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Abstract

The estimation of conditional quantiles has become an increasingly important issue in

insurance and financial risk management. The stylized facts of financial time series data

has rendered direct applications of extreme value theory methodologies, in the estimation

of extreme conditional quantiles, inappropriate. On the other hand, quantile regression

based procedures work well in nonextreme parts of a given data but breaks down in

extreme probability levels. In order to solve this problem, we combine nonparametric

regressions for time series and extreme value theory approaches in the estimation of ex-

treme conditional quantiles for financial time series. To do so, a class of time series models

that is similar to nonparametric AR-(G)ARCH models but which does not depend on dis-

tributional and moments assumptions, is introduced. We discuss estimation procedures

for the nonextreme levels using the models and consider the estimates obtained by in-

verting conditional distribution estimators and by direct estimation using Koenker-Basset

(1978) version for kernels. Under some regularity conditions, the asymptotic normality

and uniform convergence, with rates, of the conditional quantile estimator for α-mixing

time series, are established. We study the estimation of scale function in the introduced

models using similar procedures and show that under some regularity conditions, the scale

estimate is weakly consistent and asymptotically normal. The application of introduced

models in the estimation of extreme conditional quantiles is achieved by augmenting them

with methods in extreme value theory. It is shown that the overal extreme conditional

quantiles estimator is consistent. A Monte Carlo study is carried out to illustrate the

good performance of the estimates and real data are used to demonstrate the estimation

of Value-at-Risk and conditional expected shortfall in financial risk management and their

multiperiod predictions discussed.
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1 INTRODUCTION 1

1 Introduction

The increasing awareness in the financial industries (both private and regulators) of the

consequences of extreme risks (the possibility of lossing large amount of money) in trad-

able portfolios has called for effective risk management systems to be put in place for

financial institutions, such as banks and investment firms. This has seen the use of quan-

titative risk measures as essential management alternatives used for internal or external

requirements parallel with other models.

Theoretically, one can quantify risk by using measures such as standard deviation, quan-

tile, interquantile range or expected shortfall. The quantile based Value-at-Risk (hence-

forth V aR) has become a basic tool employed by financial institutions and their regulators

to assess riskness of trading activities. It can formally be defined as the maximum po-

tential change in value of a portfolio of financial instruments with a given probability

over a certain horizon. Specifically, based on negative returns, V aR is defined so that the

probability that a portfolio will lose more than its V aR over a particular time horizon is

equal to 1−ϕ, for the probability level ϕ → 1 prespecified. Its popularity among financial

practitioners stems from the fact that it is very simple: It can be used to summerize risk

of individual positions or of large financial institutions such as dealer-banks in the OTC

derivatives and other portfolios by reducing the (market) risk to just a dollar ammount1,

thereby representing a compromise between the needs of different users. Because of this

simplicity, it has been adopted for regularity purposes. In particular, the 1996 market risk

ammendments2 to the Basel Accord stipulates that banks and broker-dealers minimum

capital requirements for market risk should be set based on the ten-day 1% VaR for the

trading portfolios. Detail analysis and application of this measure to risk management

can be found in among others JP Morgan [73], Duffie and Pan [37], Jorion [74], Dowd

[33], Stulz [106].

Despite its simplicity, the factor of its accurate measurement at high values of ϕ (e.g

ϕ > 0.95) and subsequent monitoring of high risky activities has remained a challenging

statistical problem. This is because VaR depends on the joint distribution of all intru-

1No matter how complex it is, a single value is provided as a summery.
2Which allows ten-day 1% VaR to be measured as a multiple of one-day 1% VaR.
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ments in a portfolio whose changes are nonnormal3 with some hidden information about

market movements. The challenge has therefore been to find a suitable model of the

extreme conditional time varying statistics for risk measurement that is able to adopt to

general returns distribution and simultaneously reflect the latest information. To current,

most literature has focused on the VaR from the marginal distribution, see for example

Alexander and Leigh [5] and Boudoukh et al. [19].

The extreme quantiles can be estimated by using ideas from Extreme Value Theory (

EV T ). The use of EV T in financial market calculations is a fairly recent innovation, Em-

brechts et al. [39] surveys the mathematical theory of EV T and discusses its applications

to both financial and insurance risk management. The EV T can be used to characterise

the behaviour of the extreme returns or the tail of returns distribution without tying

the analysis down to a single parametric family fitted to a whole distribution. However,

because of the presence of stochastic volatility4 in financial data, it is inappropriate to

apply such models5 directly. Furthermore Danielsson and de Vries [31] has shown that

this model do not work well in the common low probabilities, such as 0.95. Very few

attempts have been made to develop extensions of extreme value statistical methodol-

ogy to take account of the variable volatility. Among others McNeil and Frey [88] and

Barone-Adesi et al. [7] have taken an approach built arround the GARCH6 with heavy

tailed innovation estimated by EV T .

A seemingly flexible parametric approach to V aR estimation is being researched in Engle

and Manganelli [42], where the estimation of V aR uses regression quantile methodology

introduced by Koenker and Basset (1978) to determine the unknown parameters, under

the assumption that the quantile process is correctly specified. In nonparametric set up,

the estimation of quantiles with application to finance has been observed in Abberger [1].

However, due to the sparsity of data in high risk areas, the nonparametric kernel methods

do not guaranree reliable description of the tails.

3 Empirically, their peaks and tails are higher than normal, see Mendelbrot [83], Fama [43] and in the

case of equity returns, the losses have longer tail than the profits.
4Changes in portfolio values have the characteristic of being significantly autocorrelated in their

squares or absolutes i.e volatilities of market factors tend to cluster.
5These models are also nested in a framework of iid variables which is not consistent with the af-

foremened charactersistics.
6To take account of the underlying volatility.
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In this thesis a semiparametric approach, to estimating conditional quantiles for time se-

ries in both common and extreme levels of ϕ ∈ (0, 1), that has simple structure, robust and

tailored for general distributions is developed. It is based on the combination of three

pillars: The nonparametric conditional quantile, based directly or indirectly7 on local

version of Koenker-Bassett (1978) methodology, constitute a flexible8 part of our initial9

estimator for fitting empirical changes. The second one models the randomly changing

volatility as a scale function whose main purpose is to devolatize large observations (or

losses) beyond an initial estimator. The third pillar, which is parametric in nature, ex-

ploits the results from the EV T and fits the transformed (devolatilized) excesses.

The rest of this chapter gives a general overview of the concepts of methodologies used in

the thesis. We state explicitly what we want to estimate and provide a formula for that

purpose. We then propose and define a class of time series models which is similar to

nonparametric AR-(G)ARCH models but does not depend on the form of the conditional

distribution and the finiteness of moments assumptions.

Chapter 2 derives the estimators for various nonparametric functions in the introduced

process by inverting the estimates of conditional distributions. We provide pointwise

consistency and asymptotic normality as well as uniform convergence of the conditional

distribution and respective quantile estimators.

In chaper 3 we present and discuss various forms of regression based approaches for es-

timating, in particular, the purely heteroscedastic part of the introduced model. The

chapter provides the asymptotic properties of the estimators based on direct Koenker and

Basset (1978) version for kernels. We then give a standardization procedure for approxi-

mating and estimating the true volatility.

Chapter 4 uses results from EVT and nonparametric procedures, based on our model

in chapters 2 and 3, to estimate the extreme conditional ϕ-quantile for time series in

(1.2.0.1). Two formulae are derived: The first one is based on a Hill’s estimator of shape

parameter while the second one, on GPD. Heuristically, it is shown that both overall

estimators of the extreme conditional ϕ-quantile function converges in probability to the

true one. Further, a Monte Carlo and backtesting results based on artificial and real data

7By inverting conditional distribution function.
8In the sense that no strict distributional assumptions and variance specifications are made.
9 This can be taken as conditional quantile at common probabitlites.
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respectively, show that the introduced model argumented with EVT performs better than

direct estimators for large levels of ϕ. We also confirm that the estimate based on GPD is

superior than the one based on Hill’s, for a wide range of large values of ϕ. The chapter

also discusses the problem of multi-period prediction of VaR and derives a formula10 based

on α-root of time rule.

For completeness, chapter 5 extends the VaR formula based on our model to the case of

coherence risk measure. We propose a more general formula for the conditional expected

shortfall, for dependent data, that takes simple form in cases of a continuous distribu-

tion. Lastly we discuss the estimates of the formulae and their corresponding estimates

of multi-period conditional expected shortfall and show heuristically that they converge

in probability to the respective true ones.

10It is based on the tail of a Pareto distribution whose shape parameter is obtained by using the Hill’s

estimator.
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1.1 Concepts and definitions

1.1.1 Econometric Model

Let
{

Yt

}
be real-valued and

{
Ft,−∞ < t < ∞

}
be an increasing sequence of σ-algebras

representing information available at time t. We will assume that Yt is Ft-measurable.

Let
{
Xt

}
be a d-dimensional process such that Xt is Ft−1-measurable. In particular, we

have a situation in mind where Xt =
(
Yt−1, . . . , Yt−d

)
are the last observed returns up

to time t − 1, or where Xt consist of
(
Yt−1, . . . , Yt−τ

)
and some exogeneous variable St

which is Ft−1-measurable and forms a (d − τ)-dimensional time series. We will assume

that the sequence of random variables
{

Yt,Xt

}
taking values in R×Rd is stationary and

that Yt can be considered as the response variable and Xt, the predictor variable (or the

conditioning covariates). Further, we will assume that the underlying process of interest

is of the form

Yt = µt + σtet, t = 1, 2 . . . , (1.1.1.1)

where

1. µt is the conditional expectation function of Yt given Ft−1,

2. σt is the conditional volatility function of Yt given Ft−1,

3. and et are variables, independent of Ft−1, with mean 0 and variance 1.

The conditional θ-quantile of (1.1.1.1) given Ft−1 is then given by

µt,θ = µt + σtF
−1
e

(
θ
)

(1.1.1.2)

where F−1
e

(
θ
)

is the θ-quantile of et and θ ∈ (0, 1). For instance, let et be independent

and identically distributed ( iid) standard normal random variable (rv), then

Yt ∼ N
(
µt, σ

2
t

)
, t = 1, 2 . . . , (1.1.1.3)

If the time series of µt and σ2
t are known, the conditional θ-quantile is then given by
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µt,θ = µt + σtΦ
−1

(
θ
)

where F−1
e

(
θ
)

= Φ−1
(
θ
)

is the inverse of the standard normal distribution at θ. This

holds analogously for other known distributions. In practice, however, the misspecifi-

cation of time series structural functions and strict distributional assumptions imposed

on the standardized residuals can lead to serious under or overestimation of conditional

quantiles.

In order to avoid such specification and distributional assumptions, a variety of nonpara-

metric approaches for quantile estimation are available: The Historical simulation (HS)

and the Hybride methods. In HS a random sample of size n, say from (1.1.1.1), is split

up into a number of equally long (overlapping) subsamples of length,k say, called a rolling

window (or window size). Then n − k + 1 subsamples are constructed such that for

any two subsamples, there is all but one datum in common. Next, the θth-percentile of

each subsample is picked11 as the θ-quantile. A major12 problem of HS is the rareness

of extreme observations. In the interior the sampling observations are very close to each

other and therefore the empirical quantile function is reasonably smooth, i.e does not

show jumps. But as one goes to the extreme, the distance between adjacent observations

becomes large. This results in quantile estimates that are highly variable and therefore

either underpredict or overpredict. The blue curves in figure (1) illustrate this feature.

The returns data is represented in black, while the continuous and dotted blue curves

represents the 0.75 and 0.99-quantile esimates respectively.

The second approach is a variation of HS proposed in Boudoukh et al. [19] that combines

RiskMetrics approach with HS methodologies by applying exponentially declining weights

to the past observations. First, each of the most recent k observations, yt, yt−1, . . . , yt−k+1

is associated a weight 1−λ
1−λk ,

(
1−λ
1−λk

)
λ, . . . ,

(
1−λ
1−λk

)
λk−1 respectively13 and then the obser-

vations are ordered in ascending order. The corresponding weights are then accumulated

starting with the smallest observation until the 100θ% is reached. The θ-quantile of

11For intermediate percentile, a linear interpolation is performed.
12 Others include the iid assumption on the observations and equal weight given for all of them within

a window. The problem for determining the size of the window is still open for debate.
13As there is no statistical method available to estimate λ, it is usually taken between 0.97 and 0.99

and the role of 1−λ
1−λk is to ensure that the weights sum to 1.
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the random variable Yt corresponds to the last weight used in the previous sum, i.e the

θ-quantile is given as

t∑

j=t−k+1

yjI
( k∑

i=1

wi

(
λ, k

)
I
(
yt+1−i ≤ yj

)
= θ

)

where wi

(
λ, k

)
are the weights associated with observation yi and I

(
.
)

is the indicator

function. This approach prevails a significant improvement over the HS as it removes most

of the drawbacks in HS. However, the hybride method is not efficient in allowing for the

volatility, σt in model (1.1.1.1), see Hull and White [69] and they both share the same

sparseness problem.

The following section introduces a method14 that automatically takes account of the

conditional volatility. Note that if {et} satisfies only martingale difference condition, then

still µt becomes the conditional expectation and σ2
t , the conditional variance15. However,

for the sake of simplicity, we stick to the strong assumption in (1.1.1.1(3)).

1.1.2 Quantile autoregression(QAR)

The regression quantile models were introduced by Koenker and Basset(1978). They rep-

resent a substantially more general and informative method of regression analysis than the

conventional mean-variance regression, since the former fully16 describes the conditional

distribution of a response variable Yt given a covariate Xt in Ft−1, without imposing any

rigid distributional assumptions. Let µθ ∈ Rd → R be an unknown smooth function and

define, analogously to Koenker-Bassett, the loss function Mθ as

Mθ

(
y, µ

)
= θ

∣∣∣y − µ
∣∣∣
+

+ (1− θ)
∣∣∣y − µ

∣∣∣
−

where
∣∣∣y − µ

∣∣∣
−

and
∣∣∣y − µ

∣∣∣
+

stands for the absolute of negative and positive values

respectively. This equation can be rewritten in terms of indicator function,

14Where both hybride and HS are just but special cases.
15 In various forms, see [40] and [13], [70],[26],[104].
16 Quantile regression method can be used to measure the effect of covariates anywhere in unknown

distribution.



1 INTRODUCTION 8

Mθ

(
y, µ

)
=

(
y − µ

)(
θ − I{y−µ≤0}

)
(1.1.2.1)

The conditional θ-quantile function is then obtained as

µθ

(
x
)

= arg min
µ

E
[
Mθ

(
Yt, µ

)∣∣∣Xt = x
]
.

In the following, we use the abreviation µt,θ = µθ

(
Xt

)
for the conditional θ-quantile of

Yt given Xt. Let {Yt} be conditionally distributed according to

P
(
Yt ≤ y

∣∣∣Xt = x
)

= Fx

(
y
)
, t = 1, 2, . . . , . (1.1.2.2)

We assume that Fx has the density fx, and then fXt is the conditional density of Yt

given Xt. The conditional θ-quantile µt,θ, of Yt given Xt satisfying (1.1.2.2) can then be

written as

θ =

∫ µt,θ

−∞
fXt

(
y
)
dy (1.1.2.3)

or in the usual regression convention as

Yt = µt,θ + µ̃t,θ

where µ̃t,θ is a r.v with conditional θ-quantile 0, i.e

P
(
µ̃t,θ ≤ 0

∣∣∣Xt

)
= θ

The term Quantile Autoregression (QAR) was introduced in literature in Abbegger [1]

to mean the conditional quantile regression of a response, Yt, given its past observations as

a covariate. We will adopt this terminology. For instance, if Xt =
(
Yt−1, . . . , Yt−d

)
, µt,0.5

is the 0.5th QAR, µt,0.95 is the 0.95th QAR and for θ → 1 or θ → 0, µt,θ will be

called here θth extreme QAR. If the conditional returns distribution function, FXt

(
y
)
,

of Yt conditional on Xt, is continuous and strictly monotone, then µt,θ is its inverse and

hence unique. More generally, the QAR of Yt will be given by

µt,θ = F−1
Xt

(
θ
)

(1.1.2.4)
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where F−1
Xt

(
θ
)

is the general inverse of FXt

(
y
)

at a fixed θ. We use the term Quantile

Autoregression in the following slightly more general sense by allowing Xt to contain not

only the past observations of Yt but also exogeneous Ft−1-measurable random variables.

0 100 200 300 400 500 600 700 800
−0.1

−0.05

0

0.05

0.1
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Time (Trading days)

−R
etu

rn

Figure 1: Returns on BASF:1/90-12/92. The difference between the quantile estimates

in the interior and for the level close to 1. The blue and red curves are HS and QAR

estimates respectively. The solid and dotted curves depict estimates at θ = 0.75 and 0.99

respectively.

The QAR enjoys the robustness property against the effect of the outlying events as

the effect on the θth-QAR is bounded so long as the number of outlying events is lower

than n min{θ, 1 − θ}. The following equivariance properties are exhibited by the QAR.

Analoguous version can be found in Koenker and Basset(1978).

For a Ft-measurable r.v ηt let Qt,θ

(
ηt

)
= inf

{
µ ∈ R

∣∣∣P
(
ηt ≤ µ

∣∣∣Xt

)
≥ θ

}
denote the

conditional θ-quantile of ηt given Xt. If, in particular, ηt = Yt, we have Qt,θ

(
Yt

)
= µt,θ.

Let at be a r.v which is a measurable function of Xt, then

1. Qt,θ is translation -equivariant, that is

Qt,θ

(
Yt + at

)
= Qt,θ

(
Yt

)
+ at

2. Qt,θ is positively homogeneous or scale equivariant, that is
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(i) Qt,θ

(
atYt

)
= atQt,θ

(
Yt

)

3. Qt,θ is invariant to monotonic transformation: That is, for any random variable Yt

and nondecreasing function µ on R, then

Qt,θ

(
µ
(
Yt

))
= µ

(
Qt,θ

(
Yt

))
,

i.e the QAR of the transformed random variable µ
(
Yt

)
are the transformed QAR

of the original variable Yt.

These properties have immediate application in the estimation of scale function in our

model. They constitute part of the definition of a risk measure.

It is noteworthy to mention that, just as in the case of both HS and Hybride, the QAR

is based on the conditional ordering and extrapolation of observations and quantiles re-

spectively and, therefore, the empirical distribution is a step function for data not so

close to each other. In particular, the estimates of the true function far out in the tails

can cause biased results due to sparseness of the data. See the red curves in figure (1)

for an illustration. The solid and dotted red curves correspond to 0.75 and 0.99-quantile

functions respectively. It can be seen that as θ → 1, the estimate becomes a step function.

This unreliability of the estimate is a very undesirable feature in the prediction of extreme

risks.

1.1.3 The extreme sample quantiles

The drawback for QAR can be remedied by fitting a smooth function through the tail

of the distribution. We propose to use Extreme Value Theory (EVT). EVT concerns the

asymptotic behaviour of extreme order statistics, such as minimum and the maximum.

Let et ∈ R be iid random variables with distribution F . The conditional excess

distribution of et given that it exceeds a threshold value u is

Fu

(
z
)

= P
(
et − u ≤ z

∣∣∣et > u
)



1 INTRODUCTION 11

for z ≥ 0. We assume that the threshold is somehow marking the beginning of the

right hand tail. The main principle behind EVT is that for any general distribution, G,

such that

lim
u→eF

sup
0<z<eF−u

∣∣∣F̄u

(
z
)
− Ḡ

(
z
)∣∣∣ = 0 (1.1.3.1)

where eF is the endpoint of the distribution function F , the tail F̄ = 1 − F of F

can be estimated by means of the tail of G. The extreme unconditional quantiles, zϕ,

are then derived from G
(
z
)

for any values of z > 0 or alternatively, for any ϕ ≥ F
(
u
)
.

The behaviour of the tail forms is an essential part of EV T . The analysis of the extreme

statistics started in 1920’s and still continues. This includes the fundamental results on

the distribution of extremes, obtained by Fisher, Frechet, Tippet, Gnedenko, von Mises,

Galambos, de Haan among others-see Embrechts et al. [39] for an excellent review. Several

monographs and lecture notes focusing on the extreme statistics includes Galambos [54],

Leadbetter et al. [80], Huesler and Reiss [68].

1.1.4 Scale function

The application of EVT in the estimation of extreme quantiles requires that the series

be independent. In the estimation of extreme QAR, the clustering or evolving volatility

in financial time series is found to be significant at high ( also applies to low) levels of θ

and cannot be disregarded. Adjusting a series of its QAR at such levels, we still find the

excesses to exhibit some siginificant dependence17. This dependence can be reduced by

extracting the volatility.

The autoregressive conditional heteroscedasticity (ARCH) model, in Engle [40] and its

variants, were introduced to allow the conditional variance of time series model to depend

on the past information (conditional heteroscedasticity). Because of the well established

empirical facts about financial (returns) data (see Mandelbrot [83] and Fama [43] among

others), Bollerslev [14] and Nelson [91] among others have taken the approach of likelihood

based on the student’s t-distribution to estimate the volatility. However, the misspecifi-

cation of the form of such conditional distribution used to define the likelihood can create

17 The investigation of this feature is carried out in chapter 4 using real data.
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problems in parameter estimation. The theoretical work on adaptive estimator of ARCH-

type models which provides an alternative approach to the problem has been observed in

Linton [81] and Drost et al. [34]. For recent review of the ARCH literature see among oth-

ers Bollerslev et al. [15] and Bollerslev et al. [16]. The clustering of volatility and heavy

tailedness in financial(returns) data has seen the generalization of ARCH models and its

variants to models such as generalized ARCH(GARCH), Integrated GARCH (IGARCH),

exponential GARCH(EGARCH) and threshold GARCH(TGARCH). In all these models,

the hidden variable volatility depends on lagged values of the process and lagged values of

the volatility. A detailed review of these models and their many variants can be found in

among others Bollerslev et al. [15] and Shephard [102]. There estimation is usually based

on symmetric distribution of the error or a robust quasi-maximum likelihood method, see

Bollerslev and Wooldridge [17]. The former suffers the same consequence as in ARCH.

In mean-variance18, the latter suffers from the fact that it depends on the properties of

the estimated mean, which is sensitive to model misspecification. Furthermore, Hall and

Yao (2002) have shown that for heteroscedastic data with heavy tailed errors, the method

suffers from the complex limit distributions and slow convergence rates. These problems

have motivated us to look for more flexible methods that are not based on symmetry

assumptions and are in general less sensitive to model misspecification. Thus, in order to

reduce the dependence we have incoporated a scale function of the form

σt,θ = bσt,

with b being a positive constant at time t but depends on θ. The function σt is the

conditional volatility defined in (1.1.1.1).

The estimation of such a scale function is not novel in literature, see variation in Welsh

et al. [111] in the case of heteroscedastic regression with independent variables. Because

quantiles are readily interpretable in location-scale models and are robustly estimable

than moments, Koenker and Zhao [76] has exploited quantile regression ideas of Koenker

and Basset(1978) to ARCH setting. Instead of modeling conditional variance, it focuses

on ARCH models for conditional scale, where the standardized error is assumed to be iid

random variable with zero mean-finite variance. Similar models based on conditional scale

(standard deviation), but restricted to Gaussian context, have been observed in Tayler

18 Examples includes AR-(G)ARCH models
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[107], Shwert [101] and Nelson and Foster [92]. The scale function provide a more natural

concept of dispersion than variance, see Bickel and Lehmann [11], and offers advantages

from robustness viewpoint, see Bickel [12] and Carrol and Ruppert [22] among others.

The nonparametric approach to ARCH/GARCH estimation, see Franke [51], Franke et

al. [52] and Buehlmann and McNeil [18] among others, enjoys the advantage of being less

sensitive to model misspecification. However, the reasons given in Bickel and Lehmann

[11], Bickel [12] and Carrol and Ruppert [22] in the case of parametric models, still

infers. Instead of assuming that the errors are iid with zero mean -finite variance, as

in Koenker and Zhao [76], we are introducing a new nonparametric model which only

assumes that the standardized residuals are zero quantile-unit scale. We believe the

model can also be used in the case of infinite variance distribution. Further, because it is

a combination of nonparametric regression methodology (see Stone [105], Robinson [96],

Haerdle [58], Franke [51]) with quantile regression methodologies, it is less sensitive to

model misspecification. In the application part, the more closely related to our spirit is

the work in Turner and Weigel [109] which analysed the volatility of returns of S&P 500

and Dow Jones indices using the interquartile range and other measures of volatility.

1.2 What we want to estimate

Suppose we are interested in the QAR corresponding to the level of probability ϕ. Apart

from the usual threshold problem in EVT, we are also faced with the decision on whether

to really incorporate the EVT or not.

