential equa-
tions one obtains

E = EB(f)+EA(f)

with

EB(f)=−qBPB

∫ ∫

v̂>v̂+

|v̂− v̂+|

f(x,v̂)F (x+HB , v̂+)[

∫ w

0

vσB(v,v̂, v̂+)dv− v̂]dv̂+dv̂

and

EA(f)=−qA

∫ ∫

v̂<v̂+

|v̂− v̂+|

f(x,v̂)F (x+HA, v̂+)[

∫ w

0

vσA(v,v̂, v̂+)dv− v̂]dv̂+dv̂.

Using now

F (x,v)= δu(x)(v)

gives for u>uB approximately:

EB ∼−qBPBρ|u−uB|[

∫ w

0

vσB(v,u,u
B)dv−u]

and 0 otherwise. Approximating uB−u by HB∂xu this is approximated for ∂xu< 0
by

qBPBρHB∂xu[

∫ w

0

vσB(v,u,u
B)dv−u].

The acceleration term gives

EA ∼ −qAρ|u−uA|[

∫ w

0

vσA(v,u,u
A)dv−u]

for u<uA and 0 otherwise. Therefore one obtains for ∂xu> 0 the approximation

−qAρHA∂xu[

∫ w

0

vσA(v,u,u
A)dv−u].

The final result depends on the interaction model. Example 1 gives

E=

{

EB ∼−qBPBρH
2
B∂xu|∂xu|, ∂xu< 0

EA ∼ −qAρH
2
A∂xu|∂xu|, ∂xu> 0.

Example 2 gives

E=

{

EB ∼−qBPBρHB
1−β
2 u∂xu, ∂xu< 0

EA ∼ −qAρHA
min(αu,w)−u

2 ∂xu, ∂xu> 0.
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3.2.2. Vlasov-Fokker-Planck equations Similar results are obtained for the
Vlasov-Fokker-Planck equations. Computing

E=

∫

v∂v
(

B[f ]f
)

dv=−

∫

(

B[f ]f
)

dv

one obtains for u>uB

E∼ cηqBPBρ|u−uB|η

and for u<uB and u<uA

E ∼ −cηqAρ|u−uA|η

and 0 else. This gives for η=1

E∼

{

−vrefqBPBρHB∂xu, ∂xu< 0
−vrefqAρHA∂xu, ∂xu> 0.

For η=2 we have

E∼

{

−cηqBPBρH
2
B|∂xu|∂xu, ∂xu< 0

−cηqAρH
2
A|∂xu|∂xu, ∂xu> 0.

Remark 3.1. In both cases, depending on the interaction law, either a linear depen-
dence on ∂xu or a nonlinear functional dependence is observed.

3.3. Macroscopic equations

Altogether, one obtains macroscopic equations either of the form

∂tρ+∂x(ρu)=0 (3.4)

∂t(ρu)+∂x(ρu
2)−ρa(ρ,u)∂xu=0

or of the form

∂tρ+∂x(ρu)=0 (3.5)

∂t(ρu)+∂x(ρu
2)−ρb(ρ,u)|∂xu|∂xu=0,

where the coefficients are given by

a(ρ,u)=

{ HBPB
1
ρ
−HB

fB(u) ∂xu< 0
HA

1
ρ
−HB

exp(−ρ̃(HA−HB))fA(u) ∂xu> 0

b(ρ,u)=







H2
BPB

1
ρ
−HB

∂xu< 0

H2
A

1
ρ
−HB

exp(−ρ̃(HA−HB)) ∂xu> 0

with suitable functions fA,fB. We note that a(ρ,u),b(ρ,u)> 0. Looking at these equa-
tions one observes that equation (3.4) is a Rascle-type equation with microscopically
justified coefficients which include braking and acceleration threshold. On the other
hand, equation (3.5) is an equation with Hamilton-Jacobi terms, which has, to the
knowledge of the authors, not been discussed in the literature. Vehicles described by
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(3.5) will brake stronger or accelerate faster, the steeper the gradient in velocity is
ahead of them.

