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Abstract

The study aims to provide a comprehensive de-

scription of dependence pattern of a stock by

studying a range of betas derived as quantiles

of conditional return distribution using quantile

regression based on moving window regression.

We investigate predictability of various parts of

the conditional return distribution in a linear, au-

toregressive framework. We also aim to capture

a state of dependence at different quantiles of

the conditional return distribution. A good (bad)

state is associated with upper (lower) quantiles,

thus the impact of lagged returns is different across

quantiles. Our empirical findings are based on

daily returns of major European stocks-sample

data. Lower quantiles exhibit positive dependence

with past returns while upper quantiles are marked

by negative dependence. Central quantiles exhibit

weak dependence. Keeping the sign of returns, we

discover that positive previous day’s return leads

to strong positive returns with today’s positive

return and marked negative with today’s negative

return. The opposite pattern is visible for past

negative returns.

1



Keywords and phrases: Moving window regres-

sion, CAPM, Beta, Quantile autoregression, Re-

turns.

Introduction

• Portfolio risk assessment is an essential tool

in financial risk management.

• Markowitz’s mean-variance model has been

critical tool in asset and fund management.

It is exposed to lots of shortcoming for it re-

lies on variance as a risk measure. Its best for

elliptical and symmetric distributions.

• Most financial data display heteroscedastic-

ity coupled with heavy tailness and skewness

(stylized facts) not well captured with model

based on Gaussian assumptions.



• Sharpe-Lintner-Black Capital Asset Pricing Model

(CAPM) is widely used for assessing risk of

cash flows from a project and determine ap-

propriate discount rate to value projects. Ac-

cording to CAPM, beta of the cash flow w.r.t

return of the market portfolio measures risk

of a project.

• Quantile autoregression (QAR) allows us to

explore a range of conditional quantiles, thereby

exposing a variety of forms of conditional het-

erogeneity, and also control for unobserved in-

dividual effect. Exploring heterogeneous co-

variate effects within the QAR framework, of-

fers a more flexible approach to the analysis

of Stock price data than that afforded by clas-

sical Gaussian effect estimation.

• Conditional CAPM aims at testing asset pric-

ing with time varying beta (risk premium) that

can be extended to portfolio optimization tech-

niques.



Methodology

The Econometric model

Let {zt, xt, yt}+∞t=1 be jointly α-mixing stationary

process, where yt is the excess return of the port-

folio, and both zt and xt are the factors in the

asset pricing model.

Define

yt = α(zt) + β(zt)xt + et (1)

where α(·) and β(·) are unknown functions of zt.

Quantile regression approach discussed by Koenker

and Basset (1978) can be used to estimate α(·)
and β(·) and it is important to note that the ap-

proach is robust to heteroscedasticity, skewness

and leptokurtosis.

The Unconditional CAPM model

The traditional CAMP model establishes that the

expected return on any risky asset satisfies the

equation

E(Ri) = Rf + βiE(Rm −Rf) (2)

where Ri is the return on asset i, Rf is the risk

free rate, Rm is the return on the market portfolio,
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and βi = cov(Ri, Rm)/var(Rm) is the asset’s beta.
We can write the equation as

Ri −Rf = αi + βi(Rm −Rf) + ei (3)

The coefficient βi measures the magnitude of mar-
ket risk. We still can write the equation as:

Ri −Rf = αi + βi(Rm −Rf) + εi (4)

where εi is a random error term. The coefficient
βi measures the magnitude of market risk, and
the CAPM imposes the restriction that αi = 0.
Positive values of αi indicate an average excess
return above that predicted by the CAPM and
negative values indicate an average return below
that predicted by the CAPM. Analogously, the lin-
ear quantile regression model has the conditional
quantile function of (Ri−Rf), given (Rm−Rf) as
linear in covariates,

F−1
(Ri−Rf)|(Rm−Rf)(τ |(Rm −Rf)) =

α(τ) + (Rm −Rf)>β(τ) + F−1
ε (τ) (5)

The conditional CAPM model

F−1
(Ri,t|Ft−1)

(
τ |Ft−1

)
= γ0(τ)+β>i,t−1γ1(τ)+F−1

εi
(τ)



(6)

where βi,t−1 denotes the ith unconditional beta.

The coefficient γ1,t−1(τ) may be interpreted as

quantile specific autoregressive coefficient repre-

senting the conditional market risk premium at

some given τ ∈ Γ, and is the focus of this study.

We assume the model eq (6) has zero quantile

and unit scale hence we represent the DGP as

F−1
(Ri,t|Ft−1)

(
τ |Ft−1

)
= γ0(τ) +β>i,t−1γ1(τ) (7)

which can be solved by applying QR as in Koenker

and Basset (1978) where

γ(τ) = arg min
γj∈R2

T∑
t=1

ρτ
(
Ri,t − γ(τ)x>i,t−1

)
(8)

for j = 0,1

We can extend the model to account for the size

of a lagged return as:

F−1
(Ri,t|Ft−1)

(
τ |Ft−1

)

= γ0(τ)+β>i,t−1γ1(τ)+αi(τ)β>i,t−1I
(∣∣∣β>i,t−1

∣∣∣ > rq
)

(9)



where the indicator variable I
(∣∣∣β>i,t−1

∣∣∣ > rq
)

is equal

to one if the β of stock at i lag in period t-1 ex-

ceeds a certain threshold rq and zero otherwise.

We can choose the value of rq to be the 95%

quantile to assess the influence of both extreme

positive as well as extreme negative of a previous

day’s return. We can also extend (7) to capture

the role of the sign of previous period’s return

given by:

F−1
(Ri,t|Ft−1)

(
τ |Ft−1

)

= γ0(τ)+β>i,t−1γ1(τ)+αi(τ)β>i,t−1I
(∣∣∣β>i,t−1

∣∣∣ < 0
)
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Results

In the figure above, we can see that at low proba-

bilities, values of beta have extreme negative val-

ues but as the value of probability increases, then

there is remarkable increase in the value of Beta.











Conclusion and Recommendations

The Autoregressive coefficients follow a decreas-

ing pattern over the quantiles of conditional return

distribution. Negative returns show strong influ-

ence across the whole distribution than positive

returns. Large negative returns influence greatly

the pattern of coefficient estimates. Patterns at

central quantiles are easy to predict compared to

extremes of the distribution. We intent to explore

the asymptotic properties of the extended condi-

tional CAPM model through Monte Carlo Tech-

niques. Also we itent to develop numerical results

through re-sampling techniques.