If ϕ ≈ 1, the sparseness of data at the extreme right end of the sample makes it hard

to directly estimate the QAR, µt,ϕ, reliably. In that case, a similar approach as the

peak-over-threshold (POT)-method of quantile estimation may be useful. The basic idea

is to estimate the QAR, µt,θ, for some smaller level θ < ϕ nonparametrically and correct

it in the following form

µ̂t,θ,ϕ = µ̂t,θ + σ̂t,θẑϕ (1.2.0.1)

with ŝigmat,θ and Ẑϕ being appropriate estimates for the scale function based on

conditional data and the extreme quantile based on iid assumption respectively. This idea
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has motivated us to introduce a form of nonparametric quantile autoregression conditional

heteroscedastic function described in section (1.1.4), where the heteroscedastic part is in

the form of a scale function depending on θ. Clearly, all functions in (1.2.0.1), have the

advantage of being robust estimators than the ones in contrast to (1.1.1.1), even in cases

where moments do not exist. Secondly, the problem of sparseness of data faced by direct

estimation of extreme quantiles is reduced, since EVT does not necessarily require very

large samples and comprise of various smooth functions.

Let the probability density function (pdf) of Xt and the joint pdf of
(
Yt,Xt

)
denoted by

g
(
x
)

and f
(
y,x

)
. The joint cumulative distribution function cdf of

(
Yt,Xt

)
is given by

F
(
y,x

)
=

∫ y

−∞

∫ x

−∞
f
(
u1,u2

)
du1du2

The dependence structure between Yt and Xt is described by the conditional pdf of Yt

given Xt, defined as

fx

(
y
)

=
f
(
y,x

)

g
(
x
)

and its conditional cdf ,

Fx

(
y
)

=

∫ y

−∞
fx

(
u1

)
du1.

We can estimate µt,θ,ϕ or µt,θ via the conditional distribution of Yt on its past or

directly as will be seen in chapters 2 and 3 respectively. Definition 1.2.1 gives a general

definition of the conditional Value-at-Risk (VaR).

Definition 1.2.1 The Value-at-Risk, V aRt,ϕ, of negative returns or losses Yt at time t

given is past information of Xt, is

V aRt,ϕ = inf
{

y ∈ R
∣∣∣FXt

(
y
)
≥ ϕ

}

for ϕ ∈
(
0, 1

)
, i.e V aRt,ϕ is just the conditional ϕ-quantile of Yt given Xt. 1 − ϕ is

the probability of extreme losses greater than the V aR usually taking values 5% or 1%

corresponding to one or ten day trading19 periods respectively.

19May refer, for example to stock returns, holdings in banks etc.
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The risk measure V aRt,ϕ has the following properties20. For any two random variables

Y (1) and Y (2)

1. V aRt,ϕ is monotonic with respect to stochastic dominance of order one (SD(1))21.

That is

V aRt,ϕ

(
Y (1)

)
≤ V aRt,ϕ

(
Y (2)

)

2. V aRt,ϕ is comonotone additive. That is, if Y (1) and Y (2) are commonotone, then

V aRt,ϕ

(
Y (1) + Y (2)

)
= V aRt,ϕ

(
Y (1)

)
+ V aRt,ϕ

(
Y (2)

)

Recently, there has been an intense discussion on good measures of risk, see Artzner et

al. [6], which provides the requirements for a coherent risk measure. These requirements

have ruled out measures that are based on second moments, including the standard devi-

ation as well as quantile based measures, like VaR. A measure that has gained preference

in the wake of these findings is the expected shortfall. In relation to V aRt,ϕ, and by some

appropriate moment condition, we formally define it as

=Yt

(
V aRt,ϕ

)
= E

[
Yt

∣∣∣Yt > V aRt,ϕ;Xt

]
(1.2.0.2)

which is just the conditional expection of those losses exceeding the VaR. In iid and

univariate case, expected shortfall was first proposed in Acerbi and Tasche [4]. Its variants

have been suggested in different names; Conditional VaR in Rockafellar and Uryasev [98]

and conditional expection in Artzner et al. [6].

1.3 Nonparametric Method

Later on, we consider the nonparametric estimation of µt,θ and σt,θ. Their properties will

be studied under α-mixing conditions. For convenience, the following definition is refered.

20Properties formulated in terms of preference structures induced by dominance relations, see Fishburn

[50] and Georg [95].
21 The relationship Y (1) ≺SD(1) Y (2) hold if and only if E

[
µ
(
Y (1)

)]
≤ E

[
µ
(
Y (2)

)]
for all (integrable)

monotonic function µ.
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Definition 1.3.1 (Strong mixing) Let
{

ηt

}
be a stationary time series and let Ft and

Ft denote σ-fields generated, respectively, by ηi,−∞ < i ≤ t and ηi, t ≤ i < ∞. Given a

positive number s, then

α
(
s
)

= sup
A∈Ft,B∈Ft+s

{∣∣∣P
(
A ∩B

)
− P

(
A

)
P

(
B

)∣∣∣
}

is the strong mixing coefficient. If

lim
s→∞

α
(
s
)

= 0

the process is called strongly mixing or α-mixing.

The mixing conditions indicate the maximum dependence between two time events

which are a least s-steps apart. For instance if a stationary sequence is m-dependent,

namely Yt depends only on previous m observations, then the mixing coefficient is zero

for s > m. There are a number of mixing conditions in literature, among them α-mixing is

reasonably weak and known to be fulfilled for many time series models. For instance, under

the conditions derived in Gorodetskii [55] and Withers [112], a linear process is α-mixing.

Chen and Tsay [25] has shown that the functional autoregressive process is geometrically

ergodic under certain conditions. Franke et al. [53] provide sufficient conditions for general

markov chain process to be geometrically ergodic, with coefficient which depend on some

explicit constants. Futhermore Masry and Tjostheim ([84],[85]) have demonstrated that

under some conditions both autoregressive conditional heteroscedastic (ARCH) process

and nonlinear additive autoregressive models with exogeneous variables, which are popular

in finance and econometrics, are stationary and α-mixing.

Let 1

(
.
)

and 2

(
.
)

be real valued, measurable functions. Set J1 = 1

(
ηt

)
, J2 = 2

(
ηt
′
)
.

The proof of the following lemma can be found on page 10 of Doukhan [32].

Lemma 1.1 (Covariance inequality) Suppose that J1 and J2 are bounded random vari-

ables with respect to Ft and Ft
′
respectively, then

∣∣∣cov
(
J1, J2

)∣∣∣ ≤ cα
(
t
′ − t

)∣∣∣
∣∣∣J1

∣∣∣
∣∣∣
∞

∣∣∣
∣∣∣J2

∣∣∣
∣∣∣
∞
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where c is a generic constant and

∣∣∣
∣∣∣V

∣∣∣
∣∣∣
∞

= ess.sup|V | = inf
{

c ∈ R
∣∣∣P

(
|V | > c

)
= 0

}

1.3.1 Kernel method

We assume, for d ∈ N, our data consist of a realization of
(
Yt,Xt

)
, t = 1, . . . , n, which

may correspond to the observed returns information Yt and Xt ∈ Rd variables as in

(1.1.1.1) at several dates. We assume that the conditional distribution function Fxi

(
y
)
,

of Yt given Xt = xi ∈ Rd, i = 1, 2, . . . , n is such that the equation Fxi

(
y
)

= θ admits

a unique solution, µθ

(
xi

)
, for each xi. Let ki,j : R → R be bounded and symmetric

functions such that

∫
ki,j

(
u
)
du = 1, i = 1, . . . , n, j = 1, . . . , d.

The kernel functions ki,j assign weights to the observation Xt,j ∈ R which decreases

with the distance between the point of estimation xi,j ∈ R and Xt,j. The various forms of

kernel functions include Uniform,Triangle, Epanechnikov, Bisquare, Triweight, Gaussian

among others for univariate. The latter one has an infinite support while the rest are

bounded in [−1, 1]. The Bisquare kernel has the form

ki,j

(
u
)

=
15

16

(
1− u2

)2

I[−1,1]

(
u
)

and that of normal takes the form

ki,j

(
u
)

=
1

2π
exp

(
−1

2
u2

)
, for −∞ < u < ∞.

We evaluate it at the point xi,j for observation Xt,j for

u =
xi,j −Xt,j

hi,j

The bandwidth hi,j plays an important role in determining the number of data in

a local neighborhood of the estimation point, xi,j. Hence a very small bandwidth will

lead to a wiggly curve of the estimated quantile function, while at the same time, a

large bandwidth gives a smooth curve but with a possibility of obscuring the interesting
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structures. Detailed information on this subject can be found in Haerdle [58].

For xi ∈ Rd , a multivariate kernel K : Rd → R, is used. In this case we may choose a

norm kernel,

K
(
u
)

= ki

(∣∣∣
∣∣∣u

∣∣∣
∣∣∣
)
, where u ∈ Rd

for some univariate kernel ki. For further details on the norm kernel, see Michels [89],

page 16. In connection with time series application, a frequently used multivariate kernel

alternative, is the product kernel. We define the product kernel as

K
(
u
)

=
d∏

j=1

ki,j

(
uj

)
, i = 1, . . . , n

where the multivariate bandwidth h(i) is a diagonal matrix with elements
(
hi,j

)
whose

determinant is
∣∣∣h(i)

∣∣∣ =
∏d

j hi,j. In terms of the random variable
(
Yt,Xt

)
,

K
(
xi −Xt;h

(i)
)

= K

(
xi1 −Xt1

hi1

,
xi2 −Xt2

hi2

, . . . ,
xid −Xtd

hid

)

=
d∏

j=1

k

(
xij −Xtj

hij

)
, for product kernel (1.3.1.1)

where k is a fixed univariate kernel.

The following conditions are imposed on the kernel, densities, bandwidth and the pro-

cess. Conditions (B1)-(B5), (C1)-(C2), (D1) and (E1) are standard regularity conditions.

Additional conditions (B6), (C3)-(C5) and (D2) are used for deriving the asymptotic

properties of the conditional distribution estimator. The asymptotic properties of QAR

are studied under further conditions, (C6)-(C7). The letter c and ci, 1, 2 . . . will denote a

generic constant which might take a different value at different places.

Conditions 1.3.1

(B1)
∫
Rd K

(
u
)
du = 1,

(B2) K
(
u
)
≤ K < ∞, u ∈ Rd

(B3) K is a compactly supported density

(B4) K
(
u
)
≥ 0, ∀u ∈ Rd
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(B5) K, is symmetric i.e K
(
u
)

= K
(
−u

)
, u ∈ Rd

(B6) K satisfies Lipschitz condition,
∣∣∣K

(
u
)
−K

(
v
)∣∣∣ ≤ ck

∣∣∣u− v
∣∣∣,∀u,v ∈ Rd, ck > 0.

Conditions 1.3.2

(C1)
(
Yt,Xt

)
has a joint density f

(
x, y

)
. Then, the density g

(
xi

)
of Xt, exists too.

(C2) For fixed
(
y,x

)
, Fxi

(
y
)
∈ (0, 1) and g

(
xi

)
> 0 are continuous in a neighbor-

hood of xi, where we want to estimate the quantile function. Then, the conditional density

fxi

(
y
)

exist at xi

The following derivatives exist for x = xi

(C3) ∇2Fx

(
y
)

= F
′′
x

(
y
)

=
∂2Fx

(
y

)

∂x2 where ∇2 is the Hessian w.r.t x evaluated at x for

fixed y

(C4) ∇g
(
x
)

=
∂g

(
x

)

∂x
and ∇ is the gradient w.r.t x

(C5) ∇2g
(
x
)

=
∂2g

(
x

)

∂x2

(C6)The conditional density fxi

(
y
)

is continuous in a neighborhood of xi

(C7) fxi

(
µθ

(
xi

))
> 0.

Conditions 1.3.3

With
∣∣∣h(i)

∣∣∣ and
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣ denoting the determinant, respectively the Euchlidean norm, of the

diagonal bandwidth matrix h(i) = diag
(
hi,j

)
, j = 1, . . . , d:

(D1) hi,j > 0, hi,j → 0 and n
∣∣∣h(i)

∣∣∣ →∞ for n →∞
(D2)

(√
n
∣∣∣h(i)

∣∣∣
)−2

→∞, as n →∞.

Conditions 1.3.4

(E1) The process
{(

Yt,Xt

)}
is α- mixing with coefficient satisfying α

(
s
)

= o
(
s−(2+δ)

)
,

for some δ > 0

If the kernel function K has support
[
−1, 1

]d

, then we expect the relevant estimator,

for instance of the conditional distribution Fxi

(
y
)
, to use the observations in the intervals(

xi − h(i)I,xi + h(i)I
)
, where I is a unit vector of dimension d. In situation where the
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dependent observations are used, the local estimator is affected only by the dependence

of observations in a small window and not by the whole data. The rate on which α(s)

in (E1) goes to zero plays an important role in showing the asymptotic behaviour of

the estimators. In general we use the following lemma, due to Volkonskii and Rozanov

(1959), to shows that dependent random variables can be approximated by a sequence of

independent random variables having the same marginal distributions.

Lemma 1.2 Let V1, . . . , VL, be random variables measurable with respect to the σ-algebras

Fj1
i1 , . . . ,FjL

iL respectively with il+1 − jl ≥ w ≥ 1 and |Vj| ≤ 1 for j = 1, . . . , L. Then

∣∣∣E
L∏

j=1

Vj −
L∏

j=1

E
(
Vj

)∣∣∣ ≤ 16
(
L− 1

)
α
(
w

)

where Vj = exp
(
itjXj

)
, is the characteristic function of the random variable X.

1.4 Model definition

Let
{

Vt, t ∈ Z
}

be a real-valued financial time series on a complete probability space(
Ω,F, P

)
, where P is such that either

1.
{

Vt

}
is an iid process or

2.
{

Vt

}
is a stationary α-mixing process such that condition (E1) holds.

We assume that Vt can be partitioned as
(
Yt,Xt

)
, where Yt ∈ R is Ft-measurable

and Xt ∈ Rd is Ft−1-measurable, and that Vt may have representation (1.1.1.1).

In the time series case 2., we consider the quantile autoregression-heteroscedastic process

of the form

Yt = µt,θ + σt,θZt, t = 1, 2, . . . , (1.4.0.2)

where µt,θ = µθ

(
Xt

)
is the conditional θ-quantile of Yt given Xt and σt,θ = σθ

(
Xt

)
is

the conditional scale function of Yt given Xt. The residuals Zt are iid with zero θ-quantile

and unit scale, i.e they satisfy the following conditions,
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Conditions 1.4.1 Zt and Mθ

(
Zt, F

−1
Zt

(
θ
))

− 1 have a continuous positive density in a

neighborhood of 0 and

P
(
Zt ≤ 0

)
= θ (1.4.0.3)

and

P
(
Mθ

(
Zt, F

−1
Zt

(
θ
))

≤ 1
)

= θ (1.4.0.4)

Condition (1.4.1) ensures that both E
[
Mθ

(
Zt, µ

)
−Mθ

(
Zt, 0

)]
and

E
[
Mθ

(
Mθ

(
Zt

)
− 1, σ

)
−Mθ

(
Mθ

(
Zt

)
− 1, 0

)]
are nonnegative and have a unique mini-

mum at 0 with respect to µ and σ. The second terms in the brackets of both expectations

ensure the respective first moments are finite, see Huber [67] and Kozek [77] for similar

expressions and arguments.

In the following we use the notation

Mθ

(
Z

)
= Mθ

(
Z, F−1

Z

(
θ
))

for any real random variable Z with distribution function FZ , i.e we evaluate the

distance function Mθ

(
y, µ

)
at the random point y = Z and at its θ-quantile µ = F−1

Z

(
θ
)
.

If we take the residuals in (1.1.1.1) and define

Zt =
et − qe

θ

M e
θ

where qe
θ is the θ-quantile of et and M e

θ the θ-quantile of Mθ

(
et

)
, then the resulting

Zt satisfies (1.4.0.3) and (1.4.0.4) by the following lemma:

Lemma 1.3 Let U be a real random variable with absolutely continuous distribution FU

and θ-quantile qθ = F−1
U

(
θ
)
.

(a) P
(
Mθ

(
U

)
≤ µ

)
= P

(
qθ − µ

1−θ
≤ U ≤ qθ + µ

θ

)
, for all 0 ≤ µ < ∞.

(b) Let Mθ be the θ-quantile of Mθ

(
U

)
. Then W = U−qθ

Mθ
has zero θ-quantile and unit

scale, i.e it satisfies (1.4.0.3) and (1.4.0.4).
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Proof of lemma 1.3

(a) By definition of Mθ

(
U

)
= Mθ

(
U, qU

θ

)
:

P
(
Mθ

(
U

)
≤ µ

)
= P

(
U > qθ, θ

(
U − qθ

)
≤ µ

)
+ P

(
U ≤ qθ,

(
1− θ

)(
qθ − U

)
≤ µ

)

= P
(
qθ < U ≤ qθ +

µ

θ

)
+ P

(
qθ − µ

1− θ
≤ U ≤ qθ

)

= P
(
qθ − µ

1− θ
≤ U ≤ qθ +

µ

θ

)
.

(b) P
(
W ≤ 0

)
= P

(
U − qθ ≤ 0

)
= θ, ie the θ-quantile of W is 0 and, therefore, using

(a)

P
(
Mθ

(
W

)
≤ 1

)
= P

(
−1

θ
≤ W ≤ 1

θ

)

= P
(
qθ − Mθ

1− θ
≤ U ≤ qθ +

Mθ

θ

)

= P
(
Mθ

(
U

)
≤ Mθ

)
= θ,

where, again we have used (a)

¤

If we choose Xt =
(
Yt−1, . . . , Yt−τ , µt−1,θ, . . . , µt−τ,θ, St

)
to consist of a finite past of the

observed process Yt, the corresponding conditional θ-quantiles and an exogeneous series

St, then in (1.4.0.2) we assume that





µt,θ = µ
(
Yt−1, . . . , Yt−d, St

)
:

σt,θ = σθ

(
Yt−1 − µt−1,θ, . . . , Yt−q − µt−q,θ, St

)
:

(1.4.0.5)

i.e we let the volatility be a function of the past residuals instead of the data them-

selves. Instead, we could as well take the past information as
(
Mθ

(
Yt−1

)
, . . . , Mθ

(
Yt−q

))
.

That is a special case of (1.4.0.5) as σt,θ is an arbitrary function and Yt−k−µt−k,θ determines

Mθ

(
Yt−k

)
uniquely. In this case, regressing Mθ

(
Yt

)
against

(
Mθ

(
Yt−1

)
, . . . , Mθ

(
Yt−q

))
22

produces a linear surface which could easily be fitted by linear parametric, if desired, as

22 As in Engle [40], in the case of square.



1 INTRODUCTION 23

well as nonparametric methods. This is illustrated in Figures (2) and (3) where the

underlying regression is based on the process23

Yt =
(
0.075 + 0.45M0.75

(
Yt−1

)
+ 0.50M0.75

(
Yt−2

))
Zt, t = 1, 2, . . . ,

with Yt being variables in the interval
(
−4, 4

)
, and Zt comprising of student’s-t

distributed error with 4 d.f. The former surface results by regressing M0.75

(
Yt

)
on(

M0.75

(
Yt−2

)
,M0.75

(
Yt−1

))
with M0.75

(
Yt−j

)
= Stheta

(
Yt−j

)
for j = 1, 2 and the latter

one by regressing M0.75

(
Yt

)
on Yt−j, j = 1, 2.

Figure 2: Example of linear regression surface

We will call processes of the form (1.4.0.2) satisfying (1.4.0.3) and (1.4.0.4) Quan-

tile Autoregressive-Quantile Autoregressive Conditional Heteroscedastic of orders d and q

(QAR(d)-QARCH(q)), where again we do not explicitly denote the presence of the exoge-

neous variable St which allows for a considerable degree of flexibility. If, for example, we

23 With µt,0.75 = 0 and because our interest here is to give an example of a heteroscedastic part, we

have set Me
θ to be equal to 1, so that Zt is just

(
et − F−1

e

(
0.75

))
.
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Figure 3: Example of nonlinear regression surface

choose St =
(
σt−1,θ, . . . , σt−τ,θ

)
in (1.4.0.5) then we get a nonparametric quantile analogue

to an AR-GARCH-process which we call Quantile Autoregressive-Generalized Quantile

Autoregressive Conditional Heteroscedastic (QAR(d)-GQARCH(p,q)), where d, p and q

are the respective orders. The QAR of Yt in (1.4.0.2) under condition (1.4.1) given the

information, Ft−1, are seen as

Qt,θ

(
Yt

)
= µt,θ

and the scale function at θth QAR

Qt,θ

(
Mθ

(
Yt

))
= σt,θ

where Qt,θ is the quantile operator defined in section (1.1.2) and, for a time series

Yt, Mθ

(
Yt

)
= Mθ

(
Yt, µt,θ

)
denotes the distance function evaluated at the conditional

θ-quantile.
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1.4.1 Parametric examples

1. For a parametric QAR(d) − QARCH(q), the components in (1.4.0.2) would take

the form

µt,θ = ω0 +
d∑

i=1

ωiYt−i +

q∑
j=1

υjMθ

(
Yt−j

)
(1.4.1.1)

and

σt,θ = α0 +

q∑
j=1

αjMθ

(
Yt−j

)

where ωo > 0, αo > 0 υj, ωj > 0,∀i = 1, . . . , d, αj ≥ 0, ∀j = 1, 2, . . . , q. Note

that in (1.1.1.1), if et is zero-mean random variable with symmetric distribution,

Fe, and θ = 0.5, we obtain the QAR which is in exact form as the one represented

in Koenker and Zhao [76]. The paper considers a stochastic process
{

Yt

}
generated

by the autoregressive process of the form

Yt = ω0 +
d∑

i=1

ωiYt−i +

(
α0 +

q∑
j=1

αj

∣∣∣Yt−j − µt−j

∣∣∣
)

et (1.4.1.2)

where α0 > 0
(
α1, . . . , αq

)′
∈ Rq

+ are the parameters and et are iid random

variables with zero mean-unit variance.

Both the parametric form (1.4.1.1) and model (1.4.1.2) could be viewed as a general

type introduced by Engle (1982). However, the difference comes in via the way

heteroscedastic structures and the innovations are defined. In Engle’s model the

heteroscedastic term is given by

σt =

(
α0 +

q∑
j=1

αj

(
Yt−j − µt−j

)2
) 1

2

(1.4.1.3)

where µt is the conditional expectation and
{

et

}
are iid N

(
0, 1

)
. Because of mo-

ment conditions in (1.4.1.2) and (1.4.1.3), it is apparent that symmetry in the distri-

bution of et plays an important role in the asymptotic behaviour of the corresponding
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estimators. In the case of homoscedasticity, the parametric form of (1.4.0.2) and

(1.4.1.2) have the same conditional quantile.

2. For a parameric QAR(d)−GQARCH(q, p) which includes stochastic volatility pro-

cess of order (q, p) that allows a more complicated dependence of the present scale

function on the past volatility, it can be written as

Yt = µt,θ +
(
α0 +

q∑
j=1

αjMθ

(
Yt−j

)
+

p∑

k=1

βkσt−k

)
Zt (1.4.1.4)

where σt−k = cσt−k,θ for some rescaling constant c > 0. The constants α0, α
′
js, and β

′
ks

are non-negative parameters with Zt satisfying condition (1.4.1). Other derivatives

of GARCH, like TGARCH could be reformulated in a similar manner, as will be

seen later on.

In chapter 2, we start by giving the asymptotic properties of the estimators of µt,θ and

σt,θ when they are obtained through the inverse of conditional distribution. In chapter

(3), we give the asymptotic properties for the estimators obtained by direct minimization

involving QAR-QARCH in detail and its extensions to QAR-GQARCH.

1.5 Conclusion

This chapter has stated the problem at hand and discussed the estimation methodologies.

We have proposed a class of time series models which is similar to nonparametric AR-

(G)ARCH models but which is more suitable for estimating quantiles even in cases of

infinite variance.
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2 Estimation via conditional distribution

In this chapter, we assume
{

Yt,Xt

}
follows the process in (1.1.1.1) and estimate the QAR

and the scale function in (1.4.0.2). We present the consistency and asymptotic normality

results of the conditional θ-quantile functional estimator for QAR. These results are then

subsequently used to derive further consistency and asymptotic normality results on the

the scale functional estimator of σθ

(
xi

)
, both under known and unknown QAR cases.

