
 

 Abstract— Scientific literature on the assessment and projection 
of climate change impacts suggests that the rapidly changing climate 
conditions are causing far-reaching consequences on natural 
resources and agricultural production. Atmospheric general 
circulation models (GCMs) have been widely used to simulate the 
present climate and to predict future climatic change at the global-
scale. However, the assessment and projection of climate change at 
regional and national scales requires high resolution and consistent 
climate data to ensure that the scale and accuracy of results will 
enable planning for adaptation. This data can be obtained by 
downscaling the simulated output from GCMs using the appropriate 
predictors. However, this process is characterized by uncertainty due 
projections generated with multiple GCMs. This paper provides a 
summary of research developments in the use of GCMs for the 
assessment and projection of climate change impacts. The different 
techniques which have been used to downscale GCM output for 
compatibility with regional and watershed models, their advantages 
and deficiencies are also discussed. Modeling approaches to address 
GCM uncertainties and uncertain future scenarios are discussed. 

Keywords— Climate change, Downscaling, General Circulation 
Models (GCMs), Uncertainty 

I. INTRODUCTION 

HE Climate variability and change associated with rapid 
increase in atmospheric concentration of greenhouse 

gases (GHGs) is major concern at local and global levels due 
to its impacts on availability, supply and sustainability of 
ecosystem services [1]. The increased appreciation of the 
interactions between oceans, land and atmosphere has 
improved climate prediction [2]. Atmospheric general 
circulation models (GCMs) have been widely used in 
projection of future climatic under different emissions 
scenarios [3]. The application of these models increasingly 
elucidate advances in representation of important mean 
climate features, such as the large-scale distributions of 
atmospheric temperature, precipitation, radiation and wind, 
and of oceanic temperatures, currents and sea ice cover. In 
addition, GCMs have been used in reproducing observed 
features of current climate and its changes in the past [8]. 

However, the direct application of GCM output in climate 
impact studies is constrained by the mismatch with local scale 
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models [9]. The GCMs output is very coarse hence significant 
local features and heterogeneities in the surface boundary 
conditions are filtered out in GCMs [11]. Therefore, 
interpolation of the conditions for different locations 
represented by a single grid point or very few grid points in a 
model and with very different climates is effective [14]. On 
the other hand, significant local-scale physical processes, such 
as radiative transfer, clouds, precipitation formation, and 
turbulent transports in the boundary layer, may not be well 
parameterized in some GCMs [15]. The lack of temporal and 
spatial specificity and accuracy in the application of GCMs at 
local scales has serious implications in weather and climate 
forecasts for natural resource management. To circumvent this 
challenge, impact analysis at local scale requires downscaling 
of GCM outputs. Downscaling can be applied to the spatial 
and temporal domains [19].  

II. DOWNSCALING TECHNIQUES

Any viable downscaling technique must consider the 
influence on local climate caused by regional forcings arising 
from orography, coast-lines, lakes, land surface characteristics 
among others [4]. Downscaling can be applied to the spatial 
and temporal domains [19]. The widely used downscaling 
techniques can be categorized into dynamic downscaling and 
statistical downscaling [21]. 

A. Dynamic downscaling 
Dynamical downscaling involves regional models nested 

within the grids of the large‐scale forecast models to simulate 
finer-scale physical processes [25]. In this downscaling 
method, domain size, lateral boundary conditions, and grid 
spacing play a significant role [30]. The high horizontal 
resolution of a RCM (~10–50 km) resolves the small-scale 
features with major influence on climatological variables as 
well as captures the spatial variability of model outputs [31]. 
These models have shown a relatively effectiveness in 
generating flood frequency curves as compared to those 
generated using observed input data[32]. 