If we simplify further, choosing HA=HB =H and qA= qB = ρ̃, PB =1 and ap-
proximating fA,fB by vref one obtains the coefficients

a(ρ)=
Hvref
1
ρ −H

=
vref
1

ρH −1
(3.6)

b(ρ)=
H2

1
ρ −H

=
H

1
ρH −1

. (3.7)

Remark 3.1. Equation (3.4) with the coefficient (3.6) is similar to the modified
Rascle equation discussed together with its limits in [6]. From the kinetic point of
view these equations are strongly simplified. In particular, they treat the braking and
acceleration interaction in the same way, which is clearly not physical. However, they
still contain the essential features of traffic flow, see [6].
Remark 3.2. The kind of equation one obtains does not depend on the fact whether
an integro-differential equation model or a Fokker-Planck type model is used, but rather
on the fact which interaction rule is chosen.
Remark 3.3. We note that traffic equations with different Hamilton-Jacobi terms
have also been discussed in [12].
Remark 3.4. The two results obtained here could be also merged into a third equation
by using

∂tρ+∂x(ρu)=0 (3.8)

∂t(ρu)+∂x(ρu
2)−ρb(ρ)c(|∂xu|)∂xu=0

with

c(|∂xu|)=min{|∂xu|,C}

with a constant C. This would limit the braking force.

4. Associated microscopic car-following models Equation (3.4) with co-
efficient (3.6) can be derived from microscopic models of the form

ẋi=vi

v̇i=
Hvref

xi+1−xi

vi+1−vi
xi+1−xi−H

.

This can be easily seen by the following procedure, compare [2]. Set

li=xi+1−xi,

then the microscopic equations are

ẋi=vi

v̇i=
Hvref

li

vi+1−vi
li−H

.

The local (normalized) density around vehicle i and its inverse the local (normalized)
specific volume are respectively defined by

ρi=
H

li
and τi=

1

ρi
=

li
H

.
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One obtains the microscopic model

ẋi=vi , (4.1)

v̇i=
vref
τi

1

H

(vi+1−vi)

τi−1
.

We have

l̇i= vi+1−vi or τ̇i=
1

H
(vi+1−vi).

One considers the coordinate X=
∫ x

ρ(y,t)dy describing the total space occupied by
cars up to point x. Approximating (vi+1−vi)/H by ∂Xu yields the Lagrangian form
of the macroscopic equations, i.e. the equivalent of the p-system in gas dynamcis

∂T τ−∂Xu=0 (4.2)

∂Tu−
a(τ)

τ
∂Xu=0 ,

where

a(τ)=
vref
τ−1

. (4.3)

We change the Lagrangian “mass” coordinates (X,T ) into Eulerian coordinates
(x,t) with

∂xX=ρ, ∂tX=−ρv, T = t

or

∂Xx=ρ−1= τ, ∂Tx= v.

The macroscopic system in Eulerian coordinates is then

∂tρ+∂x(ρu)=0, (4.4)

∂t(ρu)+∂x(ρu
2)−ρa(ρ)∂xu=0

with

a(ρ)= vref

(

1

ρ
−1

)−1

. (4.5)

This means we obtain again the equations (3.4) and (3.6) taking into account that in
the kinetic derivation ρ is the number density. That means the quantity ρH in the
kinetic part is equivalent to the normalized density considered in this section.
Remark 4.1. We note that the above statement is equivalent to considering the ki-
netic equations for the rescaled distribution functions f ′= fH. This leads, for exam-
ple, to a Vlasov equation where the braking and acceleration term in (2.6) is multiplied
by 1

H .
Remark 4.2. For numerical simulations of the microscopic system and comparison
with the macroscopic equation the quantity H is chosen such that the total space
∫ L

0
ρ(x)dx occupied by the cars is equal to HN , where L is the total length of the

region under consideration and N is the total number of vehicles.
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Using the same procedure one obtains the microscopic model associated to equa-
tion (3.5) and (3.7). It is given by

ẋi=vi

v̇i=
H

(xi+1−xi)2
.
|vi+1−vi|(vi+1−vi)

xi+1−xi−H
.

The latter equations are similar to microscopic traffic equations originally stated by
Wiedemann and Leutzbach [24].

5. Numerical Investigations

In this section we investigate the macroscopic equations numerically. In particu-
lar, the Hamilton-Jacobi type equations equation (3.5) are compared to the Aw-Rascle
type equations (3.4) .

5.1. Numerical methods

We choose a numerical method suited for the hyperbolic equation in non-
conservative form (3.4) as well as for the Hamilton-Jacobi term in (3.5). A suitable
choice is given e.g. by second order central scheme developed in [4]. For completeness
we state an extended version of the scheme as used in our numerical computations.
To start with, the above equations are written in the form

∂tφ+H(φ,φx)=0 (5.1)

with

φ=

(

ρ
ρu

)

.

For equations (3.4) we have

H(φ,φx)=

(

ρux+uρx
(ρu2)x−ρa(ρ)ux)

)

and for equations (3.5)

H(φ,φx)=

(

ρux+uρx
(ρu2)x−ρb(ρ)|ux|ux)

)

.

For the numerical scheme a grid of equally spaced points xi i=1, . . .,N , with ∆x=
xi−xi−1 is given. In the following we consider the explicit time step from tm to
tm+1= tm+∆t. The aim is to construct a second order scheme for the above 1-D
equations. A detailed derivation can be found in [4].