2.1 The kernel estimator for QAR

The following definitions of the estimators will be used. The pdf g of Xt at xi will be

estimated by

ĝ
(
xi

)
=

(
n
∣∣∣h(i)

∣∣∣
)−1

n∑
t=1

K
(
xi −Xt;h

(i)
)
, (2.1.0.5)

see Parzen [94], Rosenblatt [97]. The joint pdf f
(
y,x

)
of

(
Yt,Xt

)
at

(
yj,xi

)
will be

estimated by

f̂
(
yj,xi

)
=

(
n
∣∣∣h(i)

∣∣∣hj

)−1
n∑

t=1

`j

(yj − Yt

hj

)
K

(
xi −Xt;h

(i)
)
, (2.1.0.6)

where the functions `j : R → R, and hj ∈ R are the kernel and bandwidth respectively

for Yt at point
{

yj

}
24. The conditional pdf fxi

(
y
)

of Yt given that Xt = xi will be

estimated by

f̂xi

(
y
)

=
f̂
(
y,xi

)

ĝ
(
xi

) (2.1.0.7)

The conditional cdf Fxi

(
y
)

of Yt given Xt = xi at distinct points y can be obtained by

integrating (2.1.0.7)

F̂xi

(
y
)

=

∫ y

−∞

f̂
(
u,xi

)
du

ĝ
(
xi

)

=
1

h

∑n
t=1 K

(
xi −Xt;h

(i)
) ∫ y

−∞ `
(

u−Yt

h

)
du

∑n
t=1 Ki

(
xi −Xt;h(i)

)

24 For convenience, the subscript is henceforth dropped.
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An alternative estimator for Fxi

(
y
)

proposed in Colomb [27] is the empirical estimator;

F̂xi

(
y
)

=

∑n
t=1 K

(
xi −Xt;h

(i)
)
I{Yt≤y}

∑n
t=1 K

(
xi −Xt;h(i)

)

=
r̂xi

(
y
)

ĝ
(
xi

) (2.1.0.8)

where the indicator function I{ηt≤.} = I{ηt≤.}
(
ηt − .

)
, will be used throughout. We will

base our estimator of the conditional distribution function on (2.1.0.8). The conditional

QAR estimator is then obtained by inverting (2.1.0.8) at θ

µ̂θ

(
xi

)
= inf

y∈R

{
y : F̂xi

(
y
)
≥ θ

}

Because 0 ≤ Fxi

(
y
)
≤ 1 and is strictly monotone in y, µθ

(
xi

)
exist and is unique.

2.1.1 The asymptotic properties of the conditional distribution estimator

Let W =
(
n
∣∣∣h(i)

∣∣∣
)−1 ∑n

t=1 ηt where ηt = K
(
xi −Xt;h

(i)
)(

I{Yt≤y} − FXt

(
y
))

. In order

to establish the order of the bias and the variability of the estimator, the following lemma

is necessary.

Lemma 2.1 Under regularity conditions (B1)-(B5), (C1)-(C5), (D1)-(D2) and (E1),

(1)

var
[
W

]
=

(
n
∣∣∣h(i)

∣∣∣
)−1

V2
(
y
)
g2

(
xi

)
+ o

((
n
∣∣∣h(i)

∣∣∣
)−1)

, (2.1.1.1)

where V2
(
y
)

= 1

g

(
xi

)
(
Fxi

(
y
)
− F 2

xi

(
y
)) ∫

K2
(
u
)
du

(2)

ĝ
(
xi

)
→p g

(
xi

)
(2.1.1.2)

(3)

r̂xi

(
y
)
→p rxi

(
y
)

(2.1.1.3)
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Proof of lemma 2.1(1) :

Observe that E
[
W

]
= 0 since E

[
ηt

∣∣∣Xt

]
= 0 and

var
[
W

]
=

(
n
∣∣∣h(i)

∣∣∣
)−2

var
( n∑

t=1

ηt

)

=
(
n
∣∣∣h(i)

∣∣∣
)−2{ n∑

t=1

var
[
ηt

]
+

n∑

t6=t
′
cov

[
ηt, ηt

′
]}

=
(
n
∣∣∣h(i)

∣∣∣
)−2{

nE
[
η2

1

]
+ 2

n∑
t=2

(
n− t + 1

)
cov

[
η1, ηt

]}

=
(√

n
∣∣∣h(i)

∣∣∣
)−2

E
[
η2

1

]
+ 2

(√
n
∣∣∣h(i)

∣∣∣
)−2

n∑
t=2

(
1− t− 1

n

)
cov

(
η1, ηt

)}

(2.1.1.4)

by stationarity. Now

E
[
η2

1

]
= E

[
K2

(
xi −Xt;h

(i)
)(

FXt

(
y
)
− F 2

Xt

(
y
))]

(2.1.1.5)

Using conditions (C3)-(C5), the taylor expansion of FXt

(
y
)

about Fxi

(
y
)

and the re-

sulting terms involving the density about g
(
xi

)
, we get

E
[
η2

t

]
=

(∣∣∣h(i)
∣∣∣
)
V2

(
y
)
g2

(
xi

)
+ o

(∣∣∣h(i)
∣∣∣
)
. (2.1.1.6)

Next, we show that the second term on the right hand side of (2.1.1.4) is of negligible

magnitude,

≤ 2
∣∣∣
(√

n
∣∣∣h(i)

∣∣∣
)−2

n∑
t=2

(
1− t− 1

n

)
cov

(
η1, ηt

)∣∣∣

≤ 2
(√

n
∣∣∣h(i)

∣∣∣
)−2

n∑
t=2

∣∣∣cov
(
η1, ηt

)∣∣∣ (2.1.1.7)

By condition (B2) and lemma 1.1, (2.1.1.7) becomes

≤
(√

n
∣∣∣h(i)

∣∣∣
)−2

n∑
t=2

cα
(
t− 1

)
||η1||∞||ηt||∞

≤
(√

n
∣∣∣h(i)

∣∣∣
)−2

n∑
t=2

cα
(
t− 1

)
→ 0,

Where in the last part we have used condition (D2) and (E1). This together with (2.1.1.6)

establishes (2.1.1.1).

To show (2.1.1.2) and (2.1.1.3) is straightforward, see also for example, in Robinson [96].
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We therefore only give the leading terms in the necessary steps. The resulting covariance

terms are approached in precisely the same way as above. Under conditions (B1-B5),

(C1-C5) and (E1), the bias of the density estimator is obtained as

E
[
ĝ
(
xi

)]
− g

(
xi

)
=

∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2

2

∫
uT∇2g

(
xi

)
uK

(
u
)
du + o

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
3)

(2.1.1.8)

and the variance,

var
[
ĝ
(
xi

)]
=

(
n
∣∣∣h(i)

∣∣∣
)−1

g
(
xi

) ∫
K2

(
u
)
du + o

((
n
∣∣∣h(i)

∣∣∣
)−1

(2.1.1.9)

The mean squared error of ĝ
(
xi

)
then becomes of the following order

MSE
(
ĝ
(
xi

))
= O

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
4)

+ O
((

n
∣∣∣h(i)

∣∣∣
)−1)

which goes to zero as n increases. Hence ĝ
(
xi

)
→p g

(
xi

)
. In (2.1.1.3), we use similar

lines as the preceeding steps to obtain the bias,

E
[
r̂xi

(
y
)]

− Fxi

(
y
)
g
(
xi

)
=

1

2

∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2

Fxi

(
y
) ∫

uT∇2g
(
xi

)
uK

(
u
)
du

+
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2

∇Fxi

(
y
) ∫

u∇g
(
xi

)T

uK
(
u
)
du

+
1

2
g
(
xi

)∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2
∫

uT∇2Fxi

(
y
)
uK

(
u
)
du + o

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
3)

(2.1.1.10)

and the same arguments as in the proof of (2.1.1.1) to get the variance,

var
[
r̂xi

(
y
)]

=
(
n
∣∣∣h(i)

∣∣∣
)−1

Fxi

(
y
)
g
(
xi

) ∫
K2

(
u
)
du + o

((
n
∣∣∣h(i)

∣∣∣
)−1)

. (2.1.1.11)

The mean squared error for r̂xi

(
y
)

is of order O
(∣∣∣

∣∣∣h(i)
∣∣∣
∣∣∣
4

+
(
n
∣∣∣h(i)

∣∣∣
)−1)

and by condition

(D1), it goes to zero with n and hence r̂xi

(
y
)
→p rxi

(
y
)
. ¤

Considering (2.1.0.8), both the numerator and denominator are consistent and hence

by Slutsky’s theorem, this is true also of
brxi

(
y

)

bg
(

xi

) = F̂xi

(
y
)

for
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣ +

(
n
∣∣∣h(i)

∣∣∣
)−1

→ 0,

as n →∞. Hence, F̂xi

(
y
)

is a consistent estimator for Fxi

(
y
)
, i.e F̂xi

(
y
)
→p Fxi

(
y
)
.

This result will be used to obtain the bias for F̂xi

(
y
)

for subsequent use throughout this

chapter.

The definition of V2
(
y
)

will be used throughout this chapter.

The following lemma gives bias and variance for F̂xi

(
y
)
.
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Lemma 2.2 Suppose the conditions in lemma 2.1 hold. Then

E
(
F̂xi

(
y
)
− Fxi

(
y
))

= Bn

(
y
)

+ o
(∣∣∣

∣∣∣h(i)
∣∣∣
∣∣∣
3)

(2.1.1.12)

and the variance

var
[
F̂xi

(
y
)]

=
(
n
∣∣∣h(i)

∣∣∣
)−1

V2
(
y
)

+ o
(
(n

∣∣∣h(i)
∣∣∣
)−1)

(2.1.1.13)

where

Bn

(
y
)

=

∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2

g
(
xi

)
{
∇Fxi

(
y
)T

∫
u∇g

(
xi

)T

uK
(
u
)
du

+
1

2
g
(
xi

) ∫
uT∇2Fxi

(
y
)
uK

(
u
)
du

}

Proof of lemma 2.2 :

Because the numerator and denomenator of (2.1.0.8) are stochastic, we proceed by lin-

earizing the estimator;

F̂xi

(
y
)

= Fxi

(
y
)

+
r̂xi

(
y
)
− Fxi

(
y
)
ĝ
(
xi

)

g
(
xi

) +
1

g
(
xi

)
(
F̂xi

(
y
)
−Fxi

(
y
))(

g
(
xi

)
− ĝ

(
xi

))

(2.1.1.14)

From lemma 2.1, the consistency of r̂xi

(
y
)

and ĝ
(
xi

)
implies that for large n and

∣∣∣h(i)
∣∣∣ →

0, we have F̂xi

(
y
)
− Fxi

(
y
)

= op

(
1
)
. And because g

(
xi

)
− ĝ

(
xi

)
= Op

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2)

, the

product of the two quantities is of smaller order in probability. Hence by using ( 2.1.1.8)

and (2.1.1.10) in

E
[
F̂xi

(
y
)]
− Fxi

(
y
)

=
E

[
r̂xi

(
y
)]
− Fxi

(
y
)
E

[
ĝ
(
xi

)]

g
(
xi

) + op

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2)

(2.1.1.15)

results in (2.2). And by using (2.1.1.9), (2.1.1.11) and (2.1.1.14) in

var
[
F̂xi

(
y
)]
≈ 1

g2
(
xi

)
(
var

[
r̂xi

(
y
)]

+F 2
xi

(
y
)
var

[
ĝ
(
xi

)]
−2Fxi

(
y
)
cov

[
r̂xi

(
y
)
, ĝ

(
xi

)])

(2.1.1.16)
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where

cov
[
r̂xi

(
y
)
, ĝ

(
xi

)]
=

(
n
∣∣∣h(i)

∣∣∣
)−2

n∑
t=1

cov
[
K

(
xi −Xt;h

(i)
)
I{Yt≤y},K

(
xi −Xt;h

(i)
)]

+
(
n
∣∣∣h(i)

∣∣∣
)−2

n∑

t 6=t
′
cov

[
K

(
xi −Xt;h

(i)
)
I{Yt≤y},K

(
xi −Xt′ ;h

(i)
)]

≈
(√

n
∣∣∣h(i)

∣∣∣
)−2{

E
[
K2

(
xi −Xt;h

(i)
)
I{Yt≤y}

]

− E
[
K

(
xi −Xt;h

(i)
)
I{Yt≤y}

]
E

[
K2

(
xi −Xt;h

(i)
)]}

+ A
(
xi

)

≈
(
n
∣∣∣h(i)

∣∣∣
)−1

Fxi

(
y
)
g
(
xi

) ∫
K2

(
u
)
du + o

((
n
∣∣∣h(i)

∣∣∣
)−1)

(2.1.1.17)

with A
(
xi

)
evaluated as in lemma 2.1, we obtain (2.1.1.13).

¤

From lemma 2.2, the order of the mean squared error for F̂xi

(
y
)

is again O
(∣∣∣

∣∣∣h(i)
∣∣∣
∣∣∣
4

+

(n
∣∣∣h(i)

∣∣∣
)−1)

, and so for n →∞ we have MSE
(
F̂xi

(
y
))

→ 0. Hence F̂xi

(
y
)
→p Fxi

(
y
)

with a rate implying consistency, as in lemma 2.1.

Note that the bias is quadratic in
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣ and therefore the sequence

∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣ have to be

small to reduce it. On the other hand the variance is proportional to
(
n
∣∣∣h(i)

∣∣∣
)−1

and

large bandwidth would be prefered. Hence to get a compromise of both effects, we choose∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣ such that n

∣∣∣h(i)
∣∣∣
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
4

= c, where c is a positive constant. In particular, for

equal bandwidths, we have
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣ = ch and h has to be choosen so that h = cn−

1
4+d .

The definition of Bn

(
y
)

will be used throughout this chapter.

Using lemma 2.2, we now present the asymptotic normality of the conditional distribution

estimator results in theorem 2.1 below.

Theorem 2.1 (Asymptotic normality) Under the conditions (B1)-(B5), (C1)-(C5),

(D1)-(D2) and (E1),

(
n
∣∣∣h(i)

∣∣∣
) 1

2
[
F̂xi

(
y
)
− Fxi

(
y
)
−Bn

(
y
)

+ op

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2)]

→D N
(
0,V2

(
y
))

(2.1.1.18)

where V2
(
y
)

and Bn

(
y
)

are the variance and bias defined in lemmas 2.1 and 2.2 respec-

tively.
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Proof of theorem 2.1 :

We observe that the remainder after adjusting for the bias is

(
n
∣∣∣h(i)

∣∣∣
) 1

2
[
F̂xi

(
y
)
− Fxi

(
y
)
−Bn

(
y
)

+ op

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2)]

=
(
n
∣∣∣h(i)

∣∣∣
) 1

2 W

g
(
xi

) + op

(
1
)

(2.1.1.19)

Let J1 =
(
n
∣∣∣h(i)

∣∣∣
) 1

2
W = 1√

n

∑n
t=1 ηt, where ηt =

(∣∣∣h(i)
∣∣∣
)− 1

2
ηt. It suffice to establish the

asymptotic normality of J1 by (2.1.1.19). We employ Doob’s small-block and large-block

techniques (see Ibragimov and Linnik, 1971, page 316). That is, we partition {1, 2, . . . , n}
into 2bn + 1 subset with large-block of size r = rn and small block of size s = sn. Let

b = bn = INT
(

n
rn+sn

)
, where INT

(
x
)

denotes the integer part of x. Define the random

variables, for 0 ≤ j ≤ b− 1,

νj =

j(r+s)+r−1∑

i=j(r+s)

ηi, γj =

(j+1)(r+s)−1∑

i=j(r+s)+r

ηi, and νb =
n−1∑

i=b(r+s)

ηi

Then

J1 =
1√
n

{ b−1∑
j=0

νj +
b−1∑
j=0

γj + νb

}

=
1√
n

{
Tn,1 + Tn,2 + Tn,3

}

We then need to show the following, as n →∞:

1. The sum over the residual blocks Tn,2 and Tn,3 are asymptotically negligible in

probability,

2. The summands νj in large blocks, Tn,1 are asymptotically independent and

3. The standard Lindeberg-Feller conditions for asymptotic normality of Tn,1 under

independence assumption hold.

To accomplish this, we define the large-block size rn by rn = INT
((

n
∣∣∣h(i)

∣∣∣
) 1

2
)

and the

small-block size sn = INT

((
n

∣∣∣h(i)

∣∣∣
) 1

2
)

log n

)
. Then as n →∞,

sn

rn

→ 0 and
n

rn

α
(
sn

)
→ 0 (2.1.1.20)
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Now, to establish (1), we need to show that

1

n
E

[
Tn,2

]2

→ 0,
1

n
E

[
Tn,3

]2

→ 0, as n →∞ (2.1.1.21)

The variance of Tn,2 is

E
[
Tn,2

]2

=
b−1∑
j=0

var(γj) + 2
∑

0≤i<j≤b−1

cov
(
γi, γj

)
≡ T21 + T22 (2.1.1.22)

From stationarity and lemma 2.1, it follows that

T21 = bnvar
(
γ1

)
= bnvar

( sn∑
j=1

ηj

)
= bnsn

[
V2

(
y
)
g2

(
xi

)
+ o

(
1
)]

(2.1.1.23)

Consider the second term T22 on the right -hand side of (2.1.1.22). Let r∗j = j(rn + sn),

then r∗j − r∗i ≥ rn for all j > i and therefore

T22 = 2
∑

0≤i<j≤b−1

cov
( s∑

j1=1

ηr∗i+r+j1
,

s∑
j2=1

ηr∗j+r+j2

)

≤ 2
∑

0≤i<j≤b−1

sn∑
j1

sn∑
j2

∣∣∣cov
(
ηr∗i +rn+j1, ηr∗j +rn+j2

)∣∣∣

≤ 2
n−rn∑

j1

n∑
j2=j1+rn

∣∣∣cov
(
ηj1, ηj2

)∣∣∣.

By stationarity and lemma 2.1, we have

∣∣∣T22

∣∣∣ ≤ 2n
n∑

j=rn+1

∣∣∣cov
(
η1, ηj

)∣∣∣ + o
(
n
)

(2.1.1.24)

Hence, by (2.1.1.20)-(2.1.1.24), we have

1

n
E

[
Tn,2

]2

= O
(
bnsnn−1

)
+ o

(
1
)

(2.1.1.25)

It follows from stationarity, (2.1.1.20) and lemma 2.1 that

var
[
Tn,3

]
= var

(
n−bn(rn+sn)∑

j=1

ηj

)
= O

(
n− bn(rn + sn)

)
= o

(
n
)
. (2.1.1.26)

and therefore 1
n
E

[
Tn,3

]
→ 0. Combining (2.1.1.20)-(2.1.1.26), (1) is established.

To show (2) we need to show that

∣∣∣E
[
exp

(
itTn,1

)]
−

b−1∏
j=0

E
[
exp

(
itνj

)]∣∣∣ → 0, as n →∞
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We use (2.1.1.20) and lemma 1.2 to obtain

∣∣∣E
[
exp

(
itTn,1

)]
−

b−1∏
j=0

E
[
exp

(
itνj

)]∣∣∣16
( n

rn

)
α
(
sn

)

which tend to zero by (2.1.1.20).

To establsh the third statement, we need to show that

1

n

b−1∑
j=0

E
(
ν2

)
→ V2

(
y
)
g2

(
xi

)
,

1

n

b−1∑
j=0

E
[
ν2

j I{|νj |≥εV2(y)g2(xi)
√

n}
]
→ 0

for every ε > 0. By stationarity, (A12) and lemma 2.1, we obtain

1

n

bn−1∑
j=0

E
(
ν2

j

)
=

bn

n
E

(
ν2

1

)
=

bnrn

n
.
1

rn

var
( rn∑

j=1

ηj

)
→ V2

(
y
)
g2

(
xi

)

To establish the last part, we employ a truncation argument as follows. Let UL,i =

UiI{|Ui|≤L}, where L is a fixed truncation point. Correspondingly, let us denote the super-

script L to indicate the quantities that involve
{

UL,i

}
instead of

{
Ui

}
. Then J1 = JL

1 +J̃L
1

where J̃L
1 = 1√

n

∑n
t=1

(
ηt − ηL

t

)
. Since K is bounded with compact support, we have

∣∣∣ηL
t

∣∣∣ =
(∣∣∣h(i)

∣∣∣
)− 1

2
∣∣∣K

(
xi −Xt;h

(i)
)(

I{Yt≤y} − FXt

(
y
))

≤ c
(∣∣∣h(i)

∣∣∣
)− 1

2
,

for some constant c. Then using (2.1.1.20), it follows that

max0≤t≤b−1
1√
n

∣∣∣ηL
t

∣∣∣ ≤ crn

(
n
∣∣∣h(i)

∣∣∣
)− 1

2 → 0. Therefore, for n →∞, the set{∣∣∣ηL
t

∣∣∣ ≥ εVL

(
y
)
g
(
xi

)√
n
}

becomes an empty set and hence

1
n

∑b−1
j=1 E

[
ν2

j I{|νj |>εvL(y)g(xi)
√

n}
]
→ 0.

¤

2.1.2 The asymptotic properties of the QAR function estimator

This subsection establishes the asymptotic normality of the QAR estimator, µ̂θ

(
xi

)
.

Lemma 2.3 Assume conditions (B1)-(B5),(C1)-(C6) and (E1). Then for δn → 0, we

have

F̂xi

(
y + δn

)
− F̂xi

(
y
)

= δnfxi

(
y
)

+ op

(
δn

)
+ op

((
n
∣∣∣h(i)

∣∣∣
)−1)

(2.1.2.1)
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Proof of lemma 2.3 :

Express the left hand side of (2.1.2.1) as

F̂xi

(
y + δn

)
− F̂xi

(
y
)

=
(
n
∣∣∣h(i)

∣∣∣
)−1

∑n
t=1 K

(
xi −Xt;h

(i)
)(

I{Yt≤y+δn} − I{Yt≤y}
)

ĝ
(
xi

)

(2.1.2.2)

We first use equation (2.1.1.14) to simplify (2.1.2.2). Then follow the same arguments

as in lemma 2.2, by taking the expectation on both sides. Lastly, expand the resulting

Fxi

(
y + δn

)
and other terms involving δn about their corresponding functions of y. We

arrive at E
[
F̂xi

(
y + δn

)
− F̂xi

(
y
)]

= δnfxi

(
y
)

+ o
(
δn

∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
)
. Similarly the variance of

(2.1.2.2) becomes var
[
F̂xi

(
y + δn

)
− F̂xi

(
y
)]

= O
(
δn

(
n
∣∣∣h(i)

∣∣∣
)−1)

. The mean squared

error goes to zero as n →∞, hence (2.1.2.2) holds. ¤

Note from this lemma that, we can approximate the variance of F̂xi

(
y + δn

)
by the

variance of the sum of F̂xi

(
y
)

and δnfxi

(
y
)
. This fact will become important in deriving

the asymptotic properties of the scale functional estimator.

Theorem 2.2 Assume conditions (B1)-(B5), (C1)-(C6), (D1)-(D2) and (E1) hold. Then

µ̂θ

(
xi

)
is consistent

µ̂θ

(
xi

)
→p µθ

(
xi

)
. (2.1.2.3)

Furthermore if conditions (C7) hold, then it is asymptotically normal:

(
n
∣∣∣h(i)

∣∣∣
) 1

2

(
µ̂θ

(
xi

)
− µθ

(
xi

)
−B

(
µθ

(
xi

)))
→D N

(
0,

V2
(
µθ

(
xi

))

f 2
xi

(
µθ

(
xi

))
)

, (2.1.2.4)

where

B
(
µθ

(
xi

))
= −

Bn

(
µθ

(
xi

))

fxi

(
µθ

(
xi

)) . (2.1.2.5)

Proof of theorem 2.2 :

First we proof (2.1.2.3). From lemmas 2.1 and 2.2, we have for all xi ∈ Rd and y,

F̂xi

(
y
)
→ Fxi

(
y
)
, in probability.