According to Castro [33], dynamical downscaling can be 
categorized into four types. In type 1, numerical weather 
predictions involve specified initial conditions, lateral 
boundary conditions, re-analysis at regular intervals, and 
bottom boundary conditions such as terrain. In type 2, the 
prediction results are influenced by the lateral boundary 
conditions of reanalysis data and bottom boundary conditions. 
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However the initial atmospheric conditions in the interior of 
the model are forgotten. In type 3, lateral boundary conditions 
are obtained from GCMs forced with specified surface 
boundary conditions such as observed sea-surface 
temperature, sea ice coverage etc.  In Type 4, a completely 
coupled earth system global climate model in which the 
atmosphere-ocean-biosphere and cryosphere are interactive is 
run without prescribed internal climate forcing.  
 The regional models can be applied in a variety of weather 
and climate conditions in a changing climate [26][34][35]. 
However, the high computational time and data requirements 
in this method limit simulations to single GCM outputs and 
brief time scales. In addition, three dimensional boundary and 
initial conditions as well as output bias correction measures 
are requisite for sufficient replication of conditions at the 
higher resolution [29]. 

B. Statistical downscaling 
The theory and application of statistical downscaling has been 
documented widely in a plethora of publications [24][36]. In 
this approach, random or deterministic functions are used to 
transform large-scale features of the GCM (predictors) to 
station-scale meteorological series (predictands) based on 
established cross scale relationships. The relationships can 
take several forms such as: predictand as a function of the 
predictor(s), between predictors and the statistical distribution 
parameters of the predictand, or the frequencies of extremes of 
the predictand [10]. The relationships are then used to infer 
local scale variability and change based on the large-scale 
information. This approach is based on the premise that the 
local climate is function of overall atmospheric circulation as 
well as local topography, land-sea distribution and land use 
[39]. The statistical downscaling methods are based on three 
assumptions [13][22][40][41]: 

 (i), The predictors are assumed to be relevant to local 
climate and realistically modeled by the host GCM. 
Consequently, statistical downscaling will only provide 
reasonable information about local climate if the large scale 
predictors used realistically respond to the greenhouse gas 
forcing in the climate model [42]. However, although a model 
can credibly simulate the present climate, it is important to 
determine the variables and scales for which the model 
reflects reality [44]. This is because although tropospheric 
quantities such as temperature or geopotential height are 
intrinsic parameters in GCMs, derived variables may not be 
well represented [45]. In addition, though there is evidence 
GCMs can be considered skilful at several grid lengths, there 
is no theoretical level of spatial aggregation provided [46]. 
  (ii) The relationships between large-scale and local 
variables are assumed to remain valid under climate change. 
Thus, the range of variations of the large-scale variable should 
encompass that from the statistical model for this assertion to 
be valid. If the time series used in training the statistical model 
are long enough, [7] and [36] agree that a range of large scale 
atmospheric structures will be observed including those which 
are more probable in an altered climate. On the other hand, 
[47] noted that a good match between the GCM simulations of 

future climate and the statistical model predictions indicate a 
good statistical model for using under climate change. 
However, [7] cautioned that the ability of the statistical model 
to realistically simulate the variability in the past should only 
enhance the level of confidence in the model but not strictly 
mean that it can be used for future conditions, since the 
statistical relationship may vary. 

(iii) The predictors employed are assumed to fully represent 
the climate change signal. According to [41] this dependence 
relies on the size of the local area of interest, the time interval 
at the local scale, the large scale atmospheric variables 
considered, the large scale area considered, the resolution of 
the large scale predictors and the month or season under 
consideration.  

Statistical downscaling methods are categorized into 
weather generators, transfer functions and weather typing 
schemes [4][10][48][50]. 

1) Transfer functions 
This technique uses linear or nonlinear methods to infer the 
relationships between observed local climatic variables 
(predictands) and large-scale GCM output (predictors) [51]-
[52]. The quantitative predictor-predictand relationship can be 
verified by use of multiple linear regressions [53], principal 
component analysis (PCA) [54], canonical correlation analysis 
(CCA) [55], artificial neural networks [12] and singular value 
decomposition (SVD) [56]. 

