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Abstract

The study aims to provide a comprehensive de-
scription of dependence pattern of a stock by
studying a range of betas derived as quantiles
of conditional return distribution using quantile
regression based on moving window regression.
We investigate predictability of various parts of
the conditional return distribution in a linear, au-
toregressive framework. We also aim to capture
a state of dependence at different quantiles of
the conditional return distribution. A good (bad)
state is associated with upper (lower) quantiles,
thus the impact of lagged returns is different across
quantiles. Our empirical findings are based on
daily returns of major European stocks-sample
data. Lower quantiles exhibit positive dependence
with past returns while upper quantiles are marked
by negative dependence. Central quantiles exhibit
weak dependence. Keeping the sign of returns, we
discover that positive previous day’s return leads
to strong positive returns with today’s positive
return and marked negative with today’s negative
return. The opposite pattern is visible for past
negative returns.
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Introduction

e Portfolio risk assessment is an essential tool
in financial risk management.

e Markowitz's mean-variance model has been
critical tool in asset and fund management.
It is exposed to lots of shortcoming for it re-
lies on variance as a risk measure. Its best for
elliptical and symmetric distributions.

e Most financial data display heteroscedastic-
ity coupled with heavy tailness and skewness
(stylized facts) not well captured with model
based on Gaussian assumptions.



e Sharpe-Lintner-Black Capital Asset Pricing Model
(CAPM) is widely used for assessing risk of
cash flows from a project and determine ap-
propriate discount rate to value projects. Ac-
cording to CAPM, beta of the cash flow w.r.t
return of the market portfolio measures risk
of a project.

e Quantile autoregression (QAR) allows us to
explore a range of conditional quantiles, thereby
exposing a variety of forms of conditional het-
erogeneity, and also control for unobserved in-
dividual effect. EXxploring heterogeneous co-
variate effects within the QAR framework, of-
fers a more flexible approach to the analysis
of Stock price data than that afforded by clas-
sical Gaussian effect estimation.

e Conditional CAPM aims at testing asset pric-
ing with time varying beta (risk premium) that
can be extended to portfolio optimization tech-
niques.



Methodology

The Econometric model

Let {zt,xt,yt}j_:of be jointly a-mixing stationary
process, where y; is the excess return of the port-
folio, and both z and x4 are the factors in the
asset pricing model.

Define

yr = alz) + B(z)xe + ey (1)

where a(-) and B(-) are unknown functions of z.
Quantile regression approach discussed by Koenker
and Basset (1978) can be used to estimate «a(-)
and B(-) and it is important to note that the ap-
proach is robust to heteroscedasticity, skewness
and leptokurtosis.

The Unconditional CAPM model

The traditional CAMP model establishes that the
expected return on any risky asset satisfies the
equation

E(R;) = Ry + B;E(Rm — Ry) (2)

where R; is the return on asset 1, Rf IS the risk
free rate, R,, is the return on the market portfolio,
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and B; = cov(R;, Rm)/var(Rm) is the asset’s beta.
We can write the equation as

R, — Ry = a; + Bi(Rm — Ry) + ¢ (3)

T he coefficient 5, measures the magnitude of mar-
ket risk. We still can write the equation as:

R;— Ry = a; + Bi(Rm — Rf) + ¢ (4)

where ¢; is a random error term. The coefficient
B; measures the magnitude of market risk, and
the CAPM imposes the restriction that a; = O.
Positive values of «; indicate an average excess
return above that predicted by the CAPM and
negative values indicate an average return below
that predicted by the CAPM. Analogously, the lin-
ear quantile regression model has the conditional
quantile function of (R; — R¢), given (Rm — Ry) as
linear in covariates,

—1 .

a(t) + (Rm — Ry) ' B(r) + F-H(7) (5)
The conditional CAPM model

F(_Rl,i7t\]:t_1) (T|Ft—1) = ’YO(T)-l-ﬁi—,rt_ﬂl (7')—|—F€;1(7-)



(6)

where 3;;_1 denotes the ith unconditional beta.
The coefficient ~v1;_1(7) may be interpreted as
quantile specific autoregressive coefficient repre-
senting the conditional market risk premium at
some given 7 € [, and is the focus of this study.
We assume the model eq (6) has zero quantile
and unit scale hence we represent the DGP as

F(_Rli,t\ft_l) (T|]:t—1) = vo(7) +5i—|,—t—1’71 () (7)

which can be solved by applying QR as in Koenker
and Basset (1978) where

T
v(r) =arg min >~ pr (Riy —v(T)aj; 1) (8)
Vi ER =1
for3=20,1

We can extend the model to account for the size
of a lagged return as:

—1
F(Ri,t|]:t—1) (T1Ft-1)

— o(D) B 17 (D +as(DBf 1T (

671;_1‘ > Tq)

(9)



where the indicator variable I ( Bz'—,l_t—l‘ > rq) is equal
to one if the g of stock at 7 lag in period t-1 ex-
ceeds a certain threshold r9 and zero otherwise.
We can choose the value of r? to be the 95%
quantile to assess the influence of both extreme
positive as well as extreme negative of a previous
day’'s return. We can also extend (7) to capture
the role of the sign of previous period’s return
given by:

—1
F(Ri,t|~7:t—1) (T1Fe-1)

— o(D) B 17 (D +as(DBf 1T (

52'T,t—1‘ < O)
(10)



Results

Alpha values at different taus of the distribution
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In the figure above, we can see that at low proba-
bilities, values of beta have extreme negative val-
ues but as the value of probability increases, then
there is remarkable increase in the value of Beta.
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Conclusion and Recommendations

The Autoregressive coefficients follow a decreas-
ing pattern over the quantiles of conditional return
distribution. Negative returns show strong influ-
ence across the whole distribution than positive
returns. Large negative returns influence greatly
the pattern of coefficient estimates. Patterns at
central quantiles are easy to predict compared to
extremes of the distribution. We intent to explore
the asymptotic properties of the extended condi-
tional CAPM model through Monte Carlo Tech-
niques. Also we itent to develop numerical results
through re-sampling techniques.
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