Because Fxi

(
y
)

is a distribution function it follows from Glivenko-Cantelli theorem, in

Krishnaiah [78], for generalized25 empirical processes based on strong mixing sequences

25Where in the present case we choose Ct = 1
n , for t = 1, . . . , n.
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that

sup
y∈R

∣∣∣F̂xi

(
y
)
→ Fxi

(
y
)∣∣∣ → 0, in probability (2.1.2.6)

The uniqueness assumption of µθ

(
xi

)
implies that, for any fixed xi ∈ Rd, there exist a

ε > 0 and δ
(
ε
)

> 0 such that

δ = δ
(
ε
)

= min
{

θ − Fxi

(
µθ

(
xi

)
− ε

)
, Fxi

(
µθ

(
xi

)
+ ε

)
− θ

}
> 0

This implies that

P
{∣∣∣µ̂θ

(
xi

)
− µθ

(
xi

)∣∣∣ > ε
}

≤ P
{∣∣∣Fxi

(
µ̂θ

(
xi

))
− Fxi

(
µθ

(
xi

))∣∣∣ > δ
}

≤ P
{∣∣∣Fxi

(
µ̂θ

(
xi

))
− F̂xi

(
µ̂θ

(
xi

))∣∣∣ > δ − 1

n

}

≤ P
{

sup
y

∣∣∣F̂xi

(
y
)
− Fxi

(
y
)∣∣∣ > δ′

}
(2.1.2.7)

for arbitrary δ′ < δ and n large enough. Here, we used Fxi

(
µθ

(
xi

))
= θ and

θ ≤ F̂xi

(
µ̂θ

(
xi

))
≤ θ + 1

n
. (2.1.2.7) tends to zero by (2.1.2.6 ). Hence (2.1.2.3) holds

true. To prove (2.1.2.4),

let bn = −
Bn

(
µθ

(
xi

))

fxi

(
µθ

(
xi

)) and v =
V

(
µθ

(
xi

))

fxi

(
µθ

(
xi

)) . For any w

qn

(
w

)
= P

( µ̂θ

(
xi

)
− µθ

(
xi

)
− bn

v
≤ w

)

= P
(
µ̂θ

(
xi

)
≤ µθ

(
xi

)
+ bn + vw

)

As F̂xi

(
y
)

is increasing, but not necessarily strictly, we have

P
(
Fxi

(
µ̂θ

(
xi

))
< F̂xi

(
µθ

(
xi

)
+ bnv + w

))
≤ qn

(
w

)

≤ P
(
Fxi

(
µ̂θ

(
xi

))
≤ F̂xi

(
µθ

(
xi

)
+ bnv + w

))

By the same argument as in (2.1.2.7), we may replace F̂xi

(
µ̂θ

(
xi

))
by Fxi

(
µθ

(
xi

))
up

to an error of n−1 at most, and we get, neglecting the n−1-term which is asymptotically

negligible anyhow,

qn

(
w

)
≈ P

(
Fxi

(
µθ

(
xi

))
≤ F̂xi

(
µθ

(
xi

)
+ bn + vw

)

≈ P
(
−fxi

(
µθ

(
xi

))
.δn ≤ F̂xi

(
µθ

(
xi

))
− Fxi

(
µθ

(
xi

)))
(2.1.2.8)
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with δn = bn + vw, where we have used lemma 2.3 and neglected the o
(
δn

)
and

o
((

n
∣∣∣h(i)

∣∣∣
)−1)

. Using theorem 2.1 with yθ = µθ

(
xi

)
, we get

qn

(
w

)
∼ P

((
n
∣∣∣h(i)

∣∣∣
) 1

2
F̂xi

(
yθ

)
− Fxi

(
yθ

)
−Bn

(
yθ

)

V
(
yθ

)

≥
−fxi

(
yθ

)
δn −Bn

(
yθ

)

V
(
yθ

)
(
n
∣∣∣h(i)

∣∣∣
) 1

2

)

∼ Φ

((
n
∣∣∣h(i)

∣∣∣
) 1

2
fxi

(
yθ

)
.
(
bn + vw

)
+ Bn

(
yθ

)

V
(
yθ

)
)

= Φ
(
w

)

by our choice of bn and v. This proofs the theorem. ¤

This result could be used to construct confidence interval for the estimators as well

as other relevant inferences. In the estimation of the scale function, both asymptotic

properties for the conditional distribution and QAR estimator will be important. We will

use the definition of B
(
µθ

(
xi

))
throughout.

2.2 Bandwidth selection

In nonparametric kernel estimation, the bandwidth play an important role in the be-

haviour of the estimates. This can be seen for example in theorem 2.1, where the consis-

tency of the estimators are basically based on the sum of the bias and variance. Since the

bias is proportional to
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2

and variance proportional to
(∣∣∣h(i)

∣∣∣
)−1

, the bandwidth has

to be taken neither too large nor too small so as not to increase respective bias and vari-

ance of the estimates. The problem can be solved theoretically by choosing a bandwidth

that balances the trade-off between the bias and variance components. For instance, if

we assumed that all bandwidths are equal and set
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣ = ch, the theoretical optimal

bandwidth can be taken to be proportional to n−
1

d+4 , as seen in the proof of lemma 2.2.

The importance of the appropriate bandwidth is illustrated by the following example.

Consider the data generated from the autoregressive process,
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Yt = µ
(
Xt

)
+ σ

(
Xt

)
et, t = 1, . . . , 500 (2.2.0.9)

where et are independent random variables from student-t distribution with 4 degrees

of freedom. Let the true quantile autoregression function µθ

(
Xt

)
at θ = 0.75 be

µ0.75

(
Xt

)
=





4 + 3Xt + 1
Xt

φ
(
2 log Xt − 3

2

)
+

(
0.007 + 2X2

t

)
qe
0.75 : Xt > 0

0 : Otherwise

(2.2.0.10)

with φ being standard normal density. The data is shown in figure 4(a). In order to

estimate (2.2.0.10) nonparametrically, we used a bisquare (biweight) kernel function,

K
(
u
)

=
15

16

(
1− u2

)2

+

The effect of the bandwidth on the behavior of the estimate are shown in figures 4(b-

d). Figure 4(b) shows the graph of true function µ0.75

(
Xt

)
defined by (2.2.0.10) with its

kernel estimate at θ = 0.75 and constant bandwidth h = 0.013. Clearly the bandwidth

used is too small and the estimate is undersmoothed; the estimate has a marked variance.

Figure 4(c) shows the same curves, but with the bandwidth taken to be h = 0.065. In

this case the bandwidth was too big, resulting in oversmoothed estimation; the corre-

sponding estimate has high bias. Figure 4(d) shows what happens when the bandwidth is

h = 0.031. This value of the smoothing parameter gives a fairly better estimation, than

the other two, because it tends to balance the effects of variance and bias (or between

undersmoothing and oversmoothing respectively).

Obviously, practical situations require automatic determination of the appropriate

smoothing parameter, as a bad choice may lead to poor estimation (see again figure

(4)). The bandwidth that depends only on data and is easy to compute (a data-driven

bandwidth) is prefered. One of the practical methods that is used to solve the smoothness

problem, is the cross-validation procedure. This aims at finding a data-driven smoothing

parameter (bandwidth) that asymptotically minimizes some loss function of the error.

In particular Haerdle and Marron [59] and Haerdle et al. [60], have used the square loss
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Figure 4: Bandwidth problem

function to investigate the parameters in the setting of independent variables and Haerdle

et al. [61] under dependence.

2.2.1 Cross-validation

For α-mixing
{

Yt,Xt

}n

t=1
, a pair of random variables in R1+d and the conditional dis-

tribution estimator F̂xi

(
y
)
, Abbegger [1] proposed a bandwidth selection procedure that

minimizes an expression of the form

CV
(
h(i)

)
=

1

n− n(w)

n∑
t=1

Mθ

(
Yt, µ̂

(−t)
θ

(
Xi

))
w

(
Xt

)
.

where w : Rd → Rd is some nonnegative weight function used to omit observation at

the boundaries, and n(w), the number of observation that take values of zero in w(Xt)

and µ̂
(−t)
θ

(
Xi

)
, is the leave one(block) out estimate obtained as

µ̂
(−t)
θ

(
Xi

)
= inf

{
y ∈ R

∣∣∣F̂ (−t)
Xi

(
y
)
≥ θ

}
, 0 < θ < 1
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where

F̂
(−t)
Xi

(
y
)

=

∑
|t′−t|>d+bln

K
{(

Xi −Xt′ ;h
(i)

)
I{Yt′≤y}

}
ı(t− t

′
)

∑
|t′−t|>d+bln

K
{(

Xi −Xt′ ;h(i)
)}

ı(t− t′)

The function ı is such that

ı
(
0
)

= 0

ı
(
t− t

′
)

= 1, if t− t
′
> d + bln (2.2.1.1)

0 ≤ ı
(
t− t

′
)
≤ 1, if t− t

′ ≤ d + bln.

It gives less weight to data closer in time to
(
Yt,Xt

)
than those which are further away

in time. The positive sequence of integers
(
bln

)
, indicates the number of observations

(or a block of observations) left out in the tth estimation point. In particular, ı(t− t
′
) is

considered as a weight of the form

ı(t− t
′
) = I[−lbn,+lbn] (2.2.1.2)

whose role is to classify the blocks of data according to their closseness in time. The

estimator of the bandwith, h(i), is then given by

ĥ(i) = min
(hi1,hi2,...,hid)

CV
(
h(i)

)
(2.2.1.3)

We adopt this selection procedure in this chapter.

2.3 Uniform convergence

In this section, the uniform convergence for the estimators of the conditional distribution

and QAR functions are presented. These results will be used later in the estimation of

the scale functions in QA-QARCH in section (2.4).

2.3.1 Conditional distribution

In the usual mean regression based on Nadaraya-Watson estimation, the following as-

sumptions obtained from Gyoerfi et al. [56], pages 24-25 are used to show uniform con-
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vergence of the conditional mean function. Let Gn be a compact subset of Rd, and G be

a ε-neighborhood of Gn (Gn ⊂ G).

Conditions 2.3.1 (On probability distribution)

(A1) ∃Γ < ∞, ∀B ∈ B
(
Rd

)
P

(
Xt ∈ B

)
≤ Γλ

(
B

)

and ∃γ, ε > 0, ∀B ∈ B
(
G

)
P

(
Xt ∈ B

)
≥ γλ

(
B

)
,

where B
(
Rd

)
(respectively B

(
G

)
) is the σ-algebra of the Borel sets on Rd (respectively

on G), and λ is the Lebesgue measure on Rd.

(A2) Some absolute moment for random variables Yt of degree 2 exists, i.e

∃υ > 0, ∃c < ∞ E
[∣∣∣Yt

∣∣∣
2+υ]

≤ c.

(A3) The conditional variances are bounded on G, i.e

∃V < ∞, ∀x ∈ G E
[(

Yt − µ
(
x
))2∣∣∣Xt = x

]
≤ V .

Conditions 2.3.2 (On kernel)

(K1) Assume (B2),i.e ∃K, ∀u ∈ Rd,
∣∣∣K

(
u
)∣∣∣ ≤ K < ∞.

(K2)
∣∣∣
∣∣∣u

∣∣∣
∣∣∣
d

K
(
u
)
→ 0 as

∣∣∣
∣∣∣u

∣∣∣
∣∣∣ →∞.

(K3) ∃K̂,
∣∣∣
∫

K2
(
u
)
du

∣∣∣ ≤ K̂ < ∞.

(K4) K is Hoelder continuous of order γ on Rd, for γ ∈ (0, 1). That is

∃γ > 0, ck < ∞ such that
∣∣∣K

(
u
)
−K

(
u
)∣∣∣ ≤ ck

∣∣∣u− u
∣∣∣
γ

, ∀u,u ∈ Rd.

Conditions 2.3.3 (On process)

(E2)
(
Yt,Xt

)
is α-mixing with mixing coefficients

{
α(n), n ∈ N

}
and let

{
sn, n ∈ N

}

be an increasing sequence of integers such that

∃A < ∞, ∀n ∈ N, 1 ≤ sn ≤ n

2
and

nα
2sn
3n

sn

sn

≤ A. (2.3.1.1)

Denote I{Yt≤y} in (2.1.0.8) by It,y and observe that F̂xi

(
y
)

estimates

E
[
It,y

∣∣∣Xt = xi

]
= Fxi

(
y
)
. We consider F̂xi

(
y
)

as the Nadaraya-Watson estimate of

the conditional expectation of It,y given Xt. As in Gyoerfi et al. [56], in order to deal

with possible high26 values for the random variables Yt, let Mn be an increasing sequence

of real numbers satisfying Mn = nζ , for some ζ ∈
(
4
(
υ + 4

)−1

, 1
)

and υ defined as in

condition (A2). The following theorem gives the uniform convergence of the conditional

distribution estimator for Fxi

(
y
)
.

26Although this is trivial in the case of It,y as it is bounded in (0, 1). Henceforth we will take Mn = 1.
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Theorem 2.3 Assume that
(
Yt,Xt

)
is α-mixing with α(n), sn satisfying (E2) and that

conditions (A1)-(A3) and (K1)-(K4) hold. If the function Fxi

(
y
)

is continuous in xi on

G and if the bandwidth
∣∣∣h(i)

∣∣∣ is such that n
∣∣∣h(i)

∣∣∣
(
snMn log n

)−1

→ ∞ as n → ∞, then

F̂xi

(
y
)

converges completely27(co), i.e

sup
xi∈G

∣∣∣F̂xi

(
y
)
− Fxi

(
y
)∣∣∣ → 0, co. (2.3.1.2)

The proof of theorem 2.3 is as a direct consequence of theorem 3.3.5 page 37 in Gyoerfi

et al. [56]. We only show that conditions (A1)-(A3) are satisfied.

Condition (A1) is equivalent to saying that the law of Xt is equivalent to the Lebesgue

measure λ on G, i.e Xt have a density g
(
x
)

at Xt = x and λ has a density with respect

to the law of Xt. This is satisfied if Xt has a bounded almost everywhere (a.e) continuous

density which is bounded away from 0 on any finite interval. For (A2), E
[∣∣∣It,y

∣∣∣
2+υ]

< ∞
for some υ > 0 is trivial as 0 ≤ It,y ≤ 1 and in condition (A3), E

[(
It,y−FXt

(
y
))2∣∣∣Xt = x

]

is bounded for x ∈ G for any set G. This is trivially satisfied as
∣∣∣It,y

∣∣∣ ≤ 1 and Fx

(
y
)
≤ 1.

Note that it is not assumed in the theorem of Gyoerfi et al. that It,y should have a density.

The rate of convergence of F̂xi

(
y
)

will be discussed in the proof of the theorem 2.4 in the

next section.

2.3.2 QAR function

To show the uniform convergence of the estimator for the quantile function µθ

(
xi

)
, we

combine the ideas from the Nadaraya-Watson type estimation of the conditional distri-

bution and quantiles already presented in the previous sections of this chapter with the

concepts of M-estimation. The function µθ

(
x
)
, being defined for all x ∈ Rd, can be seen

as a zero in the argument µ of the following function,

27 A sequence
(
Wn

)
N

of random variables is said to converge completely to 0 if there exist some

positive real number a such that we have
∑∞

n=1 P
(
Wn > a

)
< ∞, see Gyoerfi et al. [56]. The complete

convergence implies convergence in probability as well as a.s.
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H̃
(
x, µ

)
= Fx

(
µ
)
− Fx

(
µθ

(
x
))

= E
[
It,µ − Fx

(
µθ

(
x
))∣∣∣Xt = x

]

= E
[
Ψx

(
Yt − µ

)∣∣∣Xt = x
]

(2.3.2.1)

where Ψx

(
u
)

= I(−∞,0]

(
u
)
− Fx

(
µθ

(
x
))

, i.e. Ψx

(
u
)

= I(−∞,0]

(
u
)
− θ if

Fx

(
µθ

(
x
))

= θ. The estimate of H̃
(
x, µ

)
at x = xi is

H̃n

(
xi, µ

)
= F̂xi

(
µ
)
− Fxi

(
µθ

(
xi

))

=

(
n
∣∣∣h(i)

∣∣∣
)−1 ∑n

t=1 K
(
xi −Xt;h

(i)
)(

It,µ − Fxi

(
µθ

(
xi

))

(
n
∣∣∣h(i)

∣∣∣
)−1 ∑n

t=1 K
(
xi −Xt;h(i)

)

=
n∑

t=1

wt

(
xi

)(
It,µ − Fxi

(
µθ

(
xi

)))

=
n∑

t=1

wt

(
xi

)
Ψxi

(
Yt − µ

)
(2.3.2.2)

It follows immediately that the solution of (2.3.2.2) satisfies

H̃n

(
xi, µ

)
= 0. (2.3.2.3)

Mark that since Ψx

(
Yt−µ

)
is nondecreasing and right-continuous in µ so is H̃

(
x, µ

)

and H̃n

(
x, µ

)
. As Ψx

(
Yt − µ

)
→ −θ for µ → −∞ and Ψx

(
Yt − µ

)
→ 1− θ for µ →∞

if Fx

(
µθ

(
x
))

= θ, we have for n large that infµ H̃n

(
x, µ

)
< 0 < supµ H̃n

(
x, µ

)
, c.f

(2.1.2.7) of the proof of theorem 2.2.

We will assume the following further conditions.

Conditions 2.3.4

(Q1) The density, g
(
x
)
, is bounded by Γ̃, i.e. Γ̃ = supx∈Rd g

(
x
)

< ∞.

(Q2) supx∈Gn

∣∣∣ĝ
(
x
)
− g

(
x
)∣∣∣ → 0.

(Q3) The conditional density, fx

(
µ
)
, is bounded in x and µ by cΨ which is independent

of x and µ.

(Q4) For some compact neighborhood Θn of 0 and a constant c0,

infµ∈Θn infx∈Gn fx

(
µθ

(
x
)

+ µ
)
≥ c0 > 0.
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Mark that (Q2) follows from lemma 2.4. In (Q3) E
[
Ψx

(
Yt − µ

)∣∣∣Xt = x
]

is uniformly

bounded in absolute value by 1 by the definition of Ψx. As

d
dµ

E
[
Ψx

(
Yt − µ

)∣∣∣Xt = x
]

= fx

(
µ
)
, it is also strictly increasing and continuously differ-

entiable in x and µ. Therefore Fx

(
µ
)

is assumed to be Lipschitz in x and µ.

Theorem 2.4 Let Θn ba a compact neighborhood of 0 in R and assume (A1)-(A3),(K1)-

(K3), (E2) and (Q1)-(Q4). Suppose hi,j, j = 1, 2, . . . , d is a sequence of bandwidths

depending on n ∈ N such that S̃n = n
∣∣∣h(i)

∣∣∣
(
sn log n

)−1

→∞ as n →∞,

Sn =
∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2

+ S̃
− 1

2
n satisfies Sn → 0 as n →∞ for all xi ∈ Gn and there

∃Cα > 0, Cα < ∞ such that S̃
1
2
n

∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2

≤ Cα, (2.3.2.4)

∀n ∈ N, then we have

sup
xi∈Gn

∣∣∣µ̂θ

(
xi

)
− µθ

(
xi

)∣∣∣ = O
(
Sn

)
a.s. (2.3.2.5)

The prove of theorem 2.4 is close in lines with the proof in Collomb and Haerdle [29]

and Gyoerfi et al. [56] chapter III. Note that it is complicated to deal with H̃
(
x, µ

)

directly, so we decompose the difference in the following manner:

Let

Hn

(
x, µ

)
=

(
n
∣∣∣h(i)

∣∣∣
)−1

n∑
t=1

K
(
x−Xt;h

(i)
)
Ψx

(
Yt − µ

)
(2.3.2.6)

and ĝ
(
x
)

=
(
n
∣∣∣h(i)

∣∣∣
)−1 ∑n

t=1 K
(
x − Xt;h

(i)
)
, as in (2.1.0.5). Then the difference can

be expressed as H̃n − H̃ = Hn−H
bg + H(g−bg)

gbg . Observe that

sup
x∈Gn

sup
µ∈Θn

∣∣∣H̃n − H̃
∣∣∣ ≤ sup

x∈Gn

sup
µ∈Θn

|Hn −H|
ĝ

+ sup
x∈Gn

sup
µ∈Θn

|H|
gĝ

∣∣∣ĝ − g
∣∣∣

≤ sup
x∈Gn

sup
µΘn

|Hn −H|
ĝ

+
1

δ
sup
x∈Gn

|ĝ − g|
ĝ

, (2.3.2.7)

as |H̃| ≤ 1 and g ≥ δ > 0 on Gn. Now, if supx∈Gn

∣∣∣ĝ − g
∣∣∣ ≤ ε, we have

1

ĝ
=

1

g + (ĝ − g)
≤ 1

g − |ĝ − g| ≤
1

δ − ε

on Gn. Therefore, to proof that H̃n → H̃ uniformly in x ∈ Gn, µ ∈ Θn, it suffice to show

that Hn → H and ĝ → g uniformly in x ∈ Gn, µ ∈ Θn, and also the rate of convergence
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will be given by the slower of the two rates of convergence of supx∈Gn
supµ∈Θn

∣∣∣Hn −H
∣∣∣

and supx∈Gn

∣∣∣ĝ − g
∣∣∣. The following lemma gives the rate of convergence of ĝ

(
xi

)
.

Lemma 2.4 Under the assumptions of theorem 3.3.6 of Gyoerfi et al. [56], for Gn com-

pact

(i) supxi∈Gn

∣∣∣ĝ
(
xi

)
− E

∣∣∣ĝ
(
xi

)∣∣∣
∣∣∣ = O

(
S̃
− 1

2
n

)
a.s.

(ii) supxi∈Gn

∣∣∣E
∣∣∣ĝ

(
xi

)∣∣∣− g
(
x
)∣∣∣ = O

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2)

The proof of this result follows directly from the proof of theorem 3.3.6 of Gyoerfi et al.

[56]. The sum of (i) and (ii) gives the rate. Therefore, we consider only the convergence

of Hn

(
xi, µ

)
.

In this regard, the following exponential inequality for α-mixing variables obtained by Car-

bon (1983) and stated in Gyoerfi et al. [56] and the lemmas on convergence of Hn

(
xi, µ

)

that follow thereafter, will be used.

Theorem 2.5 If
(
∆t

)
N

is α-mixing with E
[
∆t

]
= 0,

∣∣∣∆t

∣∣∣ ≤ c and E
[
∆2

t

]
≤ D, then

we have

P
(∣∣∣

n∑
t=1

∆t

∣∣∣ > εn

)
≤ 2 exp

{
−αεn + 6α2e(D + 8c2

s∑
t=1

αt)n + 2
√

ens−1α
2s
3n
s

}
(2.3.2.8)

where α is a real number and s an integer satisfying 1 ≤ s ≤ n and 0 ≤ α ≤ sce
4

.

Lemma 2.5 Under assumptions (K1)-(K4),(Q1)-(Q3) and (E2) we have for any compact

Gn ⊆ Rd, Θ̃n ∈ R,

sup
xi∈Gn

sup
µ∈eΘn

∣∣∣Hn

(
xi, µ

)
− E

[
Hn

(
xi, µ

)]∣∣∣ = O
(
S̃
− 1

2
n

)
a.s.

with S̃n = n
∣∣∣h(i)

∣∣∣
(
sn log n

)−1

→∞, sn →∞.

Proof of lemma 2.5

We follow essentially the proof of theorem 5.2.6 of Gyoerfi et al. [56] which gives a rate

for the Glivenko-Cantelli theorem in the case of α-mixing random variables. Denote

∆t =
(
n
∣∣∣h(i)

∣∣∣
)−1(

K
(
xi −Xt;h

(i)
)
Ψxi

(
Yt − µ

)
− E

[
K

(
xi −Xt;h

(i)
)
Ψxi

(
Yt − µ

)])
,
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then Hn

(
xi, µ

)
− E

[
Hn

(
xi, µ

)]
=

∑n
t=1 ∆t and E

[
∆t

]
= 0. We have by (K1) and

boundedness of Ψx

∣∣∣∆t

∣∣∣ ≤
(
n
∣∣∣h(i)

∣∣∣
)−1

2K = c < ∞.

We also have

E
[
∆2

t

]
≤ 2

(
n
∣∣∣h(i)

∣∣∣
)−2

E
[
K2

(
xi −Xt;h

(i)
)∣∣∣Ψxi

(
Yt − µ

)∣∣∣
2]

.

Using conditions (K3) and (Q1) and the fact that
∣∣∣Ψxi

∣∣∣ ≤ 1, we have

E
[
∆2

t

]
≤ 2

(
n2

∣∣∣h(i)
∣∣∣
)−1

E
[∣∣∣h(i)

∣∣∣
−1

K2
(
xi −Xt;h

(i)
]

≤ 2
(
n2

∣∣∣h(i)
∣∣∣
)−1

Γ̃K̂ = D < ∞. (2.3.2.9)

As in the proof of lemma 3.3.3 in Gyoerfi et al. [56], choose α = c2n
∣∣∣h(i)

∣∣∣s−1
n and

Cα = αsn

(
n
∣∣∣h(i)

∣∣∣
)−1

K > e
4

and get, by applying theorem 2.5 for any sequence
(
εn

)
N

,

P
(∣∣∣

n∑
t=1

∆t

∣∣∣ > εn

)
≤ c1 exp

{
−c2n|h(i)|ε2

ns
−1
n

}
, (2.3.2.10)

uniformly in xi ∈ Rd and µ ∈ R with some constants c1, c2 > 0.

Next, using the compactness of Θ̃n, we cover it with M intervals Im of length CM and:

Θ̃n ⊂ ∪M
m=1Im, Im =

[
µm−1, µm

]
,

∣∣∣µm − µm−1

∣∣∣ = CM ,m = 1, . . . , M.

Mark that for all m = 1, . . . , M ,

E
[
Hn

(
xi, µm−1

)]
≤ supµ∈Im

E
[
Hn

(
xi, µ

)]
= E

[
Hn

(
xi, µm

)]
and

Hn

(
xi, µm−1

)
≤ supµ∈Im

Hn

(
xi, µ

)
= Hn

(
xi, µm

)
.

Therefore, we have for any µ ∈ Im, using monotonicity of It,µ and Fxi

(
µ
)

in µ:

Hn

(
xi, µ

)
− E

[
Hn

(
xi, µ

)]
≤ Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]

+ E
[
Hn

(
xi, µm

)]
− E

[
Hn

(
xi, µ

)]

≤ Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]

+ E
[
Hn

(
xi, µm

)]
− E

[
Hn

(
xi, µm−1

)]
.
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and

E
[
Hn

(
xi, µ

)]
−Hn

(
xi, µ

)
≤ E

[
Hn

(
xi, µ

)]
− E

[
Hn

(
xi, µm−1

)]

+ E
[
Hn

(
xi, µm−1

)]
−Hn

(
xi, µm−1

)

≤ E
[
Hn

(
xi, µm

)]
− E

[
Hn

(
xi, µm−1

)]

+ E
[
Hn

(
xi, µm−1

)]
−Hn

(
xi, µm−1

)
.