2) Weather typing 
This method is based on classification of the large scale 
atmospheric structure into `weather types' and then associating 
local meteorological variables with each of these types [57]. 
Thus, the local variables are sensitively linked to large-scale 
atmospheric circulations. However, this method does not 
assume a continuous relationship between large-scale 
circulation and local climate and hence potential loss of 
information due to the coarse discretization of the predictor 
field [14][60]. Weather types can be objective by using 
clustering and classification algorithms or subjective by 
visually classifying synoptic situations [41][60]. Objective 
weather typing has been carried out based on ad-hoc or 
heuristic methods such as k-means [61], hierarchical 
clustering [62], fuzzy rules [63], or self-organized maps 
(SOMs) [64]. The weather classification procedures used 
include Principal Component Analysis (PCA) [66], cluster 
analysis [50], fuzzy rules [50] and analogue procedures. 

3) Weather generators 
In this technique, parameter values are perturbed according 

to the changes projected by climate models [67]. Due to their 
computational efficiency [70], weather generators allow for 
multi-model probabilistic projections or other impact 
assessments [71]. Although this approach has mainly focused 
on the daily time-scale, sub-daily models are also available. 
Weather generators have particularly been useful in provision 
of synthetic series of unlimited length, and filling missing 
values by imputation [72]. 

Weather generators have been used to produce time-series 
of precipitation frequency and intensity [69], maximum and 
minimum temperature [73], solar radiation [70], relative 
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humidity and wind speed.  The inclusion of other variables 
other than precipitation involves use of a multiple variable 
first-order autoregressive process to condition the variables on 
the occurrence of precipitation [36]. 

Weather generators can be distinguished based on 
parameterization, the assumed distributions and the suitability 
for particular application [74]. The two fundamental types are: 
the Markov chain approach and the spell –length approach 
[36]. The Markov chain approach involves a day-by-day 
change to the weather generator parameters based on daily 
variations in atmospheric circulation. Therefore, a random 
process is constructed which determines a day at a station as 
rainy or dry, based on the state of the previous day, following 
given probabilities [66][76]. In the spell–length approach, a 
probability distribution is fitted to the observed relative 
frequencies of wet and dry spell lengths [36][75] 

Compared to dynamic downscaling, statistical downscaling 
methods have the following advantages and disadvantages 
[37]: 
Table 1: Advantages and disadvantages of SD methods 

III. SELECTING APPROPRIATE PREDICTOR VARIABLES 

The selection of the predictor variables is of utmost 
significance in the statistical downscaling exercise. This 
requires a profound knowledge of the GCM model and the 
driving forces of local and regional scale meteorology [78]. 
The appropriate predictors are: (i) reliably simulated by 
GCMs, (ii) readily available from archives of GCM outputs, 
(iii) robustly interrelated with the predictands hence are 
statistically significant contributors to the variability in 
predictands, and (iv) they represent significant physical 
processes in the context of the enhanced greenhouse effect 
[50][79]. 

The circulation-based predictors have been widely used in 
the statistical downscaling [81]. The commonly used approach 
is summarizing the large-scale atmospheric circulation 
patterns into circulation indices which partition the movement 
of the atmosphere into zonal and meridional flow components 
as well as a vorticity component [39]. However, the 
circulation predictors are discrete variables rather than 
continuous, hence they do not represent the continuous 
properties of the climate system properly [83]. Therefore, 
additional variables which represent seasonality such as 
measurements of humidity, and vertical stability should be 
considered [12][18][85]. Alternatively, the downscaling 
technique can treat the seasons or months separately by 
estimating {fi (y(i)|G(i)) : i = 1,….,4} where i represents the 

seasons, y(i) is a vector of observations for season i and G(i) 
is a matrix containing appropriate atmospheric data for season 
i [41]. 