Based on piecewise quadratic interpolations one obtains the following expression
for the iterate φm

i approximating φ(xi,tm);

φm+1
i =φm+1

i− 1
2

+
1

2
(∆φ)m+1

i −
1

8
D(∆φ)m+1

i (5.2)

with the second order approximation of the equation

φm+1
i− 1

2

=φm
i− 1

2

−∆tH(φ
m+ 1

2

i− 1
2

,(φx)
m+ 1

2

i− 1
2

)
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where

φ
m+ 1

2

i− 1
2

=φm
i− 1

2

−
∆t

2
H(φm

i− 1
2

,(φx)
m
i− 1

2

)

(φx)
m+ 1

2

i− 1
2

=(φx)
m
i− 1

2

−
∆t

2
[
∂H

∂φ
(φm

i− 1
2

,(φx)
m
i− 1

2

)(φx)
m
i− 1

2

+
∂H

∂φx
(φm

i− 1
2

,(φx)
m
i− 1

2

)
D(∆φ)m

i− 1
2

(∆x)2
].

In these expressions the following definitions are obtained from Taylor expansions:

φm
i± 1

2

=φm
i ±

1

2
(∆φ)mi± 1

2

−
1

8
D(∆φ)mi± 1

2

(φx)
m
i− 1

2

=
(∆φ)m

i− 1
2

∆x

and the following approximations of the first

(∆φ)mi+ 1
2

=φm
i+1−φm

i

(∆φ)m+1
i =φm+1

i+ 1
2

−φm+1
i− 1

2

and the second derivatives

D(∆φ)mi+ 1
2

=MM [(∆φ)mi+ 3
2

−(∆φ)mi+ 1
2

,
1

2

(

(∆φ)mi+ 3
2

−(∆φ)mi− 1
2

)

,

(∆φ)mi+ 1
2

−(∆φ)mi− 1
2

]

D(∆φ)m+1
i =MM [(∆φ)m+1

i+1 −(∆φ)m+1
i ,

1

2

(

(∆φ)m+1
i+1 −(∆φ)m+1

i−1

)

,

(∆φ)m+1
i −(∆φ)m+1

i−1 ]

with the Min-Mod function

MM(x1,x2,x3)=







minj{xj}, if allxj > 0
maxj{xj}, if allxj < 0
0, otherwise.

The limiter is used to deal with the possible appearance of discontinuites.
Remark 5.1. For the above second order scheme a CFL condition has to be fulfilled:

∆t

∆x
|λmax|≤

1

2

where λmax is the maximal (in absolute value) eigenvector of ∂H
∂φx

(φ,φx). Thus, for
the Hamilton-Jacobi model the choice of the time step depends on the values of the
gradient ∂xu and might be very small for very sharp gradients. This could be avoided
by using, for example, equation (3.8).
Remark 5.2. We note that using the above described second order method for the
Aw-Rascle equations with situations involving contact discontinuities gives, among
other problems, quite diffusive results. This is observed for classical numerical meth-
ods for hyperbolic equations as well, see [8]. For a strategy to compute the contact
discontinuities in a more accurate and efficient way we refer to [21, 8].
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Fig. 5.1. Density ρ at t=0.2 for the Riemann problem with ρl=0.5, ul=1, ρr =0.5, ur =0 and

x0=0.5.

5.2. Numerical examples

For the numerical simulations we consider the equations (3.4), (3.5) with coeffi-
cients (3.6), (3.7) respectively and the constants H=1,vref =1, i.e. ρmax=1. The
behavior of the solutions to the macroscopic equations is investigated in four different
test scenarios. To illustrate the performance of the scheme described above the results
are presented with two different mesh sizes ∆x=0.01 and ∆x=0.001. All test cases
start with Riemann problems of the following form:

φ(x,0)=

{

φl, forx<x0

φr, for x>x0

where

φl/r =

(

ρl/r
ul/r

)

are given as initial data.
Example 1: In the first example the end of a traffic jam is considered. Thereby

fast cars approach from the left a group of cars at rest on the right. The corresponding
data is given by

ρl=0.5, ul=1, ρr=0.5, ur=0

and x0=0.5. For the Rascle model the computations are performed in conservative
form using the variables (ρ,y=ρ(u− ln(1−ρ))) to obtain the correct shock speeds.
The numerical results are shown in Figure 5.1. The exact solution of the Rascle
model (solid line) is given by a shock-wave moving to the right followed by a stationary
contact-discontinuity, see [3]. The numerical results for the Hamilton-Jacobi model
(dotted line) show a faster braking of the approaching cars. This leads to a faster
back-traveling wave and a less dense congested state. About the numerical aspects,
the diffusion at the contact discontinuity is reduced by the finer grid, whereas the
resolution of the shock in the Rascle model (dashed line) remains satisfactory.