Using condition (Q3),

E
[
Hn

(
xi, µm

)]
− E

[
Hn

(
xi, µm−1

)]
≤ cΨ

∣∣∣µm − µm−1

∣∣∣
(
n
∣∣∣h(i)

∣∣∣
)−1

E
[ n∑

t=1

K
(
xi −Xt;h

(i)
)]

= cΨCME
[
ĝ
(
xi

)]
.

We get for all µ ∈ Im,

∣∣∣Hn

(
xi, µ

)
− E

[
Hn

(
xi, µ

)]∣∣∣ ≤ max
{∣∣∣Hn

(
xi, µm−1

)
− E

[
Hn

(
xi, µm−1

)]∣∣∣
,

∣∣∣Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]∣∣∣
}

+ cΨCME
[
ĝ
(
xi

)]
,

and, therefore,

sup
µ∈Θ̃n

∣∣∣Hn

(
xi, µ

)
−E

[
Hn

(
xi, µ

)]∣∣∣ ≤ max
m=0,1,...,M

∣∣∣Hn

(
xi, µm

)
−E

[
Hn

(
xi, µm

)]∣∣∣+cΨCME
[
ĝ
(
xi

)]

(2.3.2.11)

We first consider the first term and get, using (2.3.2.10),

P
(

max
m=0,...,M

∣∣∣Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]∣∣∣ > εn

)

≤
M∑

m=0

P
(∣∣∣Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]∣∣∣ > εn

)

≤ (M + 1)c1 exp
{
−c2n

∣∣∣h(i)
∣∣∣ε2

ns
−1
n

}
.

We choose CM = c3n
−1 for some c3 > 0 and, therefore, M +1 ≤ c4n. Using the definition

of S̃n, we have
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P
(

max
m=0,...,M

∣∣∣Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]∣∣∣ > εn

)
≤ c1c4n exp

{−c2S̃n log nε2
n

}

= c1c4n
1−c2 eSnε2n

= c1c4n
1−c2ε2a2

n

≤ const.n−r

for arbitrary r > 0 if n is choosen large enough. Here, we have chosen εn = εS̃
− 1

2
n an for

some arbitrary sequence an →∞(n →∞). Choosing, e.g r = 2, we get

∞∑
n=1

P
( S̃

1
2
n

an

max
0,...,M

∣∣∣Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]∣∣∣ > ε
)

< ∞

which implies
eS

1
2
n

an
maxm=0,...,M

∣∣∣Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]∣∣∣ → 0 a.s. by the Borel-

Cantelli lemma. As an →∞ arbitrarily slowly, this implies that

S̃
1
2
n max

m=0,...,M

∣∣∣Hn

(
xi, µm

)
− E

[
Hn

(
xi, µm

)]∣∣∣ is bounded a.s. (2.3.2.12)

Now as
∣∣∣h(i)

∣∣∣ → 0, sn →∞, we have S̃
1
2
n CM = S̃

1
2
n c3n

−1 → 0 for n →∞. By lemma 2.4,

E
[
ĝ
(
xi

)]
converges a.s to g

(
xi

)
uniformly in xi ∈ Gn, and therefore, it is bounded. This

implies cΨCME
[
ĝ
(
xi

)]
= cΨc3n

−1E
[
ĝ
(
xi

)]
→ 0. Combining (2.3.2.11) with (2.3.2.12)

and the boundness of ĝ
(
xi

)
we finally get

sup
µ∈eΘn

∣∣∣Hn

(
xi, µ

)
− E

[
Hn

(
xi, µ

)]∣∣∣ = O
(
S̃
− 1

2
n

)
a.s. uniformly in xi ∈ Gn.

¤

Define Hn

(
xi, µθ

(
xi

)
+µ

)
=

(
n
∣∣∣h(i)

∣∣∣
)−1 ∑n

t=1 K
(
xi−Xt;h

(i)
)
Ψxi

(
Yt−µθ

(
xi

)
−µ

)

Lemma 2.6 In addition to the assumptions of lemma 2.5 assume µθ

(
xi

)
is continuous,

then we have for any compact Gn ⊆ Rd, Θn ⊆ R

sup
xi∈Gn

sup
µ∈Θn

∣∣∣Hn

(
xi, µθ

(
xi

)
+ µ

)
− E

[
Hn

(
xi, µθ

(
xi

)
+ µ

)]∣∣∣ = O
(
S̃
− 1

2
n

)
a.s.

Proof of lemma 2.6
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As µθ

(
xi

)
is continuous, Θ̃n =

{
ν = µθ

(
xi

)
+ µ,xi ∈ Gn, µ ∈ Θn

}
is compact too.

Therefore

sup
xi∈Gn

sup
µ∈Θn

∣∣∣Hn

(
xi, µθ

(
xi

)
+µ

)
−E

[
Hn

(
xi, µθ

(
xi

)
+µ

)]∣∣∣ ≤ sup
xi∈Gn

sup
ν∈eΘn

∣∣∣Hn

(
xi, ν

)
−E

[
Hn

(
xi, ν

)]∣∣∣.

Hence, the assertion follows from lemma 2.5. ¤

Lemma 2.7 Under assumptions (A1)-(A3) and (K1)-(K3), we have

sup
xi∈Gn

sup
µ∈Θn

∣∣∣E
[
Hn

(
xi, µθ

(
xi

)
+ µ

)]
−H

(
xi, µθ

(
xi

)
+ µ

)∣∣∣ = O
(∣∣∣

∣∣∣h(i)
∣∣∣
∣∣∣
2)

Proof of lemma 2.7

Since the bias term does not depend on probability distribution of the time series
{

Yt,Xt

)}n

t=1
,

it can be treated exactly as in the independent case. Its manipulation is based on Taylor

expansion of E
[
Ψxi

(
Yt − µθ

(
xi

)
− µ

)∣∣∣Xt = x
]

up to order two (say),

∣∣∣E
[
Hn

(
xi, µθ

(
xi

)
+ µ

)]
−H

(
xi, µθ

(
xi

)
+ µ

)∣∣∣ ≤ c5

∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2

for some 0 < c5 < ∞,

(2.3.2.13)

uniformly for xi ∈ Gn and µ ∈ Θn, c.f lemma 2.2 and also see Haerdle and Luckhaus

[57]. For the constant on the right hand of (2.3.2.13), we have assumed that

supxi
supµ∈Θ

∣∣∣∇2E
[
Ψxi

(
Yt − µθ

(
xi

)
− µ

)∣∣∣Xt = xi

]∣∣∣ ≤ c5 < ∞
¤

Proof of theorem 2.4

Observe that for n →∞, lemmas 2.4,2.5 and 2.6 and the fact that by lemma 2.7 the bias

sup
xi∈Gn

∣∣∣E
[
Hn

(
xi, µθ

(
xi

)
+ µ

)]
−H

(
xi, µθ

(
xi

)
+ µ

)∣∣∣ → 0 as n →∞, (2.3.2.14)

imply that under conditions (A1)-(A3),(K1)-(K3),(E2),(Q1)-(Q2) and S̃n → ∞ as n →
∞, we have

supxi∈Gn

∣∣∣Hn

(
xi, µθ

(
xi

)
+ µ

)
−H

(
xi, µθ

(
xi

)
+ µ

)∣∣∣ → 0 as n →∞ a.s. and

sup
xi∈Gn

∣∣∣ĝ
(
xi

)
− g

(
xi

)∣∣∣ → 0 as n →∞ a.s (2.3.2.15)
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Hence, by the remarks following (2.3.2.7),

sup
xi∈Gn

∣∣∣H̃n

(
xi, µθ

(
xi

)
+ µ

)
− H̃

(
xi, µθ

(
xi

)
+ µ

)∣∣∣ → 0 as n →∞ a.s. (2.3.2.16)

Using a similar technique as in Collomb and Haerdle [29], fix ε > 0. The strict

monotonicity28 of E
[
Ψx

]
and positivity of g on Gn imply ∀xi ∈ Gn H̃

(
xi, µθ

(
xi

)
−ε

)
<

0 < H̃
(
xi, µθ

(
xi

)
+ ε

)
. The convergence in (2.3.2.16) implies that for all sufficiently

large n, ∀xi ∈ Gn H̃n

(
xi, µθ

(
xi

)
− ε

)
< 0 < H̃n

(
xi, µθ

(
xi

)
+ ε

)
a.s. and by the

definition (2.3.2.3), the positivity of the weights, and the monotonicity of H̃n in µ we have

∀xi ∈ Gn µθ

(
xi

)
− ε < µ̂θ

(
xi

)
< µθ

(
xi

)
+ ε, which can be written as

sup
xi∈Gn

∣∣∣µ̂θ

(
xi

)
− µθ

(
xi

)∣∣∣ → 0 a.s. as n →∞. (2.3.2.17)

Also observe that lemmas 2.6 and 2.7 and the Borel-Cantelli lemma show that under the

additional conditions, using also S−1
n ≤ S̃

1
2
n by definition of Sn,

supxi∈Gn
supµ∈Θn

∣∣∣Hn

(
xi, µθ

(
xi

)
+ µ

)
−H

(
xi, µθ

(
xi

)
+ µ

)∣∣∣ = O
(
Sn

)
and therefore,

with (2.3.2.15), we have

sup
xi∈Gn

sup
µ∈Θn

∣∣∣H̃n

(
xi, µθ

(
xi

)
+ µ

)
− H̃

(
xi, µθ

(
xi

)
+ µ

)∣∣∣ = O
(
Sn

)
. (2.3.2.18)

The definition of µθ

(
xi

)
and µ̂θ

(
xi

)
shows that for all xi ∈ Rd, we have

H̃n

(
xi, µ̂θ

(
xi

))
− H̃

(
xi, µ̂θ

(
xi

))
= H̃

(
xi, µθ

(
xi

))
− H̃

(
xi, µ̂θ

(
xi

))
.

A Taylor expansion of H̃
(
xi, .

)
= Fxi

(
.
)
− θ gives

H̃n

(
xi, µ̂θ

(
xi

))
− H̃

(
xi, µ̂θ

(
xi

))
= −

(
µ̂θ

(
xi

)
− µθ

(
xi

))
fxi

(
µ̃θ

(
xi

))
, (2.3.2.19)

where µ̃θ

(
xi

)
is between µθ

(
xi

)
and µ̂θ

(
xi

)
. Using result (2.3.2.17) and for n0

sufficiently large, we have supxi∈Gn

∣∣∣µ̂θ

(
xi

)
− µθ

(
xi

)∣∣∣ → 0, i.e µ̂θ

(
xi

)
− µθ

(
xi

)
∈ Θn

a.s. ∀n ≥ n0. From condition (Q4), we have infxi∈Gn

d
dµ

E
[
Ψxi

(
Yt − µ̃θ

(
xi

))∣∣∣Xt =

xi

]
infxi

fxi

(
µ̃θ

(
xi

))
≥ c0 > 0 a.s. and

sup
xi∈Gn

∣∣∣H̃n

(
xi, µ̂θ

(
xi

))
−H̃

(
xi, µ̂θ

(
xi

))∣∣∣ ≤ sup
xi∈Gn

sup
µ∈Θn

∣∣∣H̃n

(
xi, µθ

(
xi

)
+µ

)
−H̃

(
xi, µθ

(
xi

)
+µ

)∣∣∣.
(2.3.2.20)

28It is monotone and right continuous.
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Using (2.3.2.19) in (2.3.2.20), we get

sup
xi∈Gn

∣∣∣µ̂θ

(
xi

)
− µθ

(
xi

)∣∣∣ ≤ c−1
0 sup

xi∈Gn

sup
µ∈Θn

∣∣∣H̃n

(
xi, µθ

(
x
)

+ µ
)
− H̃

(
xi, µθ

(
x
)

+ µ
)∣∣∣

= O
(
Sn

)
, by (2.3.2.18). (2.3.2.21)

This completes the proof.

¤

Note that the difference F̂xi

(
y
)
−Fxi

(
y
)

= H̃n

(
xi, y

)
− H̃

(
xi, y

)
and hence the rate

of convergence of the former expression is implied by the latter one.

2.4 Scale function in QAR−QARCH

This section derives results on consistency and asymptotic normality for various scale

functional value estimators for the process given in (1.4.0.2). The results are based on

prior knowledge of the results in section (2.1) and (2.3).

2.4.1 Consistency and asymptotic normality of the estimator in QARCH

We begin by considering only the heteroscedastic part of process (1.4.0.2), while assuming

the QAR, µt,θ = 0. That is we consider

Yt = σt,θZt, t = 1, . . . , n. (2.4.1.1)

where now Mθ

(
Yt

)
= Mθ

(
Yt, 0

)
. Observe that (2.4.1.1) can be written in terms of

additive29 noise as follows

Mθ

(
Yt

)
= σt,θ + σt,θ

(
Mθ

(
Zt

)
− 1

)
(2.4.1.2)

where the last term on the right hand can be considered stationary with zero condi-

tional θ-quantile. It then follows that Qt,θ

(
Mθ

(
Yt

))
= σt,θ. Thus , σt,θ can be obtained

as a solution to the equation, P
(
Mθ

(
Yt

)
− σ ≤ 0

∣∣∣Xt = x
)

= θ, where we assume

σ : Rd → R+ to be a smooth but unknown nonparametric function at point x. At a fixed

29See chapter 3 for more formulations.
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θ and a fixed point xi ∈ Rd the kernel estimator, σ̂θ

(
xi

)
, of σθ

(
xi

)
will be defined as

a solution to the equation F̂xi

(
σ
)

= θ. Hence we only need to estimate the conditional

distribution of Mθ

(
Yt, 0

)
at point y given xi, and obtain the scale function estimator as

the inverse, σ̂θ

(
xi

)
= F̂−1

xi

(
θ
)
. Since the error term in (2.4.1.2) has a zero conditional

θ-quantile, the stochastic process (2.4.1.2) can be modelled with the method described in

section 2, by replacing the dependent variable Yt by Mθ

(
Yt

)
. The following theorem es-

tablishes consistency and asymptotic normality of the conditional scale function estimator

when µt,θ = 0.

Theorem 2.6 Let Fxi

(
y
)

be the conditional distribution function of Mθ

(
Yt, 0

)
given

Xt = xi. In model (2.4.1.1), assume conditions (B1)-(B5),(C1)-(C6), (D1)-(D2) and

(E1) and that (1.4.0.3) and (1.4.0.4) hold. Then

σ̂θ

(
xi

)
− σθ

(
xi

)
→p 0 in probability (2.4.1.3)

In addition, if conditions (C7) are satisfied, then

(
n
∣∣∣h(i)

∣∣∣
) 1

2
(
σ̂θ

(
xi

)
− σθ

(
xi

)
−B

(
σθ

(
xi

))
+ op

(∣∣∣
∣∣∣h(i)

∣∣∣
∣∣∣
2))

→D N


0,

V2
(
σθ(xi)

)

f 2
xi

(
σθ

(
xi

))



(2.4.1.4)

where the bias B
(
σθ

(
xi

))
and V2

(
σθ

(
xi

))
are as defined in theorem 2.2 and lemma 2.1

respectively.

The prove of theorem 2.6 proceeds in the same lines as the prove of theorem 2.2 with

an initial estimator of a consistent conditional distribution function as in theorem 2.1.

If the errors et, in (1.1.1.1), are symmetrically distributed, the relationship between the

conditional distribution function of Mθ

(
Yt

)
given Xt = xi and Yt given Xt = xi at a

fixed θ = 0.5, becomes P
(
M0.5

(
Yt

)
≤ σ0.5

(
xi

)∣∣∣xi

)
= 2P

(
Yt ≤ σ0.5

(
xi

)∣∣∣xi

)
− 1 = 0.5,

by lemma 1.3. This implies the conditional median absolute deviation, σ0.5

(
xi

)
, can be

estimated by µ̂0.75

(
xi

)
, when the conditional median is zero.
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2.4.2 Consistency of the scale function estimator in QAR−QARCH

Consider again (1.4.0.2). When the QAR, µt,θ, is unknown, modeling the heteroscedas-

ticity part can be based on the estimated residuals after removing the effect of the µt,θ

component. In the mean-variance models or in time series AR − ARCH model, Engle

[40] and Koenker and Zhao [76], have carried out the study in two stages: In the former

the first step involves estimating the mean component by least squares and computing

the residuals and then estimating the ARCH part by regressing the squared residuals on

the lagged squared residuals. The latter paper also studies the asymptotic behaviour of

quantile regression estimator when applied to the estimated absolute residuals in (1.4.1.2).

In this subsection we will present the consistency and asymptotic normality results of the

kernel estimator of σθ

(
Xt

)
, at xi, when applied to the residuals in model (1.4.0.2). Our

first step involves estimating the µθ

(
xi

)
as in section (2.1) and computing the residuals.

In the second step, we pass the residuals through the loss function Mθ. Finally, we es-

timate the function by applying the methods in section 2.1 to the transformed residuals

conditional on Xt.

In section (2.1), it was proved that µ̂θ

(
xi

)
is

(
n
∣∣∣h(i)

∣∣∣
) 1

2
-consistent estimator for µθ

(
xi

)
.

Let µ̂θ

(
Xt

)
be the estimated conditional θ-quantile of Yt on Xt at point

(
y,xi

)
and

define the residuals as
(
Yt− µ̂θ

(
Xt

))
. First note that the consistency of µ̂θ

(
Xt

)
implies

that µ̂θ

(
Xt

)
= µθ

(
Xt

)
+ δn with δn = O

((
n
∣∣∣h(i)

∣∣∣
)−1)

> 0, which is constant for fixed

n. The estimated residuals can then be written as

Yt − µ̂
(
Xt

)
= σθ

(
Xt

)
Zt − δn and the transformed ones, which we denote as R̂t, as

R̂t = Mθ

(
Yt − µ̂θ

(
Xt

)
, 0

)
= Mθ

(
σθ

(
Xt

)
Zt − δn, 0

)
. (2.4.2.1)

Let

Rt = Mθ

(
Yt − µθ

(
Xt

)
, 0

)
(2.4.2.2)

be the true residuals, where µθ

(
Xt

)
is known . The estimator of the conditional distri-

bution can be written as

F̂xi

(
r
′
)

=
(
n
∣∣∣h(i)

∣∣∣
)−1

n∑
t=1

wt

(
xi

)
I{ bRt≤r′}, (2.4.2.3)

where wt

(
xi

)
is defined as in (2.3.2.2) and r

′
is fixed real-valued on R+ in the neigh-
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borhood of r, based on (2.4.2.2). For the asymptotic properties of F̂xi

(
r
′
)

and subse-

quent properties of the scale function estimator, we will deal with r instead of r
′
. In

this case we make use of the uniform convergence and express R̂t in terms of Rt as

R̂t = R̂t − Rt + Rt = Rt + δn, now with δn = O
(
Sn

)
being the bound of the error. Ob-

serve that the indicator function I{Rt≤r} implies I{Rt+δn≤r+δn} = I{ bRt≤r+δn}. For n → ∞,

(2.4.2.1) and (2.4.2.3) suggest that the conditional distribution estimator of R̂t on Xt is

consistent with bias of similar form as in the zero conditional θ-quantile case. Theorem 2.7

below gives the consistency and asymptotic normalitiy of the conditional scale function

estimator as the inverse of (2.4.2.3) at a fixed θ.

Theorem 2.7 Suppose conditions (B1)-(B5), (C1)-(C7),(D1)-(D2), (E1) and (1.4.1)

hold for y = r ∈ R+, then under conditions of theorem 2.4

(
n
∣∣∣h(i)

∣∣∣
) 1

2

(
σ̂θ

(
xi

)
− σθ

(
xi

)
− B

(
σθ

(
xi

))
−O

(
Sn

(
n
∣∣∣h(i)

∣∣∣
)− 1

2
)
fxi

(
σθ

(
xi

)))

→D N

(
0,

V2
(
σθ

(
xi

))

fxi

(
σθ

(
xi

))
)

(2.4.2.4)

where the conditional density functions, fxi

(
.
)
, are based on appropriate(response)

random variables.

Proof of theorem 2.7

We first proof that F̂xi

(
r
′
)

is a consistent estimator for Fxi

(
r
)
. Let r

′
= r+O

(
Sn

)
with

O
(
Sn

)
→ 0 as n →∞. Then by lemma 2.3,

F̂xi

(
r
′
)
− Fxi

(
r
)

= F̂xi

(
r
)
− Fxi

(
r
)

+ O
(
Sn

)
fxi

(
r
)

(2.4.2.5)

and taking expectation on both sides and making use of lemma 2.2, it results in the bias

E
[
F̂xi

(
r
′
)
− Fxi

(
r
)]

= Bn

(
r
)

+ O
(
Sn

)
fxi

(
r
)

(2.4.2.6)

In similar lines as in lemma 2.2, we obtain the variance as
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var
[
F̂xi

(
r
′
)
− Fxi

(
r
)]
∼

(
n
∣∣∣h(i)

∣∣∣
)−1

V2
(
r
)

(2.4.2.7)

where var
[
F̂xi

(
r
)
− Fxi

(
r
)]

is obtained from lemma 2.2. In both the bias and

variance, terms of smaller order in probability have been left out. Because Bn

(
r
)

is of

order O
(∣∣∣

∣∣∣h(i)
∣∣∣
∣∣∣
2)

, the mean squared error is seen to go to zero as n goes to infinity and

hence F̂xi

(
r
′
)
→ Fxi

(
r
)

in probability with a rate which implies F̂xi

(
r
′
)

is consistent.

To show that

(
n
∣∣∣h(i)

∣∣∣
) 1

2
(
F̂xi

(
r
)
− Fxi

(
r
)
−Bn

(
r
)
−O

(
Sn

(
n
∣∣∣h(i)

∣∣∣
)− 1

2
)
fxi

(
r
))

(2.4.2.8)

is asymptotically normal, we proceed as in theorem 2.1, by replacing var
[
F̂xi

(
y
)]

by the

estimated variance, var
[
F̂xi

(
r
′
)]

. Finally, to proof that the left hand side of (2.4.2.4)

is asymptotically normally distributed with mean zero, we note that by Krishnaiah [78],

supr∈R

∣∣∣F̂xi

(
r
)
−Fxi

(
r
)∣∣∣ → 0, in probability. The uniqueness assumption of σθ

(
xi

)
, for

any fixed xi ∈ Rd, implies that there exist a ε > 0 and δ
(
ε
)
, such that

P
{∣∣∣σ̂θ

(
xi

)
− σθ

(
xi

)∣∣∣ > ε
}
≤ P

{
Fxi

(
σ̂θ

(
xi

))
− Fxi

(
σθ

(
xi

))∣∣∣ > δ
}

≤ P
{

sup
r

∣∣∣F̂xi

(
r
)
− Fxi

(
r
)∣∣∣ > δ

}
(2.4.2.9)

which goes to zero by above argument. At the same time O
(
Sn

)
goes to zero, from

theorem 2.4. Lastly, observe that since F̂xi

(
r
′
)

is asymptotically normally distributed, so

is F̂xi

(
σ̂θ

(
xi

))
and hence using the same arguments again as in theorem 2.2, we arrive

at (2.4.2.4) with the specified quantities. ¤

Note that equation (2.4.2.5) shows that under conditions of theorem 2.4, with Yt

replaced by Mθ

(
Yt − µ̂θ

(
Xt

)
, 0

)
, F̂xi

(
r
′
)

converges uniformly over xi ∈ Gn, i.e

sup
xi∈Gn

∣∣∣F̂xi

(
r
′
)
− Fxi

(
r
)∣∣∣ = sup

xi∈Gn

∣∣∣F̂xi

(
r
)
− Fxi

(
r
)∣∣∣ + O

(
Sn

)

= O
(
S
′
n

)
+ O

(
Sn

)
a.s.

where S
′
n, apart from the bandwidths, is of the same form as Sn. Further, equations

(2.3.2.20) and (2.3.2.21) shows that supxi∈Gn

∣∣∣σ̂θ

(
xi

)
− σθ

(
xi

)∣∣∣ = O
(
S
′
n + Sn

)
.
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Suppose F (2) is the conditional distribution of Mθ

(
Yt, µθ

(
Xt

))
at point xi and F (1) the

conditional distribution of Yt at point xi. Then as in remark of theorem 2.6, observe that

for a symmetric F (1) and θ = 0.5

F (2)
xi

(
σ0.5

(
xi

))
= 2F (1)

xi

(
µ0.5

(
xi

)
+ σ0.5

(
xi

))
− 1 = 0.5

and Fxi

(
µ0.5

(
xi

)
+ σ0.5

(
xi

))
= 0.75 implies µ0.5

(
xi

)
+ σ0.5

(
xi

)
= µ0.75

(
xi

)
. The

estimator of σ0.5

(
xi

)
can be obtained as σ̂0.5

(
xi

)
= µ̂0.75

(
xi

)
− µ̂0.5

(
xi

)
.

To assess the performance of σ̂θ

(
xi

)
, just as µ̂θ

(
xi

)
, use its asymptotic mean squared

error (AMSE). Using theorem 2.7 and equal bandwidths, only for brevity,

AMSE
(
σ̂θ

(
xi

))
= B2

1

(
σθ

(
xi

))
+

V2
(
σθ

(
xi

))

nhdf 2
xi

(
σθ

(
xi

)) (2.4.2.10)

where B1

(
σθ

(
xi

))
= B

(
σθ

(
xi

))
+ O

(
Sn

)
fxi

(
σθ

(
xi

))
. The optimal bandwidth can be

choosen such that the AMSE
(
σ̂θ

(
xi

))
is minimum.