The availability of reanalysis data sets has extensively 
augmented the number and multiplicity of candidate 
predictors [86]. Some of the predictors used in previous 
research are sea level pressure, vorticity, air flow indices, 
wind strength and direction, relative humidity and 
geosynthetic heights to predict temperature and precipitation 
[87]. As noted by [13], an objective comparison of different 
predictors and their spatial character is significant because the 
explanatory influence of any given predictor vary both in 
space and time. In addition, the influence of a predictor during 
the developing the downscaling function under present 
climates may or may not be very significant, but the changes 
in that predictor under a future climate may be significant in 
determining the climate change. Schubert [89] noted that 
under doubled atmospheric CO2 conditions, changes in the 
radiative properties of the atmosphere are likely to dominate 
the local temperature changes compared to circulation 
changes.  

IV. PREDICTOR STANDARDIZATION AND TRANSFORMATION 

Prior to the downscaling process, the potential predictors 
are prepared by re-gridding and standardization. The re-
gridding is a requirement since the grid-spacing and/or 
coordinate systems of re-analysis data sets used for Statistical 
downscaling model calibration do not generally correspond to 
the grid-spacing of the GCM outputs [90]. For example, the 
grid-spacing NCEP/NCAR reanalyses data is 2.5º latitude by 
2.5º longitude compared to CGCM1 (~3.7° latitude by 3.7° 
longitude) and the HadCM3 (2.5° latitude by 3.75° longitude). 
Hessami et al., [90] interpolated NCEP/NCAR reanalysis grid 
to the GCM grids because GCM predictors were required for 
the climate change simulations and raw GCM information was 
essential for the down-scaling process. 

Data standardization is carried out to minimize systematic 
biases in the mean and variance of simulated values relative to 
observed values or re-analysis data [10]. The procedure 
involves subtraction of the mean and division by the standard 
deviation of the predictor for a predefined baseline period. 
However, there may exist bias in other statistical parameters 
hence consideration of only the mean and standard deviation 
is not adequate. 

Principal Component Analysis (PCA) is used for reduction 
of the dimensionality of the predictors and identification of 
modes of variability [91]. Ghosh and Mujumdar, [92] 
performed Principal Component Analysis (PCA) to transform 
a set of correlated N-dimensional predictors (N = 100) into a 
new set of N-dimensional uncorrelated vectors (called 
principal components) by linear combination, such that most 
of the information content of the original data set is stored in 
the first few dimensions of the new set. The authors observed 
that 98.1% of the information content (or variability) of the 
original predictors was represented by the first 10 Principal 
Components (PCs), which were then used in downscaling. 

Advantages: they are based on credible statistical procedures, 
(2) they are computationally inexpensive, (3) can be designed 
for specific purposes, and (4) they effectively integrate the 
observed data 

Disadvantages: They assume stationarity of the predictor-
predictand relationships (2) they involve long/reliable 
observed data series, and (3) the biases in the GCM affect the 
output 
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Cluster analysis uses measures of distance to relate and 
classify observations within a dataset. Schoof and Pryor [93] 
used hierarchical clustering whereby each observation was at 
first considered as a cluster, and then proximal clusters were 
merged based on intra- and inter-class similarity. The data 
resemblance was determined by Euclidean distance based on 
five algorithms which reflected the different ways distances 
between observations were measured: (i) single linkage 
(which used the minimum distance between two clusters), (ii) 
complete linkage (which used the maximum distance between 
observations in the two clusters), average linkage (which used 
either (iii) the average distance between observations in the 
two clusters or (iv) the average distance between points in the 
newly formed cluster), and (v) Ward’s method. 

V. APPLICATION OF ARTIFICIAL NEURAL NETWORKS (ANNS) 

ANNs have been used widely as an alternative to the linear 
regression models [22][45][94]. This technique has gained 
wide recognition owing to their potential in mapping complex, 
nonlinear and time-varying relationships between predictors 
and predictands [50][95]. The commonly used ANNs 
structures include multi-layer feed forward networks, self-
organizing feature maps, Hopfield networks and counter 
propagation networks [96]. Application of ANNs involves 
three distinctive modes: training, validation and prediction 
[22].The commonly used learning algorithm is back 
propagation algorithms [98]. The back propagation learning 
algorithm repeatedly runs through the training data patterns, 
comparing the predicted values and the observed values [97]. 
The weights and thresholds are then optimized to reduce the 
current least mean square classification error to acceptable 
level for all data patterns [98]. This algorithm comprises of: 
the learning rate which determines how much the weights are 
allowed to change each time they are updated; and the 
momentum factor which determines how much the current 
weight change is affected by the previous weight change [95]. 
The weights of the neural network are adjusted as follows 
[93]: 