Example 2: Now the tail of a group of moving cars followed by an empty road
is studied. The initial states are chosen as

ρl=0, ul=1 and ρr=0.5, ur=1 ,
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Fig. 5.2. Density ρ at t=0.2 for the Riemann problem with ρl=0, ul=1, ρr =0.5, ur =1 and

x0=0.5.

with the discontinuity at x0=0.5. As shown in Figure 5.2, the exact solution of the
Rascle model (solid line) is given by a single contact-discontinuity moving at the speed
of the leading cars. This behavior is captured well by the numerical scheme (dashed
line) and holds also true for the Hamilton-Jacobi model. In both cases the cars are
not influenced by the free space behind them and are thus following the constant state
in front.

Example 3: Here we consider a group of faster vehicles escaping from slower
ones in behind. Therefore we chose

ρl=0.5, ul=0 and ρr =0.9, ur=0.5

on the left and right of x0=0.5. In Figure 5.3 the corresponding solutions are plotted.
The exact solution of the Rascle model (solid line) consists of a left going rarefaction
wave and a contact-discontinuity moving to the right. As the drivers of the Hamilton
Jacobi model (dotted line) tend to accelerate faster than those of the Rascle model
(dashed line), the arising gap is less distinct. Thus a more homogeneous state is
reached on the left. By increasing the number of grid points only the resolution of
the contact discontinuity is improved.

Example 4: Finally we consider an example similar to the above one, but now
with faster cars on the right. The data is given as

ρl=0.5, ul=0, ρr=0.1, ur=1

and x0=0.25. The exact solution of the Rascle model (solid line, Figure 5.4) is
given by a rarefaction wave connected to a vacuum state, which is followed by a
contact-discontinuity moving to the right. Here a difference to the numerical solution
(dashed line) is observed. The applied scheme fails to properly capture the fake wave
connecting the rarefaction wave to the vacuum state. The artificial jump can not be
reduced by an increase of the computational accuracy. In the Hamilton Jacobi model
(dotted line) no such vacuum state arises, since the drivers tend to accelerate faster.

In the above examples the wave fronts for the Hamilton-Jacobi model are smeared
compared to the Aw-Rascle model as expected. In particular, Example 1 shows
a stronger breaking for the Hamilton-Jacobi model and example 3 shows a faster
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Fig. 5.3. Density ρ at t=0.4 for the Riemann problem with ρl=0.5, ul=0, ρr =0.9, ur =0.5
and x0 =0.5.
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Fig. 5.4. Density ρ at t=0.5 for the Riemann problem with ρl=0.5, ul=0, ρr =0.1, ur =1 and

x0=0.25.

acceleration of the vehicles keeping contact with the leading cars.

Remark 5.1. One also observes comparing the coarse and fine grid numerical solu-
tion, that the Hamilton-Jacobi equations are already well approximated by the coarse
grid solution. Only example 4 shows a further steepening of the solution by refining
the mesh. In general, the Rascle type conservation law is well approximated by the
scheme except some smearing of the contact discontinuities. The only exception is
the vacuum wave in example 4, where a non-physical jump is generated. Numerical
difficulties at vacuum states are discussed e.g. in [22].

Remark 5.3. The numerical solution of the hyperbolic Aw-Rascle model is sensitive
to the choice of variables. Example 1 (a solution with a shock) is computed using
conservative variables (ρ,y=ρ(u− ln(1−ρ)) to ensure the correct intermediate state.
Example 2,3,4 have been computed in (ρ,ρu) variables, since no shocks appear. Al-
though this choice of variables improves the resolution of the contact discontinuity it
remains rather diffusive. As mentioned above using the methods described in [21, 8]
a sharp resolution of the contact discontinuities can be obtained. Nevertheless, we
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plotted in the above figures for comparison the solutions using the scheme described
in Section 5.1.

Conclusions.

• The paper contains the derivation of two classes of macroscopic models from
kinetic equations. The type of equation one obtains does not depend on the
fact whether an integro-differential equation or a Fokker-Planck type model
is used, but rather on the fact which interaction rule is chosen.

• In certain cases a Hamilton-Jacobi term can be derived in the momentum
equations instead of the classical Rascle term.

• Numerical investigation using a suitable second order method have been used
to investigate the behavior of the solutions showing a smearing effect of the
wave fronts for the Hamilton-Jacobi equations.

• Further investigations will include the derivation of suitable relaxation terms
from kinetic models and multiphase traffic equations.
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