The estimator of the QAR obtained from the conditional distribution can be con-

sidered as an estimator of conditional θ-quantile using the kernel based method of the

implicit equation in Huber [67]. If we consider a minimization problem involving the

kernel estimator for the loss function (1.1.2.1), we immediately note that the explicit

equation is

Hn

(
xi, µ

)
= F̂xi

(
µ
)
− Fxi

(
µθ

(
xi

))

= −ĝ−1
(
xi

)(
n
∣∣∣h(i)

∣∣∣
)−1

n∑
t=1

K
(
Xt − xi;h

(i)
)(

I{Yt−µ≤0} − Fxi

(
µθ

(
xi

)))

which is measurable in
(
Yt,Xt

)
and monotonically decreasing in µ. The equation also

satisfies further assumptions on page 49 of Huber [67]. If we are interested in the consis-

tency and asymptotic normality for
(
n
∣∣∣h(i)

∣∣∣
) 1

2
(
µ̂θ

(
xi

)
−µθ

(
xi

))
or

(
n
∣∣∣h(i)

∣∣∣
) 1

2
(
σ̂θ

(
xi

)
−

σθ

(
x
))

in the case of zero conditional θ-quantile, we only have to impose a few assump-

tions for dependent data and then directly show the estimator to be consistent and asymp-

totically normal using some standard rules. In the case of unknown conditional θ-quantile,
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and using explicit equations, the sandwich theorem, corollary 3.2 in Huber [67], continues

to apply so long as the additional set of assumptions on page 131 are met. The advantage

here is that the asymptotic properties of the simultaneous conditional θ-quantile and scale

function could be carried out and investigated using again some prespecified rules.

2.5 Alternative methods

It is known that the Nadaraya-Watson estimator of the conditional distribution, can be

considered as a local constant estimator obtained by the least square method. It has poor

behaviour at the boundaries for unbalanced design matrix among other disadvantages,

see Fan et al. [46]. The estimation could be improved by using either of the alternative

methods described below.

(1) The first alternative is to use the Weighted Nadaraya-Watson estimator of the condi-

tional distribution proposed in Hall et al. [62]. The conditional distribution estimator at

the design point xi, can be written as

F̂xi

(
y
)

=

∑n
t=1 Pt

(
xi

)
K

(
Xt − xi;h

(i)
)
I{Yt≤y}

∑n
t=1 Pt

(
xi

)
K

(
Xt − xi;h(i)

)

where the weight function Pt

(
xi

)
at point xi is such that Pt

(
xi

)
> 0,

∑n
t=1 Pt

(
xi

)
= 1 and

(
n
∣∣∣h(i)

∣∣∣
)−1

n∑
t=1

(
Xt − xi

)
Pt

(
xi

)
K

(
Xt − xi;h

(i)
)

= 0 (2.5.0.11)

The Pt

(
xi

)
is choosen such that

∑n
t=1 log

(
Pt

(
xi

))
is minimized subject to the con-

straints
∑n

t=1 Pt

(
xi

)
= 1 and (2.5.0.11) through the Langrange multiplier rule. Then{

Pt

(
xi

)}
is given as

Pt

(
xi

)
= n−1

{
1 + λ

(∣∣∣h(i)
∣∣∣
)−1

K
(
xi −Xt;h

(i)
}−1

where λ, which is a function of the data and design point xi, is uniquely defined by

(2.5.0.11). For detailed set up, we make reference to the above mentioned paper.
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(2) The second method is based on local polynomial approximation and extends a local

constant fit to a local linear estimator of the conditional distribution, see Yu and Jones

[114]. Its motivation lies on the fact that any smooth function can locally be expanded

into a Taylor series around a point, say xi in a compact subset Gn ⊂ Rd. Consider the

conditional mean regression curve µ
(
Xt

)
= E

[
Yt

∣∣∣Xt

]
, as an example. If we assume that

the pth derivative exist at point xi, then µ
(
Xt

)
can be expressed as a local polynomial of

degree p− 1 centered around xi as

µ
(
Xt

)
=

p−1∑
j=0

βj

(
xi

)(
Xt − xi

)j

+ Rem
(
Xt

)

for Xt sufficiently close to xi, where βj

(
xi

)
= 1

j!

djµ

(
Xt

)

dXj
t

∣∣∣
Xt=xi

=
µ(j)

(
xi

)

j!
, j = 1, 2, . . . , p−

1 and Rem
(
Xt

)
is the remainder term consisting of terms with derivative greater than

p − 1. The local polynomial approximation is then given by disregarding the remainder

term,

µ
(
Xt

)
≈

p−1∑
j=0

βj

(
xi

)(
Xt − xi

)j

For practical purpose, the polynomial is usually restricted to degree 1, i.e. local linear.

The estimation of conditional density and its derivatives with local quadratic for strictly

stationary process is investigated in Fan et al. [47], where a double-kernel idea is proposed.

Let K̃ be a kernel function (a nonnegative density function) , then as h̃ → 0, E
[
K̃eh

(
Yt−

y
)∣∣∣Xt

]
≈ f̃Xt

(
y
)

where the left hand side can be regarded as the regression of K̃eh

(
Yt−y

)

on Xt. It can be seen that the Taylor series expansion about xi =
(
xt,1, . . . ,xt,d

)T

yields

E
[
K̃eh

(
Yt − y

)∣∣∣Xt

]
≈ f̃xi

(
y
)

+∇f̃xi

(
y
)(

Xt − xi

)T

+
1

2

(
Xt − xi

)T

∇2f̃xi

(
y
)(

Xt − xi

)

≡ β0

(
xi

)
+ β1

(
xi

)T (
Xt − xi

)
+ β2

(
xi

){(
Xt − xi

)(
Xt − xi

)T }

The estimators are then given by
̂̃
fxi

(
y
)

= β̂0

(
xi

)
and ∇̂̃

fxi

(
y
)

= β̂1

(
xi

)
which

are solutions of a convex loss function. In similar approach local linear double-kernel

smoothing can be used in the context of conditional quantile estimation, see Yu and

Jones [114], for the asymptotic properties of the resulting estimators in the case of scalar

design variable and iid data including the bandwidth choice. If K̃ is the second kernel
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function, the corresponding cdf is given as F̃
(
v
)

=
∫ v

−∞ K̃
(
u
)
du. For observation Yt, we

have
∫ y

−∞ K̃eh

(
Yt − v

)
dv = F̃

(
y−Yt

eh

)
and as h̃ → 0 we have the conditional expectation

giving E
[
F̃

(
y−Yt

eh

)∣∣∣Xt

]
≈ F̃Xt

(
y−Yt

eh

)
and therefore the local linear approximation at xi

becomes

F̃Xt

(
y
)
≈ F̃xi

(
y
)

+∇F̃xi

(
y
)(

Xt − xi

)T

+
1

2

(
Xt − xi

)T

∇2F̃xi

(
y
)(

Xt − xi

)

This motivates a local linear regression estimator of the conditional distribution at

point xi as

F̂h(i),eh

(
y
∣∣∣xi

)
= β̂0

(
xi

)

where

(
β̂0

(
xi

)
, β̂1

(
xi

))
= arg min

β0,β1

{(
n
∣∣∣h(i)

∣∣∣
)−1

n∑
t=1

[
F̃

(y − Yt

h̃

)
−β0−β1

(
Xt−xi

)]2

K
(
Xt−Xt;h

(i)
)}

The conditional θ-quantile estimator is then obtained as the inverse of the estimated

distribution, µ̂θ

(
xi

)
= F̂−1

h(i),eh

(
θ
∣∣∣xi

)
, if µ̂θ

(
xi

)
is uniquely defined. The asymptotics in

Yu and Jones [114] holds also for the scale functions based on zero conditional θ-quantile

for iid data. It would also be interesting to apply the double kernel method in the case of

non-zero conditional θ-quantile, as was done in subsection 2.4.2, in the case of Nadaraya-

Watson estimator. We must also point out that there has not been attempts to use the

distributional based local polynomial to estimate the conditional θ-quantile function for

the time series data. However, we do not discuss this further but leave it for future

research prospects.

2.6 Conclusion

In this chapter, we derived the QAR estimator by inverting conditional distribution func-

tion estimator. It has been shown that the estimator is consistent and asymptotically

normally distributed and that, under suitable conditions, it converges uniformly with an

appropriate rate. We have derived the scale function estimator by inverting conditional

distribution estimator. The consistency and asymptotic normality for the estimators

based on both known and unknown QAR have also been established.
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3 Direct estimation method

In this chapter, we present results based on direct estimation of the scale (or QAR)

function, using direct minimization of a loss function. In section (3.1) various forms of

the estimators which could be derived from model (1.4.0.2) are outlined. Section (3.2)

treats the estimation as a local constant problem and presents consistency and asymptotic

normality for the estimator. In section (3.3) we base the estimation of the scale function on

local polynomials, which also provides estimators for the derivative of the scale function.

The consistency of the scale estimate is provided through the work in Honda [65]. The rest

of the sections in the chapter provide numerical comparison results and proposes a method

for standardizing the scale function. Lastly, we extend the approach to nonparametric

GQARCH type models similar to GARCH models.

Throughout we will assume equal bandwidths, for simplicity, and concentrate on the

modeling scale function.

3.1 The estimators

For intuitive understanding make reference to quantile-scale model (1.4.0.2). We can

estimate µt,θ and σt,θ such that the following equation is simultaneously satisfied,

P
(
Yt ≤ µt,θ

∣∣∣Xt = x
)

= P
(
Mθ

(
Yt, µt,θ

)
≤ σt,θ

∣∣∣Xt = x
)

= θ (3.1.0.12)

The second equation is just another way of expressing that σt,θ is the conditional scale

function of the variable Yt. The structure of model (1.4.0.2), provides various estimating

directions: A two stage procedure can be used to estimate σt,θ by first obtaining the

consistent estimator of µt,θ, as in chapter 2, which is then substituted in the second part

of (3.1.0.12) to derive the estimate of σt,θ nonparametrically. Note that Mθ

(
Yt, µt,θ

)
=

σt,θMθ

(
Zt, 0

)
and observe the following alternatives for estimating σt,θ.

Write
1

σt,θ

Mθ

(
Yt, µt,θ

)
= 1 + Zt,1 (3.1.0.13)

where Zt,1 = Mθ

(
Zt, 0

)
−1 has zero θ-quantile. This leads to an asymmetric least absolute
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deviations estimator of σt,θ,

σ1 = arg min
σ

n∑
t=1

Kh

(
xi −Xt

)
Mθ

( 1

σ
Mθ

(
Yt, µt,θ

)
, 1

)
(3.1.0.14)

where Kh

(
u
)

= 1
hp K

(
u;h

)
and σ ∈ R+.

The second estimator is motivated by the regression equation

Mθ

(
Yt, µt,θ

)
= σt,θ + Zt,2 (3.1.0.15)

where Zt,2 = σt,θ

(
Mθ

(
Zt, 0

)
− 1

)
, which also has zero θ-quantile. The asymmetric abso-

lute least deviations estimator is then obtained as

σ2 = arg min
σ

n∑
t=1

Kh

(
xi −Xt

)
Mθ

(
Mθ

(
Yt, µt,θ

)
, σ

)
(3.1.0.16)

Our third absolute deviations estimator is motivated by the regression relationship

log
(
Mθ

(
Yt, µt,θ

))
= log

(
σt,θ

)
+ Zt,3 (3.1.0.17)

where Zt,3 = log
(
Mθ

(
Zt, 0

))
again has zero θ-quantile. The asymmetric least absolute

deviation estimator for log
(
σt,θ

)
is defined by

ς̂ = arg min
ς

n∑
t=1

Kh

(
xi −Xt

)
Mθ

(
log

(
Mθ

(
Yt, µt,θ

))
, ς

)
(3.1.0.18)

where the estimator for σt,θ is exp
(
ς̂
)
. We consider all the errors Zt,1, Zt,2 and Zt,3 as

stationary time series and (3.1.0.13),(3.1.0.15) and (3.1.0.17), as general nonparametric

quantile regression problems. However, we will later base our estimation on (3.1.0.17).

The reason is two fold: First, because of its intuitive conformation with the common

assumptions underlying regression models, i.e the error Zt,3 are iid. Secondly, the fact

that the unknown function is on R implies the properties of the loss function would be

identical to the one we would have used for estimating the the QAR of Yt and thus avoiding

repetitions. Whereas considering (3.1.0.14) with also iid Zt,1 leads to a more complicated

function to minimize, and we would have to study it separately. On the contrary, the

errors in (3.1.0.15) are clearly not independent and therefore some additional weights

reflecting the dependence would need to be incorporated on to the weight function. At
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the same time the unknown function σ is only defined on R+. However, we would like to

remark that the structure of the model (1.4.0.2) also allows direct estimation of σ2
t,θ in all

the alternatives. For instance the square would motivate the regression of the form

1

σ2
t,θ

M2
θ

(
Yt, µt,θ

)
= 1 + Z2

t,1

where Z2
t,1 =

(
M2

θ

(
Zt, 0

)
− 1

)
which still has zero θ-quantile. The estimator is then

obtained as

σ2
1 = arg min

σ

n∑
t=1

Kh

(
xi −Xt

)
Mθ

( 1

σ
M2

θ

(
Yt, µt,θ

)
, 1

)

which is just the square of the estimator obtained in (3.1.0.14). We will assume throughout

the following section that Yt has zero conditional θ-quantile, µt,θ and we write Ỹt =

log
(
Mθ

(
Yt, 0

))
.

3.2 Local constant estimator of the scale function

Now, we consider the transformed data Ỹt which satisfy the QAR-model

Ỹt = σt,θ + Zt, t = 1, 2, . . . , (3.2.0.19)

where Zt = Zt,3 are as defined in the previous section and σt,θ corresponds to log
(
σt,θ

)

in model (1.4.0.2), i.e σt,θ = exp(ςt,θ) from the previous section. We assume the quantile

regression function σθ

(
Xt

)
is at least once differentiable and therefore can be expressed as

σθ

(
Xt

)
= σθ

(
xi

)
+ r

(
Xt,xi

)
, for Xt ∈ Rd in the neighborhood of xi ∈ Rd using Taylor

expansion. Here r
(
Xt,xi

)
is the remainder term comprising of terms of derivatives of

σθ

(
xi

)
of order one and higher. In this section we will discard the remainder term and

approximate the quantile regression σθ

(
Xt

)
locally at xi as σθ

(
Xt

)
≈ σ

(
xi

)
. This

reduces the problem to a local constant approximation. We fit the local constant by using

the weighted asymmetric least absolute regression. For xi =
(
xi,1, . . . , xi,d

)
, a point in

Rd and Xt =
(
Xi,1, . . . , Xi,d

)
, we define a local constant estimator for σθ

(
xi

)
as the

minimizer of

n∑
t=1

Kh

(
xi −Xt

)
Mθ

(
Ỹt, σ

)
(3.2.0.20)
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with respective to σ. Denote the estimator of σθ

(
xi

)
as σ̂θ

(
xi

)
= σ̂ and define the true

objective function at point xi ∈ Rd as

Q
(
xi, σ

)
= E

[(
Mθ

(
Ỹt, σ

)
−Mθ

(
Ỹt, 0

))∣∣∣Xt = xi

]
, (3.2.0.21)

where the additional last term ensures that Q
(
xi, σ

)
is finite. To estimate σθ

(
xi

)
, we

define the kernel estimator of Q
(
xi, σ

)
as

Q̂n

(
xi, σ

)
=

1

n

n∑
t=1

Kh

(
xi −Xt

)(
Mθ

(
Ỹt, σ

)
−Mθ

(
Ỹt, 0

))
, (3.2.0.22)

where now (3.2.0.22) replaces (3.2.0.20) . The kernel estimator of σθ

(
xi

)
is then given

by

σ̂θ

(
xi

)
= arg min

σ∈Θn

Q̂n

(
xi, σ

)
(3.2.0.23)

where Θn ⊂ R, is a compact subset of R. The following section derives the consistency

for the estimator σ̂θ

(
xi

)
.

3.2.1 Consistency and asymptotic distribution

Let Qn

(
xi, σ

)
=

∑n
t=1 Kh

(
xi −Xt

)
Q

(
Xt, σ

)
where

Q
(
Xt, σ

)
= E

[(
Mθ

(
Ỹt, σ

)
−Mθ

(
Ỹt, 0

))∣∣∣Xt

]
, is a deterministic function. To show that

σ̂θ

(
xi

)
is weakly consistent to σθ

(
xi

)
, the idea is first to show that Q̂n

(
xi, σ

)
is weakly

consistent to Q
(
xi, σ

)
for all xi. We shall need a few technical properties of Mθ

(
.
)
,

expressed in the following lemmas.

Lemma 3.1 Let
(
y, µ

)
be real-valued random variables and define q

(
y, µ

)
as

q
(
y, µ

)
= Mθ

(
y, µ

)
−Mθ

(
y, 0

)
.

Then for all y, q
(
y, µ

)
is Lipschitz continuous in µ with Lipschitz constant 1, i.e∣∣∣q

(
y, µ

)
− q

(
y, µ

′
)∣∣∣ ≤

∣∣∣µ− µ
′
∣∣∣ for all y, µ, µ

′
.

Proof of lemma 3.1 :
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Note that

q
(
y, µ

)
− q

(
y, µ

′
)

= θ
(
µ
′ − µ

)
−

((
y − µ

)
I{y−µ≤0} −

(
y − µ

′
)
I{y−µ

′≤0}
)
. (3.2.1.1)

For µ < y < µ
′
, we have I{y−µ≤0} = 0, I{y−µ′≤0} = 1, and (3.2.1.1) becomes

q
(
y, µ

)
− q

(
y, µ

′
)

= θ
(
µ
′ − µ

)
−

(
y − µ

′
)

=
(
y − µ

)
−

(
1− θ

)(
µ
′ − µ

)
(3.2.1.2)

For (y − µ
′
) > 0 and (y − µ) > 0, the last two expressions on the right of (3.2.1.2) both

imply

−
(
1− θ

)(
µ
′ − µ

)
≤ q

(
y, µ

)
− q

(
y, µ

′
)
≤ θ

(
µ
′ − µ

)
.

and therefore
∣∣∣q

(
y, µ

)
− q

(
y, µ

′
)∣∣∣ is bounded from above by at least one of θ

(
µ
′ −µ

)

and
(
1 − θ

)(
µ
′ − µ

)
. Similarly, for µ ≤ µ

′
< y and y < µ ≤ µ

′
, we have respectively

I{y−µ≤0} = 0, I{y−µ
′≤0} = 0 implying q

(
y, µ

)
− q

(
y, µ

′
)

= θ
(
µ
′ − µ

)
and I{y−µ≤0} =

1, I{y−µ′≤0} = 1 implying q
(
y, µ

)
− q

(
y, µ

′
)

=
(
1− θ

)(
µ− µ

′
)
. Hence

∣∣∣q
(
y, µ

)
− q

(
y, µ

′
)∣∣∣ ≤ max

(
θ, 1− θ

)∣∣∣µ− µ
′
∣∣∣

≤
∣∣∣µ− µ

′
∣∣∣ (3.2.1.3)

immediately implies the assertion. ¤

Lemma 3.1 implies that the function q
(
y, µ

)
is not only convex, but also continuous

in µ ∈ R. In the case of y ∈ R and u =
(
µ1, µ2, . . . , µd

)
∈ Rd, the lemma continues to

apply. In this case equation (3.2.1.3) becomes q
(
y, u

)
− q

(
y, u

′
)
≤ ∑d

i=1

∣∣∣µi − µ
′
i

∣∣∣ which

is an L1 norm. We will denote the norm as ρ
(
u, u

′
)

and use it whenever it is necessary in

the rest of this chapter. The following lemma will be used to establish the existance and

uniqueness of the minimum, when we take E
[(

q
(
y, µ

)
− q

(
y, 0

))∣∣∣Xt

]
as an objective

function for minimization.

Lemma 3.2 Let q
(
y, µ

)
be defined as in lemma 3.1. Let

(
Yt,Xt

)
∈ R ×Rd with con-

ditional density and quantile functions, of Yt on Xt given as fXt

(
y
)

: R1+d → R and

yθ = yθ

(
Xt

)
respectively. Then
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1.

E
[
q
(
Yt, µ

)∣∣∣Xt

]
− E

[
q
(
Yt, yθ

)∣∣∣Xt

]
=





E
[(

Yt − µ
)
I[µ,yθ]

∣∣∣Xt

]
, : ∀µ ≤ yθ

E
[(

µ− Yt

)
I[yθ,µ]

∣∣∣Xt

]
, : ∀µ ≥ yθ

(3.2.1.4)

2. Let
∣∣∣µ− yθ

∣∣∣ ≥ δ > 0. Then for a suitable lower bound c
(
Xt

)
of fXt

(
y
)

on[
yθ − δ, yθ + δ

]
,

E
[
q
(
Yt, µ

)∣∣∣Xt

]
− E

[
q
(
Yt, yθ

)∣∣∣Xt

]
≥ c

(
Xt

)δ2

2

3. Assume f
(
Xt, y

)
is continuous and positive in the neighborhood of

(
xi, yθ

(
xi

))

and let
∣∣∣µ− yθ

(
xi

)∣∣∣ ≥ δ > 0 for some xi. Then

E
[
q
(
Yt, µ

)∣∣∣Xt = xi

]
− E

[
q
(
Yt, yθ

(
xi

))∣∣∣Xt = xi

]
≥ c

δ2

2
(3.2.1.5)

for some constant c > 0 which is uniform lower bound of fXt

(
y
)

on
[
yθ

(
xi

)
− δ∗

]

for all Xt in a neighborhood around xi and some δ∗ > 0.

Proof of lemma 3.2 :

For part (1), consider first the case when µ < yθ. Then

E
[
q
(
Yt, µ

)∣∣∣Xt

]
− E

[
q
(
Yt, yθ

)∣∣∣Xt

]
=

(
E

[
q
(
Yt, µ

)∣∣∣Xt

]
− E

[
q
(
Yt, yθ

)∣∣∣Xt

])
I{µ≤yθ≤Yt}

+
(
E

[
q
(
Yt, µ

)∣∣∣Xt

]
− E

[
q
(
Yt, yθ

)∣∣∣Xt

])
I{Yt<µ≤yθ}

+
(
E

[
q
(
Yt, µ

)∣∣∣Xt

]
− E

[
q
(
Yt, yθ

)∣∣∣Xt

])
I{µ≤Yt≤yθ}

= θyθI(yθ,∞) +
(
1− θ

)(
µ− yθ

)
I(−∞,µ)

+
(
Yt − θµ−

(
1− θ

)
yθ

)
I[µ,yθ]

= θ
(
yθ − µ

))
I(yθ,∞) −

(
1− θ

)(
yθ − µ

)
I(−∞,yθ)

+
(
Yt − θµ−

(
1− θ

)
yθ

)
+

(
1− θ

)(
yθ − µ

))
I[µ,yθ]

where I is an indicator function with respect to Yt, i.e I(−∞,yθ) = I(−∞,yθ)

(
Yt

)
. The

expectation of the first sum goes to zero as the law of iterated expections gives
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E
[(

yθ − µ
)(

θI(yθ,∞) −
(
1− θ

)
I(−∞,yθ)

)∣∣∣Xt

]

= E
[(

yθ − µ
)
E

[(
θI(yθ,∞) −

(
1− θ

)
I(−∞,µθ)

)∣∣∣Xt

]]

= 0 (3.2.1.6)

The second part is just
(
Yt − µ

)
I[µ,yθ], and the assertion follows for µ ≤ yθ. The

statement for yθ ≤ µ follows completely analogously.

In part (2), observe that, if µ ≤ yθ, we have even µ ≤ yθ − δ. Then using part(1) of this

lemma

E
[
q
(
Yt, µ

)∣∣∣Xt

]
− E

[
q
(
Yt, yθ

)∣∣∣Xt

]

= E
[(

Yt − µ
)
I[µ,yθ]

∣∣∣Xt

]

=

∫ yθ

µ

(
u− µ

)
fXt

(
u
)
du

≥
∫ yθ

yθ−δ

(
u− µ

)
fXt

(
u
)
du

≥ c
(
Xt

) ∫ yθ

yθ−δ

(
u− µ

)
du

≥ c
(
Xt

)
δ
(
yθ − µ− δ

2

)

≥ c
(
Xt

)δ2

2

where for the first inequality, the integrand is assumed to be nonnegative. In the

second inequality, we assumed that fXt

(
u
)
≥ c

(
Xt

)
> 0 for

∣∣∣µ − yθ

∣∣∣ ≤ δ and for the

third one, that yθ − µ ≥ δ. The case when µ ≥ yθ can be delt with analogously.