Wi,j(new) = wi,j(old) + ηδioj+ α[Δwi,j(old)] 
Where: Wi,j  is the weight associated with the jth node in the 
ith layer, η is the momentum factor, α is the learning rate, oj is 
the output from the jth output node, and δi is the error signal 
determined by: 

δi = (ti- oi)oi(1-oi) 
Where ti  is the observed value for the ith output 

In mapping mode, a sigmoid function is then applied to the 
weighted sum of values from all nodes in the hidden layer. 
The value of the mapping function is sent to the output nodes 
which perform the same calculation as the hidden nodes and 
produce the value of the dependent variable(s) [93]. 

VI. UNCERTAINTY ANALYSIS 

Given the limitations and uncertainties associated with 
application of GCMs in regional and local levels, objective 
selection of model type and structure is significant. GCMs 

vary in resolution, model formulations, parameterization and 
inherent biases [8][101]. Consequently, although they may 
concur on the direction of change in predictands, results 
between models can vary widely [102]. Greenhouse gas 
emission scenarios which present “storylines” of likely future 
climatic conditions based on assumed directions human 
population growth, economic development, and energy 
technology change have inherent uncertainties [104].  

According to Mearns et al., [25], these uncertainties extend 
across the specification of alternative emissions futures, 
conversion of emissions to concentrations, conversion of 
concentrations to climate forcing, simulation of climate 
response to a given forcing, conversion of the model response 
into inputs for impact studies, and modeling impacts. Hence, 
the consideration of a range of models and emissions 
scenarios better reflects the uncertainty in the range of 
possible climate impacts [106]. 

The cascade of uncertainties in climate modeling is thus 
composed of emission scenario, GCM and downscaling 
uncertainties [107]. The development of emission scenarios is 
based on the projected socioeconomic and human behavior 
resulting in future greenhouse gas (GHG). Therefore, scenario 
uncertainties are associated with unpredictability of these 
developments [8]. GCM uncertainty, on the other hand, is 
associated with inadequate information and understanding of 
the governing geophysical processes in the simulation of the 
transient climate response by coupled AOGCMs for a given 
emission scenario [85]. The generation of high resolution 
climate change information from coarse resolution climate 
change results introduces its own uncertainty. This is because 
different regional models or statistical downscaling methods 
can yield different results even when conditioned by the same 
GCM [43].   

The various approaches used in managing uncertainty are: 
the extremes (max/min) approach; the ensemble approach; and 
the validation approach. The extremes (max/min) approach 
involves consideration of the full range of possibilities 
presented by the approximately 72 GCMs in AR4. The 
ensemble approach generates a probabilistic range of climate 
change predictions by considering several models thus 
reducing the uncertainty associated with any individual model 
to give more robust estimates [74][108]. The probabilistic 
functions used in this approach can be developed by: (i) equal 
weighting of the results from different models [111] or (ii) 
incorporating the weighted average of the ensemble members 
[112]. The validation approach compares the historical climate 
observations over a thirty-year period from a global gridded 
dataset against all models to determine which ones reproduce 
the values best [114]. 

The major concern in managing the uncertainties is that 
‘only a small subset of the potential pathways through the 
cascade is explicitly modeled’ [85]. Typically, only one 
source of uncertainty at a time is considered and the models 
are commonly viewed as being free of any uncertainties. 
However, techniques aimed at managing a range of possible 
sources of uncertainty are emerging. These include Bayesian 
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methods [115], perturbed physics ensembles [116] and pattern 
scaling arguments [117]. 
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