In the third part, observe that under the given assumption together with condition

(C2) on continuity of g
(
xi

)
, we have that fx

(
y
)
≥ c > 0 for all x, y in the neighborhood

of
(
xi, yθ

(
xi

))
. Therefore, the arguments in the proof of part (2) can be made uniform.

¤

From lemmas 3.1 and 3.2 and the convexity of q
(
y, .

)
, we conclude that the minimum,

arg minµ∈Θn E
[(

q
(
Yt, µ

)
−

(
q
(
Yt, 0

)∣∣∣Xt

]
, in a compact convex subset Θn ⊂ R exists and
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is unique. The results of lemmas 3.1 and 3.2 also applies to the loss function defined in

Chaudhuri [24], i.e for any
(
y, µ

)
as defined above, M̃θ

(
y, µ

)
=

∣∣∣y−µ
∣∣∣+

(
2θ−1

)(
y−µ

)

. This is because for any fixed θ the relationship, Mθ

(
y, µ

)
= 1

2
M̃θ

(
y, µ

)
, holds. In the

following two results, it is shown that the kernel estimator, (3.2.0.22), converges uniformly

in probability to Q
(
xi, σ

)
with respect to σ.

Lemma 3.3 Suppose conditions (B1),(B4),(C2) for g
(
xi

)
> 0 on a compact subset Gn ∈

Rd hold and that the uniform equicontinuity condition ∀ε > 0,∃δ > 0 such that

sup
xi∈Gn

sup
x:|x−xi|≤δ

∣∣∣Q
(
x, σ

)
−Q

(
xi, σ

)∣∣∣ ≤ ε, (3.2.1.7)

is satisfied for all fixed σ. If condition (D1) for hi,j = h hold, then for all xi ∈ Gn and

sufficiently large n, we have

sup
xi∈Gn

∣∣∣E
[
Q̂n

(
xi, σ

)]
−Q

(
xi, σ

)∣∣∣ → 0 (3.2.1.8)

Proof of lemma 3.3

The equicontinuity of the couples
(
Yt,Xt

)
implies that

E
[
Q̂n

(
xi, σ

)]
−Q

(
xi, σ

)
= E

{
Kh

(
xi −Xt

)(
Q

(
Xt, σ

)
−Q

(
xi, σ

))}

=

∫
Kh

(
xi − u

)(
Q

(
u, σ

)
g
(
u
)
−Q

(
xi, σ

))
du

using Bochner’s theorem in Parzen [94] as applied in Collomb and Haerdle [29] completes

the proof. ¤

Let Θn be a compact subset of an open subset Θ of R, then since both E
[
Q̂n

(
xi, σ

)]

and Q
(
xi, σ

)
are Lipschitz continuous functions with respect to σ, it follows from lemma

3.3, see also lemma 2.7, that for each xi ∈ Gn and fixed θ

sup
xi∈Gn

sup
σ∈Θn

∣∣∣E
[
Q̂n

(
xi, σ

)]
−Q

(
xi, σ

)∣∣∣ = O
(
h2

)
(3.2.1.9)

This is clearly seen by taking Taylor expansion of (3.2.1.9) up to the second or-

der and using the symmetric condition (B5), we get
∣∣∣E

[
Q̂n

(
xi, σ

)]
− Q

(
xi, σ

)∣∣∣ ≤
h2

2
a

∫
u2K

(
u
)
du uniformly for xi in Gn and σ in Θn, where

sup
σ∈Θn

sup
xi∈Gn

sup
x∈R

∣∣∣∇2
{
Kh

(
xi −Xt

)
Q

(
Xt, σ

)}∣∣∣ ≤ a < ∞
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and ∇2 is taken with respect to xi.

The following lemma establishes uniform convergence in probability of Q̂n

(
xi, σ

)
to

Q
(
xi, σ

)
.

Lemma 3.4 Suppose conditions in lemma 3.3 hold, then for xi ∈ Gn, Q̂n

(
xi, σ

)
con-

verges to Q
(
xi, σ

)
in probability uniformly on any compact set Θn of R containing σθ

(
xi

)
,

i.e for all ε > 0,

lim
n→∞

P
(

sup
xi∈Gn

sup
σ∈Θn

∣∣∣Q̂n

(
xi, σ

)
−Q

(
xi, σ

)∣∣∣ ≥ ε
)

= 0 (3.2.1.10)

Proof of lemma 3.4

We use the triangle inequality and lemma 3.3:

Q̂n

(
xi, σ

)
− Qn

(
xi, σ

)
+ Qn

(
xi, σ

)
−Q

(
xi, σ

)

≤
∣∣∣Q̂n

(
xi, σ

)
−Qn

(
xi, σ

)∣∣∣ +
∣∣∣Qn

(
xi, σ

)
−Q

(
xi, σ

)∣∣∣
≤ sup

xi∈Gn

sup
σ∈Θn

∣∣∣Q̂n

(
xi, σ

)
−Qn

(
xi, σ

)∣∣∣ + sup
xi∈Gn

sup
σ∈Θn

∣∣∣Qn

(
xi, σ

)
−Q

(
xi, σ

)∣∣∣

= sup
xi∈Gn

sup
σ∈Θn

Q̂n

(
xi, σ

)
+ sup

xi∈Gn

sup
σ∈Θn

Qn

(
xi, σ

)

where then by (3.2.1.9) and for all ε
2

> 0, limn→∞ P
(
supxi∈Gn

supσ∈Θn

∣∣∣Qn

(
xi, σ

)∣∣∣ ≥
ε
2

)
= 0

Next, we show that

P
(

sup
xi∈Gn

sup
σ∈Θn

∣∣∣Q̂n

(
xi, σ

)∣∣∣ ≥ ε

2

)
→ 0, n →∞ (3.2.1.11)

The left hand side of (3.2.1.11) is equivalent to

P
(∣∣∣Q̂n

(
xi, σ

)∣∣∣ >
ε

2
, for some σ

)

= P

( ⋃

supxi∈Gn

∣∣∣σ∈Θn

{∣∣∣Q̂n

(
xi, σ

)∣∣∣ >
ε

2

})

≤
∑
σ∈Θn

P
(
Q̂n

(
xi, σ

)
>

ε

2

)
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Since Θ is not countable, we use the following trivial form:

sup
xi∈Gn

sup
σ∈Θn

∣∣∣Q̂n

(
xi, σ

)∣∣∣

≤ max
k=1,2,...,m(δ)

sup
xi

∣∣∣Q̂n

(
xi, σk

)∣∣∣ + sup
k=1,2,...,m(δ)

sup
|σ−σk|≤δ

sup
xi

∣∣∣Q̂n

(
xi, σk

)
− Q̂n

(
xi, σ

)∣∣∣

where for each σ ∈ Θn, σk denotes the nearest neighbor for σ such that
∣∣∣σ − σk

∣∣∣ ≤ δ

and m(δ) = card
{

σ :
∣∣∣σ − σk

∣∣∣ ≤ δ, k = 1, . . . , n
}

. We have then

P
(

sup
xi∈Gn

sup
σ∈Θn

∣∣∣Q̂n

(
xi, σ

)∣∣∣ >
ε

2

)
≤ P

(
sup

k=1,2,...,m(δ)

sup
xi∈Gn

∣∣∣Q̂n

(
xi, σk

)∣∣∣ >
ε

2

)

+ P
(

sup
xi∈Gn

sup
|σ−σk|≤δ,k=1,2,...,m(δ)

∣∣∣Q̂n

(
xi, σk

)
− Q̂n

(
xi, σ

)∣∣∣ >
ε

2

)

(3.2.1.12)

By lemma 3.1 and condition (B2),

supxi∈Gn
supσ∈Θn

∣∣∣Q̂n

(
xi, σ

′
)
− Q̂n

(
xi, σ

)∣∣∣ ≤ 2K
∣∣∣σ′ − σ

∣∣∣ ≤ 2Kδ,

with probability say, πn → 1, as n → ∞ uniformly in (σ
′
, σ) ∈ Θn. Therefore the

second part on the right of (3.2.1.12) becomes

P
(

sup
xi∈Gn

sup
|σ−σk|≤δ,k=1,2,...,m(δ)

∣∣∣Q̂n

(
xi, σk

)
− Q̂n

(
xi, σ

)∣∣∣ >
ε

2

)
≤ 1− πn

which goes to zero as n →∞. The first part is the same as

P
(

sup
xi∈Gn

∣∣∣Q̂n

(
xi, σk

)∣∣∣ >
ε

2
, for some k

)

≤
m(δ)∑

k=1

P
(

sup
xi∈Gn

∣∣∣Q̂n

(
xi, σk

)
>

ε

2

)

≤ m(δ) max
k

P
(

sup
xi∈Gn

∣∣∣Q̂n

(
xi, σk

)∣∣∣ >
ε

2

)

Following the argument of lemma 3 in Collomb and Haerdle [29], their exist a constant a2

such that P
(∣∣∣Q̂n

(
xi, σk

)∣∣∣ > ε
2

)
≤ a2m(δ)n−3,∀n ∈ N. By choosing m(δ) = n, we obtain

P
(∣∣∣Q̂n

(
xi, σk

)∣∣∣ > ε
2

)
→ 0. This completes the proof.

¤
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The uniform convergence of Q̂n

(
xi, σ

)
with an appropriate rate can be established

using similar arguments as in lemmas 2.5,2.6 and 2.7.

Theorem 3.1 Suppose conditions (B1)-(B6), (C1)-(C2), (D1) and (E1) hold for Ỹt and

σt,θ of model (3.2.0.19). Then σ̂θ

(
xi

)
is weakly consistent, i.e σ̂θ

(
xi

)
→p σθ

(
xi

)
for

each xi ∈ Gn.

Proof of theorem 3.1:

The theorem follows if we can show the following three properties, see corollary 2.6 of

White and Wooldridge [113] in the case of dependent observations and lemma (A) of

Newey and Powell [93] in the case of independent obsrvations:

(1) Q̂n

(
xi, σ

)
converges to Q

(
xi, σ

)
in probability uniformly on any compact set Θn ∈ Θ

containing σθ

(
xi

)
,

(2) Q
(
xi, σ

)
has a unique minimum on Θn at σθ

(
xi

)
,

(3) Q
(
xi, σ

)
is continuous and convex in σ.

Now (1) has been shown in lemma 3.4, whereas (3) follows immediately from lemma

3.1, the definition of Q
(
x, σ

)
and the convexity of Mθ

(
y, σ

)
in σ. It remains to show

(2). Obseve that

E
[
Q̂n

(
xi, σ

)]
− E

[
Q̂n

(
xi, σθ

(
xi

))]

=
1

n

n∑
t=1

E
[
Kh

(
xi −Xt

)
E

[(
Mθ

(
Yt, σ

)
−M

(
Yt, σθ

(
xi

)))∣∣∣Xt

]]

=
1

n

n∑
t=1

E
[
Kh

(
xi −Xt

)(
Q

(
Xt, σ

)
−Q

(
Xt, σθ

(
xi

)))]

From lemma 3.2 part (2), Q
(
Xt, σ

)
− Q

(
Xt, σθ

(
xi

))
≥ c

(
Xt

)
δ2

2
, where c

(
Xt

)
> 0

is the lower bound of fXt

(
y
)

on
[
σθ

(
Xt

)
− δ, σθ

(
Xt

)
+ δ

]
. Therefore, we have, using

stationarity for the second line,
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E
[
Q̂n

(
xi, σ

)]
− E

[
Q̂n

(
xi, σθ

(
xi

))]
≥ 1

n

n∑
t=1

E
[
Kh

(
xi −Xt

)
c
(
Xt

)]δ2

2

= E
[
Kh

(
xi −Xt

)
c
(
Xt

)]δ2

2

≥ c
δ2

2
(3.2.1.13)

for some c > 0 and all sufficiently large n as Kh has support [−h, h] and, therefore, the

expectation runs only over those X1 with
∣∣∣xi −X1

∣∣∣ ≤ h, i.e for X1 arbitrary close to xi

for n →∞. Now, using part (3) of lemma 3.2, the assertion follows. ¤

The fact that Q̂n

(
xi, σ

)
is stricly convex, continuous as a function of σ and bounded

for any two σ
′
s, implies that the minimizer, σ̂θ

(
xi

)
, of Q̂n

(
xi, σ

)
exists uniquely and is

a solution of
d

dσ
Q̂n

(
xi, σ

)
= 0 (3.2.1.14)

Re-arranging equation (3.2.1.14), we immediately note that the bias and asymptotic vari-

ance for σ̂θ

(
xi

)
, are precisely of the same form as those presented in chapter 2, with the

appropriate bandwidth. The asymptotic normality of the estimator, σ̂θ

(
xi

)
, can there-

fore be shown by proceeding in the same lines as in chapter 2. We therefore state the

following theorem without proof.

Theorem 3.2 Suppose conditions (B1)-(B5),(C1)-(C7), (D1)-(D3), (E1) and (1.4.1)

hold for Ỹt. Then we have

(
nhd

) 1
2
(
σ̂θ

(
xi

)
− σθ

(
xi

)
−B

(
σθ

(
xi

)))
∼ N


0,

V2
(
σθ(xi)

)

f 2
xi

(
σθ

(
xi

))

 (3.2.1.15)

where the bias B
(
σθ

(
xi

))
and V2

(
σθ

(
xi

))
are defined in similar forms, with appropriate

bandwidth, as in theorem 2.3 and lemma 2.1 respectively.

3.3 Local polynomial estimator of the scale function

Let λ =
(
λ1, . . . , λd

)
be a d-dimensional vector of nonnegative integers and [λ] =

∑d
j=1 λj.

Let G be some fixed open neighborhood of xi ∈ Rd. For a fixed nonnegative integer p and
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real number c1 and c2 such that c1 > 0 and 0 < c2 ≤ 1, let H
(
c1, p, c2

)
be a collection of

all real valued functions σθ

(
Xt

)
on G such that

(i) ∇λσθ

(
Xt

)
exists and is continuous in Xt for all Xt ∈ G and [λ] ≤ p.

(ii) For any Xt,xi ∈ G and [λ] = p, we have ∇λσθ

(
Xt

)
−∇λσθ

(
xi

)
≤ c1

∣∣∣
∣∣∣Xt − xi

∣∣∣
∣∣∣
c2

for

c2 ≥ 1
2
, where

∣∣∣
∣∣∣.
∣∣∣
∣∣∣ is an Euclidean norm.

Then the functions H
(
c1, p, c2

)
, with the order of smoothness of

(
p + c2

)
at xi =(

xi,1, . . . ,xi,d

)
, are continuously differentiable up to order p on G and their p-th deriva-

tive are uniformly Hoelder continuous at xi with exponent at least 1
2
. We will assume the

conditional θ-quantile of Ỹt on Xt is an element of H
(
c1, p, c2

)
for some fixed c1, p and c2.

Let us now consider a sequence of positive real numbers h = cn−
1

2p+d and let Gn denote a

cube [−h, h]d in Rd. Here h is the bandwidth which depends on n such that as n → ∞,

the cube shrinks and becomes completely contained in open subset G. Henceforth, it is

assumed that n is such that Gn ⊆ G. Let Λ be the set of all d-dimensional vectors λ with

nonnegative integer components such that [λ] < p and denote [Λ] to be the size of of the

set Λ. Given Xt ∈ Rd in the neighborhood of xi, the Taylor expansion of σθ

(
Xt

)
up to

(p− 1)-th order can be written as

σθ

(
Xt

)
=

p−1∑

[λ]=0

∑

λ1+.....+λd=[λ]

σθ,λ1,...,λd

d∏
j=1

h−λj

(
Xt,j − xi,j

)λj − r
(
Xt,xi

)

=

p−1∑

[λ]=0

∑

λ1+.....+λd=[λ]

σθ,λ1,...,λd
h−[λ]

d∏
j=1

(
Xt,j − xi,j

)λj − r
(
Xt,xi

)

=
∑

λ∈Λ

Dθ,λ

(
xi

)
h−[λ]

(
Xt − xi

)λ

− r
(
Xt,xi

)

= Ph

(
Dθ,λ

(
xi

)
,Xt − xi

)
− r

(
Xt,xi

)

≈ Ph

(
Dθ,λ

(
xi

)
,Xt − xi

)
(3.3.0.16)

where Dθ,λ

(
xi

)
=

{
Dθ,λ1,...,λd

(
xi

)
: λ1 + . . . . .+λd = [λ] and [λ] = 0, 1, . . . , p− 1

}

is a [Λ]-dimensional vector of coefficients,
(
Xt−xi

)λ

=
∏d

j=1

(
Xt,j−xi,j

)λj

with the usual

convention 00 = 1. Observe that when Xt = xi, then Ph

(
Dθ,λ

(
xi

)
, 0

)
= Dθ,0,...,0

(
xi

)

and therefore we estimate σθ

(
xi

)
by the local estimator of Dθ,λ

(
xi

)
.

Let D̂θ

(
xi

)
be the minimizer of
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Q̂n

(
xi,D

)
=

n∑
t=1

Kh

(
Xt − xi

)[
Mθ

(
Ỹt, Ph

(
D,Xt − xi

))
−Mθ

(
Ỹt, 0

)]

where Mθ

(
y, µ

)
= 1

2
M̃θ

(
y, µ

)
. Because we are using only the values of Xt that fall

in Gn, then for a fixed value say n
′
of the number of Xt, t = 1, . . . , n that fall in Gn, the

minimization is a problem of minimizing continuous function over bounded and closed

subset of linear subspace Rn
′
. Futhermore from lemma 3.2, the minimization problem

has a unique solution. The estimator for σθ

(
xi

)
is obtained as the first element of

the estimate of Dθ,λ

(
xi

)
. The derivatives for σ̂θ

(
xi

)
are obtained by multiplying the

corresponding elements of D̂θ,λ

(
xi

)
by Cλh

−[λ], where Cλ depends on λ.

The results in Honda [65] provides Bahadur-type expansions of the estimator of the form

D̂θ,λ

(
xi

)
as well as the derivatives, which we will readily adopt for our purpose. Arrange

h−[λ]
(
Xt − xi

)λ

and Dθ,λ

(
xi

)
, where both quantities depend on h, in ascending order

with respect to λ and denote them by Xt − xi ∈ R[Λ] and Dθ

(
xi

)
∈ R[Λ] respectively.

3.3.1 Consistency and asymptotic distribution

Assume the following conditions

Conditions 3.3.1

(L1) For any j1 < . . . . . < j[Λ], Xj1 − xi, . . . ,Xj[Λ]
− xi is linearly independent for any

xi with probability 1.

(L2) K
(
u
)

is bounded nonnegative kernel function with the compact support
{∣∣∣u

∣∣∣ ≤ 1
}
⊂

Rd and Lipschitz continuous. Assume the bandwidth to be h = cn−
1

2p+d , c > 0.

(L3) Xt has a density, g
(
xi

)
which is bounded for xi ∈ Gn

(L4) c3h
dI[Λ] < E

{
Kh

(
X1 − xi

)(
X1 − xi

)(
X1 − xi

)T

g
(
X1,xi

)}
< c4h

dI[Λ]

E
{
Kh

(
Xt − xi

)
Kh

(
Xk − xi

)}
< c5h

d+1 for t 6= k, where I[Λ] is an identity matrix of

size [Λ].

(L5) The conditional distribution of Ỹt given Ft−1 has no atom with probability 1.

The following theorems give the uniform Bahadur representation and uniform conver-

gence of the estimator for Dθ

(
xi

)
.
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Theorem 3.3 Let
{(

Yt,Xt

)}
satisfy the assumptions of model (1.4.0.2). Suppose as-

sumptions (L1)-(L5) hold and α
(
s
)
≤ cs−r and for some p

2
< η < p, r > d+p

2η−p
∨

( (3dp+4p+3d−dη)
η

− 1) ∨ (3dp+2p+3d
p

) . Then

D̂θ

(
xi

)
− Dθ

(
xi

)
=

(
2

n∑
t

Kh

(
Xt − xi

)(
Xt − xi

)(
Xt − xi

)T

g
(
Xt,xi

)})−1

×
n∑

t=1

Kh

(
Xt − xi

)
Xt − xi

{(
sgn(Zt,3) + 2θ − 1

)
+ 2

(
θ −G

(
Xt, r

(
Xt,xi

)))}

+ O
(
h2p−η

)
, uniformly on Gn almost sure (a.s). (3.3.1.1)

where sgn(u) = 1(u > 0), 0(u = 0), and −1(u < 0) and G
(
x, z

)
= P

(
Zt,3 ≤ z

∣∣∣Xt =

x
)

= Fx

(
σθ

(
xi

)
+ z

)

Theorem 3.4 Suppose that assumptions (L1)-(L4) hold and that α
(
s
)
≤ c1s

−r, for

r > 3dp+2p+3d
p

. Then

∣∣∣D̂θ

(
xi

)
−Dθ

(
xi

)∣∣∣ = O
(
hp

(
log n

) 1
2
)
, uniformly on Gn a.s

The proofs for theorems 3.3 and 3.4 are found in Honda [65], where also the asymptotic

distribution for D̂θ

(
xi

)
−Dθ

(
xi

)
is given. The consistency of D̂θ

(
xi

)
at a fixed point

shares the same representation with the uniform convergence. That is, at a fixed point

say xi ∈ Gn, we have
∣∣∣D̂θ

(
xi

)
−Dθ

(
xi

)∣∣∣ = O
(
hd

(
log n

) 1
2
)

a.s.

The estimation of the QARCH in the presence of unknown QAR, µθ

(
Xt

)
, using local

polynomial proceeds in a similar manner as in chapter 2. So long as the estimator for the

QAR is uniformly consistent, then under similar arguments as in chapter (2), the estimator

for the scale function would be consistent. Simultaneous estimation of the QAR and

scale function in QAR-QARCH processes could be investigated using methods similar to

simultaneous M-estimation in Huber [67]. For instance, taking
(
µ, σ

)
∈ R×R+ one could

base the theoretical objective function on E
[(

Mθ

(
Mθ

(
Yt, µx

)
, σ

)
−Mθ

(
Yt, 0

))∣∣∣Xt = x
]

,where µx depends on x through some weight functions, and maximize its kernel estimate

with respect to µ and σ. Koenker and Zhao [76] discusses analogous parametric version

applied to AR-ARCH with absolute errors.

In the remaining part of this chapter, we will adopt local polynomials of degree one for

various estimations.



3 DIRECT ESTIMATION METHOD 76

3.4 Numerical comparison

In this section we compare numerically estimators (3.1.0.16) and (3.1.0.18). We use the

bandwidth of the form hθ = hmean

{
θ
(
1−θ

)
/φ

(
Φ−1(θ)

)2} 1
5

and proposed in Yu and Jones

[114], where φ and Φ are standard normal density and distribution functions respectively.

We select hmean using the leave-block out cross-validation based on local constant fit of

the conditional mean. It should be noted that this bandwidth only serves as a thumb of

rule and better procedures may need to be studied in the context of local polynomial in

time series set up. We simulated the data from a heteroscedastic ARCH process

Yt =
(
0.075 + 0.3Y 2

t−1 + 0.62Y 2
t−2

) 1
2
et, t = 1, 2, . . . , (3.4.0.2)

with iid Student’s t-distributed error et and took t = 3, . . . 1002. The true volatility is

shown in figure (5). Because our interest was to obtain the conditional scale function using

model (1.4.0.2), we adjusted Yt in (3.4.0.2) of its conditional 0.75-quantile and estimated

the scale at θ = 0.75 from the assumed nonparametric model, Yt = σ0.75

(
Yt−1, Yt−2

)
Zt,

where Zt is a zero 0.75-quantile. Figures (6) and (7) presents the surfaces of the esti-

mated regression using (3.1.0.16) and (3.1.0.18) respectively, with the latter transformed

accordingly. In both cases 400 data points were used for the estimation. Visually, they

do not seem to be quite different from each other.

In order to provide a quantitative assessment of the accuracy of these estimators, we

generated 500 replicates of size 1000 from the process (3.4.0.2). Then we calculated the

mean average squared error (MASE) for a few values of θ using the following formula,

MASEθ

(
σ̂θ

(
xi

))
=

1

500

500∑
j=1

[ 1

1000

1000∑
i=1

(
σ̂

(j)
θ

(
xi

)
− σ

(j)
θ

(
xi

))2]
,

The MASEθ

(
σ̂θ

(
xi

))
are depicted in table (1), where in each distributional error, the

second rows represent results obtained by using the estimator (3.1.0.16). As expected the

MASE for both estimators increase as one moves away from θ = 0.5, with the difference

between them growing faster outside the range (0.4, 0.6). In particular, for heavy tailed

and asymmetric distributions, the MASE at θ = 0.8 is more than 12% smaller for the

estimator based on (3.1.0.18). This could be attributed to the dependence effect of the
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Figure 5: True volatility

scale function σt,θ in the errors.

3.5 Estimation of the true volatility

In this section the original variable, Yt instead of the log-transformed, will be used. Recall

that using model (1.4.0.2) with reference to (1.1.1.1), we have

σt,θ = σtM
e
θ (3.5.0.3)

as the volatility (conditional standard deviation) up to a multiplicative constant. We

consider the constant as a nuisance parameter and use the standardization method similar

to the one in Huber [67] to remove it. Let b > 0 be a rescaling constant for the conditional

scale function σt,θ. Then b will be such that when multiplied across (3.5.0.3) leaves us

with the volatility, i.e b =
(
M e

θ

)−1

. Lets us consider the conditional median absolute

deviation (CMAD) from a symmetric distribution F . This can be expressed as σt,0.5 =

µt,0.75− µt,0.5 = σt

(
qe
0.75− qe

0.5

)
, with qe

0.5 = 0. To standardize it, we will need to multiply

by a rescaling constant b =
(
qe
0.75

)−1

. Observe that if F is a normal distribution with
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Figure 6: Surface of scale estimate based on (3.1.0.16)

conditional mean zero, then b reduces to b =
[
Φ−1

e

(
0.75

)]−1

≈ 1.482. For a student

t-distributed random variable et with v degrees of freedom, we have

b =
[
t−1
v

(
0.75

)
− t−1

v

(
0.5

)]−1

(3.5.0.4)

For general symmetrically distributed random variables, Yt, t = 1, 2, . . . and assuming

the existence of the first two moments, it is not difficult to see that the constant b can be

obtained as

b =

∣∣∣∣∣

∣∣∣∣∣
Yt − µt

σt,0.5

∣∣∣∣∣

∣∣∣∣∣
2

(3.5.0.5)

where µt is the conditional expectation and ||y||2 is the L2-norm; ||.||2 =
(
E

[
y2

]) 1
2
.

Based on a realization
(
Yt,Xt

)
, t = 1, 2 . . . , n, we can estimate the volatility as

σ̂
(
Xt

)
= b̂σ̂0.5

(
Xt

)
, for t = 1, . . . , n (3.5.0.6)
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Figure 7: Surface of scale estimate based on (3.1.0.18)

where

b̂ =


 1

n− 1

n∑
t=1


Yt − µ̂

(
Xt

)

σ̂0.5

(
Xt

)



2



1
2

.

and µ̂
(
Xt

)
is a least square estimate based on local linear, see (4.2.0.14) in chapter

(4). For general distribution, one can use conditional quantile range (CQR) to estimate

the volatility. For θ > 0.5, it can be defined as

CQRt,θ = µt,θ − µt,1−θ

= σt

(
qe
θ − qe

1−θ

)
(3.5.0.7)

Like in symmetric case, σt can be obtained by multiplying through (3.5.0.7) by a

constant b =
(
qe
θ − qe

1−θ

)−1

, which is the same as

∣∣∣∣∣

∣∣∣∣∣
Yt−µt

CQRt,θ

∣∣∣∣∣

∣∣∣∣∣
2

. The estimator of the

volatility then becomes

σ̂
(
Xt

)
= b̂ĈQRθ

(
Xt

)
(3.5.0.8)

where



3 DIRECT ESTIMATION METHOD 80

Table 1: MASEθ for two methods. Second row is MASEθ for (3.1.0.16)

θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normal 0.88200 0.54700 0.46800 0.24800 0.47200 0.50100 1.01700

0.93400 0.76700 0.46700 0.24900 0.45300 0.88200 1.02300

Student-t(4) 1.24700 0.70400 0.56100 0.45200 0.60500 0.94600 1.56800

1.69600 1.03600 0.57300 0.49100 0.61400 0.92100 1.77800

Cauchy 4.25500 1.64500 0.94500 0.62500 0.91400 1.42200 3.84700

5.93400 1.93700 0.96600 0.69000 0.91900 1.83000 5.02600

Gamma(2,2) 3.35700 1.53400 0.90300 0.59100 0.88100 1.34700 3.09400

4.33400 1.79300 0.95100 0.68700 0.93100 1.96400 4.85600

b̂ =


 1

n− 1

n∑
t=1


Yt − µ̂

(
Xt

)

ĈQRθ

(
Xt

)



2



1
2

Now going back to our general scale function in (3.5.0.3), the following proposition can

easily be checked by the method of moments.

Proposition 3.1 Let
(
Yt,Xt

)
, t = 1, 2, . . . , be α-mixing with E

∣∣∣Yt

∣∣∣
4+δ

< ∞ and δ > 0,

then for any real random variable Yt, the constant b is given by

b =

∣∣∣∣∣

∣∣∣∣∣
Yt − µt

σt,θ

∣∣∣∣∣

∣∣∣∣∣
2

. (3.5.0.9)

The estimator of (3.5.0.9) follows as

b̂ =


 1

n− 1

n∑
t=1


Yt − µ̂

(
Xt

)

σ̂θ

(
Xt

)



2



1
2

This gives an estimator of the true volatility function as

σ̂
(
Xt

)
= b̂σ̂θ

(
Xt

)
(3.5.0.10)

The estimator, b̂, is a sample unconditional standard deviation of the mean adjusted-

scaled random variable Yt. It is not a robust or reliable estimator in small sample samples,
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but in a large sample it can be expected to provide a reliable estimate as will be seen

in the simulation that follows. It can, however, be improved by omiting the 2.5% of the

largest and smallest values of the scaled variable. That is, if we let

st =


Yt − µ̂

(
Xt

)

σ̂θ

(
Xt

)

 , t = 1, 2, . . . , n

Then the estimator for b can be defined as b̂ = 1
nx−1

∑n
t=1 s2

t I{F−1
st (0.025)≤st≤F−1

st (0.975)}

where nx = card
{

t : F−1
st

(0.025) ≤ st ≤ F−1
st

(0.975), t = 1, 2, . . . , n
}

, as are robust

estimators like trimmed mean in Jaeckel [72].

To conclude this section, we generated 500, 800 and 1000 from an AR(1)-TARCH(1)

process

Yt = 0.5 + 0.3Yt−1 +

√
0.01 + 0.1Y 2

t−1 + 0.35
( |Yt−1| − Yt−1

2

)2

et, t = 2, . . . , (3.5.0.11)

under four different distribution30 of the error et, as shown in tables (2)-(4). The

samples were then replicated 500 times. We estimated the conditional median absolute

deviation (CMAD), the conditional quantile range (CQR)31 and QARCH32. The true

volatilities were estimated using the formula (3.5.0.6),(3.5.0.8) and (3.5.0.10). The per-

formance was then assessed by their average mean absolute proportionate error (AMAPE)

AMAPE
(
σ̂
(
Xt

))
=

1

500

500∑
j=1

[
1

nj

nj∑
i=1

∣∣∣∣∣
σ̂(j)

(
xi

)
− σ(j)

(
xi

)

σ(j)
(
xi

)
∣∣∣∣∣

]
, nj = 500, 800, 1000

The results are shown in tables (2),(3) and (4).

The AMAPE tends to be the same for all the estimators at a given distributional error

and sample size. This indicates some sort of standardization of the scale functional esti-

mators into the same quantity (volatility). As the sample size, n, increases, the AMAPE

decreases confirming the theoretical result on convergence. Thus it is expected that as

n →∞, b̂ → b and hence σ̂
(
Xt

)
→ σ

(
Xt

)
. This result indicate further investigations

30 With the errors from stdudent’s-t and Gamma distribution adjusted and scaled appropriately.
31 At θ = 0.75-level
32 At θ = 0.75-level
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Table 2: nj = 500: AMAPE

Error CMAD QARCH CQR

Normal 0.2472 0.2480 0.2424

Student-t(4) 0.2974 0.3068 0.3069

Cauchy 0.7005 0.6940 0.6733

Gamma(2,2) 0.5946 0.5890 0.5704

Table 3: nj = 800: AMAPE

Error CMAD QARCH CQR

Normal 0.2005 0.2005 0.2004

Student-t(4) 0.2469 0.2467 0.2470

Cauchy 0.6846 0.6745 0.6654

Gamma(2,2) 0.5592 0.5434 0.5346

Table 4: nj = 1000: AMAPE

Error CMAD QARCH CQR

Normal 0.1840 0.1844 0.1842

Student-t(4) 0.2068 0.2495 0.1985

Cauchy 0.5476 0.5406 0.5434

Gamma(2,2) 0.5067 0.4956 0.4900
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could be carried out to determine among others things of interest, the rate of convergence.

It is important to mention that in some case, it is of interest to determine b that varies

with time t. This brings about the phenomenon of scale changes observed in Beran and

Ocker [10]. In this case we could use the least square estimator based on local linear

approximation to obtain,

b̂2
t = arg min

(b0,b1)∈R+×R

n∑
t=1

(
s2

t − b0 − b1

(t− 0.5

n
− t̃

))2

kh

(t− 0.5

n
− t̃

)

where k is a univariate kernel function, h the bandwidth and t̃ is a fixed point in (0, 1).

The asymptotic properties of b̂2
t can be obtained precisely in the same lines and in exact

forms as the ones outlined in Feng [48].

3.6 Extensions to GQARCH

Let
{

Yt, t ∈ Z
}

be stationary stochastic process adopted to filtration
{
Ft; t ∈ Z

}
and

having the form

Yt = σt,θZt

σ2
t,θ = σ2

θ

(
Xt, St

)
(3.6.0.12)

where we take St =
(
σ2

t−1, . . . , σ
2
t−τ

)
with σ2

t−i = b2
i σ

2
t−i,θ, i = 1, 2, . . . , τ . The

b′is are the rescaling constants which may be constant or time dependent within some

periods and σt−i,θ are the lagged values of the conditional scale function based on QARCH.

Let
{

Zt, t ∈ Z
}

be iid innovations with zero θ-quantile and finite fourth moment33.

Assume all other assumptions specified in model (1.4.0.2). Observe that (3.6.0.12) can

be written in terms of an additive noise M2
θ

(
Yt, 0

)
= σ2

θ

(
Xt, St

)
+ Zt,2 where as in

(3.1.0.15), Zt,2 = σ2
θ

(
Xt, St

)(
M2

θ

(
Zt, 0

)
− 1

)
and has zero θ-quantile. The stochastic

function σ2
θ

(
Xt, St

)
can be estimated by regressing M2

θ

(
Yt, 0

)
on Xt and St using the

asymmetric least absolute based on local linear.

Using the method in section (3.5), denote Ŝt to be a variable consisting of the estimates

given by σ̂2
t−i = b̂2

i σ̂
2
t−i,θ, i = 1, . . . , τ . The consistency of this extension can be given

through the contraction property with respect to the hidden variable, c.f Buehlmann and

McNeil [18]. That is for xi ∈ Rd−τ and St, Ŝt ∈ Rτ
+ we assume

33This is for the purpose of estimationg b
′
s



3 DIRECT ESTIMATION METHOD 84

sup
xi∈Rd−τ

∣∣∣σθ

(
xi, σ

2
1, . . . , σ

2
τ

)
− σθ

(
xi, σ̂

2
1, . . . , σ̂

2
τ

)∣∣∣ ≤
τ∑

j=1

cj

∣∣∣σ2
j − σ̂2

j

∣∣∣

for some 0 < c1, . . . , cτ < 1 with
∑τ

j=1 cj < 1. By assuming that for any δ > 0, and

sup1<j<τ

∣∣∣σ̂2
j − σ2

j

∣∣∣ ≤ δ → 0 with n, similar arguments used in section (3.2) or (3.3) could

be applied to show consistency.

Figure 8: Real data: Scale function estimate in (c)

In the following example, we applied the method to real data consisting of DAX prices

for the period ranging from (1/1/1997) to (6/11/2000). The data is shown in figure 8(a)

with a decreasing trend. The calculated returns shown in figure 8(b) contain periods of

high volatilites around the times 200 and 500. The nonparametric scale function estimate,
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shown in figure 8(c) at θ = 0.55, is high for both low and high values of the returns.

3.7 Conclusion

This chapter provided results on consistency and asymptotic distribution for the estimator

of QARCH based on local constant and polynomials, under the assumption that the QAR

of Yt is zero. The comparison between (3.1.0.16) and (3.1.0.18) reveals the estimator based

on the former could be suffering from correlation problems. Numerical results based on

the proposed standardization method indicates the CMAD, QARCH and CQR could be

used to estimate the volatility. However, extracting the volatility from a too asymmetric

distribution, the CQR is more appropriate.
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4 Extreme Quantile Autoregression (Extreme QAR)

Usually the applications of quantiles to financial risk analysis are not only restricted to

moderate or relatively high probability levels, but also high and sometimes beyond the

maximum observation, or in other words, out-of-sample. We call the quantiles, which

are located among the largest observations or even beyond the data maximum, extreme

quantiles. In this chapter we combine the QAR results presented in chapters 2 and 3,

for the interior parts of the data, with results from extreme value theory for the extreme

parts to provide approximate extreme QAR and its estimate.

4.1 Result from extreme value theory

Extreme value theory is a classical topic in probability theory. For a survey on the subject,

see for example Leadbetter et al. [80], or Embrechts et al. [39]. In this section we give

some intuition and basic results of extreme value theory (EVT) which can be considered

as a complement of central limit (for cumulative sums) that deals with fluctuations of

sample maxima.

4.1.1 Generalized Extreme Value distribution

The limiting behaviour of sample extrema (maxima) are studied under the family of

extreme value distributions. One of the main results is due to Fisher and Tippett (1928)

who specified the form of the limit distributions34 for an appropriately normalized maxima,

as summarized in theorem 4.1.

Theorem 4.1 Suppose e1, e2, . . . , is a sequence of iid random variables from unknown

distribution F and Mn = max
(
e1, e2, . . . en

)
denotes the maximum of the first n obser-

vations. If a sequence of real numbers an > 0 and bn ∈ R can be found such that the

sequence of normalized maxima, Mn−bn

an
, converges in distribution( law or weakly),i.e

lim
n→∞

Pr

{
Mn − bn

an

≤ e

}
= lim

n→∞
F n

(
ane + bn

)
= H(e), e ∈ R,

34And was generalized by von Mises [90]
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for some non-degenerate d.f H, then H belongs to one of the three distribution types:

Hξ(e) =





exp{−(1 + ξe)−
1
ξ } : ξ 6= 0

exp{− exp(−e)} : ξ = 0
(4.1.1.1)

where35 e is such that 1+ ξe > 0, ξ is the shape parameter and the special case H0(e)

is interpreted as limξ→0 Hξ(e).

Hξ is called the Generalized Extreme Value distribution (GEV). An important con-

cept for the application of extreme value theory to VaR (or extreme quantile) estimation

is the Maximum Domain of Attraction (MDA). In simple terms, a random variable et is

said to belong to the maximum domain of attraction of the extreme value distribution H

({et} ∈ MDA(H)) if and only if the Fisher-Tippet theorem holds for {et}. The result is

very significant, since the asymptotic distribution of the maxima always belongs to one

of these distributions, whatever the underlying distribution function and therefore the

asymptotic distribution of the maxima can be estimated without making strict assump-

tions about the nature of the underlying distribution function of the observation.

The shape parameter ξ is crucial in determining the class (type) of the GEV distribu-

tion;

(i) The distribution Hξ for ξ = 1
α

> 0 is known as the Fréchet. The distributions in

MDA
(
Hξ, ξ > 0

)
are fat-tailed and their tails decay like a power function (see green and

red curves in figure (9), for ξ > 0). The tail index, α, can be related to the number of finite

moments. For t-distribution, α is the degrees of freedom and for stable distribution α is

the characteristic exponent. The red and green curve depicts the tail of distributions with

first and fourth moments being finite respectively. The relatively slow decline in the tails

generates moments that are not necessarily finite. The class includes the Pareto, Burr,

Loggamma, Cauchy and t-distribution and has been found to be the most appropriate for

modelling fat-tailed financial data.

(ii) For ξ < 0 the distributions are said to be in the maximum domain of attraction of the

Weibull
(
Hξ, ξ < 0

)
. Such processes are short tailed or bounded; this is depicted by the

35 Here and throughout this thesis, e denotes a real value of random variables, say et, t = 1, . . . and

not the usual convention for the exponential.
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light blue curve in figure 9, for ξ < 0. They include the uniform and beta distributions.

(iii) The distributions with ξ → 0 or α →∞, belong to the maximum domain of attrac-

tion of the Gumbel distribution MDA(H0). This class is characterized by medium tails,

shown by dark blue curve in figure (9). They include gamma, normal, lognormal.

In connection to theorem 4.1 is that the upper tail (also applies trivially to the lower
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Figure 9: A plot of excess distribution of the GEV against a sequence of real numbers.

Green(ξ = 1), Red(ξ = 0.25), Dark blue (ξ → 0), Light blue (ξ = −0.5)

tail as well) of any fat tailed random variable et has the following property:

lim
e→∞

1− F
(
ce

)

1− F
(
e
) = c−

1
ξ , ξ, c, e > 0.

where F can be interpreted as any distribution function which varies regularly at

infinity with tail index α = 1
ξ
. From this, it is important to note that regardless of the

underlying distribution of et, the tails have the same general shape, where only the shape

parameter is important. If the data are generated by a heavy tailed distribution, then to

a first order approximation, its distribution has a Pareto type tail,

P
{

et > e
}

= F
(
e
)
∼ ae−

1
ξ , a ∈ R+, ξ > 0, for e →∞. (4.1.1.2)

Theorem 4.1 was proved by Gnedenko (1946) who showed that for ξ > 0, F ∈
MDA(Hξ, ξ > 0) if and only if
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F
(
e
)

= e−
1
ξ L, e > 0 (4.1.1.3)

for some slowly varying functions L36. This is a necessary and sufficient condition for

the tail of any distribution function F to belong to the maximum domain of attraction of

a Fréchet distribution.

4.2 Extreme QAR functon: Part I

In this section, we explore a semiparametric estimation procedure for extreme QAR. We

take the QAR in the interior parts of a data based on relatively high probability level,

say θ, to be an initial as well as the beginning of the right-hand tail of a heavy tailed

distribution. This is then combined with quantiles obtained by using Gnedenko’s result

and a Hill’s estimator of the tail index to arrive at an approximate extreme QAR function

at high probability levels, say ϕ > θ.

For intuitive understanding, we first consider the iid random variables et, . . . based on the

process given in (1.1.1.1). To derive an estimate of an extreme quantile qe
ϕ for ϕ ≈ 1,

we also consider a high quantile qe
θ where θ < ϕ is large but not so close to 1 as ϕ.

Later on, we choose θ large, but still small enough that the procedure of the previous

chapters provide reliable estimates of qe
θ. ϕ is so large that we have non or only few data

in our sample around qe
ϕ, and the purely nonparametric approaches do no longer provide

good estimates of qe
ϕ. The quantiles, qe

θ and qe
ϕ, correspond, respectively, to the excess

probabilities F̄
(
qe
θ

)
= 1−θ and F̄

(
qe
ϕ

)
= 1−ϕ. Then, using Gnedenko’s result (4.1.1.3),

the excess probabilities also satisfy

F̄
(
qe
θ

)
=

(
qe
θ

)− 1
ξ
L

(
qe
θ

)
(4.2.0.4)

F̄
(
e
)

= e−
1
ξ L

(
e
)

, e > qe
θ. (4.2.0.5)

Dividing (4.2.0.5) by (4.2.0.4) and noting that for large θ, L(e)
L(qe

θ)
≈ 1, we obtain,

36A positive, Lebesgue measurable function L on (0,∞) is slowly varying if lime→∞
L(te)
L(e) = 1, t > 0.

See theorem 3.3.7 page 131 Embrechts et al. [39] for more details and other variations.
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e ≈
(

1− F
(
e
)

1− θ

)−ξ

qe
θ, for large θ (4.2.0.6)

If F
(
e
)

= ϕ > θ, then the ϕ-quantile can be obtained as the inverse,

qe
ϕ ≈

(
1− ϕ

1− θ

)−ξ

qe
θ, for large θ and ϕ > θ (4.2.0.7)

whose estimate is

q̂e
ϕ =

(
1− ϕ

1− θ

)−bξ

q̂e
θ.

Under the assumption that the threshold qe
θ is known and that F

(
e
)

= ce−
1
ξ for e > qe

θ

and an appropriate constant c > 0, the maximum likelihood estimator of the reciprocal

of the tail index ξ = 1
α
, is easily obtained by

ξ̂ =
1

Nθ

n∑
t=1

log

(
et

qe
θ

)
I{et>qe

θ} (4.2.0.8)

with Nθ, the number of exceedances. This is known as the Hill estimator, introduced

and shown, in Hill [64] that it is consistent. In practice the threshold level needs to

be determined. We have to recall that we are not necessarily dealing with a Pareto

distribution, but rather with a distribution whose tail belongs to MDA
(
Hξ, ξ > 0

)
and

therefore looks like a Pareto tail. Consequently, we are looking for some level, say qe
θ, above

which the Pareto law applies to a good approximation. So long as we know that ξ > 0, θ

can be set high enough, and we obtain qe
θ parametrically by minimizing Mθ

(
et, µ

)
, defined

in (1.1.2.1), with respect to µ. This results in nothing but a sample quantile estimator at

θ, which is consistent and asymptotically normal as shown in Koenker and Basset [75].

The empirical study of the daily log-returns have shown that the frequently encountered

values of α = 1
ξ

based on the excesses are between 3 and 4, see Longin [82] and Embrechts

et al. [39] for example.

The properties of the quantile and tail probability estimators follow directly from the

properties of the Hill estimator of the tail index α̂ = 1
bξ . The consistency of the shape

parameter, ξ̂ and q̂e
θ implies that q̂e

ϕ is consistent. An inverse estimator can be obtained

in a similar way from (4.2.0.6) as
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F̂
(
e
)

= 1− (1− θ)
( e

q̂e
θ

)− 1
bξ

(4.2.0.9)

The above derivations enable us to present our first result in this chapter. The propo-

sition below extends the estimation of extreme quantiles in the iid case to the dependent

case, by augmenting the QAR with Gnedenko’s result and Hill’s estimator of the shape

parameter in (4.2.0.8).

Proposition 4.1 Assume the random variable Yt, t = 1, . . . ,, in model (1.1.1.1) and the

iid errors et with d.f F ∈ MDA
(
Hξ, ξ > 0

)
. The conditional extreme time varying

quantile is given by

µt,ϕ = µt,θ + σtq
e
θ

((
1− ϕ

1− θ

)−ξ

− 1

)
(4.2.0.10)

Proof of Proposition (4.1

From (1.4.0.2) and lemma 1.3

Yt − µt,θ

σt,θ

= Zt =
et

M e
θ

− qe
θ

M e
θ

(4.2.0.11)

Consider
{

et

Me
θ

}
to be iid random variables and

qe
θ

Me
θ

to be the threshold, then equation

(4.2.0.6) and (4.2.0.7) give
µt,ϕ−µt,θ

σt,θ
+

qe
θ

Me
θ

=

(
1−ϕ
1−θ

)−ξ

.
qe
θ

Me
θ

resulting in

µt,ϕ − µt,θ

σt,θ

= qz
ϕ =

qe
θ

M e
θ

.

((
1− ϕ

1− θ

)−ξ

− 1

)
(4.2.0.12)

Rearrangement completes the proof.

¤

We now assume again that µt,θ = µθ

(
Xt

)
is the conditional θ-quantile of Yt given

Xt. We also assume that µt = µ
(
Xt

)
, the conditional expectation of Yt given Xt, exists.

Because the estimator of σtq
e
θ would involve the second moment, we replace it by (µt,θ−µt),

which requires only the first one. The extreme conditional ϕ-quantile estimator is then

µ̂ϕ

(
xi

)
= µ̂θ

(
xi

)
+

(
µ̂θ

(
xi

)
− µ̂

(
xi

))((1− ϕ

1− θ

)−bξ
− 1

)
(4.2.0.13)
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where ξ̂ = 1
Nθ

∑n
t=1 log

(
Yt−bµθ(Xt)
bµθ(Xt)−bµ(Xt)

)
I{Yt>bµθ(Xt)} and Nθ is the number of exceedances of

Yt over µ̂θ

(
Xt

)
. We obtain the estimator for µ

(
Xt

)
by using local linear method in Fan

and Gijbels [45]. With
{(

Yt,Xt

)}n

t=1
, we assume that the function µ

(
xi

)
has the second

partial derivative so that it can be approximated by a linear function in the neighborhood

of a point xi as µ
(
Xt

)
≈ b0

(
xi

)
+

∑d
j=1 bj

(
xi

)(
Xt,j − xi,j

)
with µ

(
xi

)
= b0

(
xi

)
and

∂µ

(
xi

)

∂xi,j
= bj

(
xi

)
, j = 1, . . . , d. The estimate, µ̂

(
xi

)
, is obtained as the first element of

the minimizer of

n∑
t=1

(
Yt − b0 −

d∑
j=1

bj

(
Xt,j − xi,j

))2

Kh

(
Xt − xi

)
(4.2.0.14)

with respect to a vector b =
(
b0, . . . , bd

)′
. Masry [86] has shown under the assumptions

h → 0, nhd →∞ and boundedness of nhd+4, among others that

µ̂
(
xi

)
− µ

(
xi

)
= O

((
log4(n)

nhd

) 1
2
)

(4.2.0.15)

almost surely for each point xi. Note that if the conditional expectation, µt is assumed

to be equal to zero, then µ̂θ

(
Xt

)
can be taken as the scale function.

Figure 10: Shape estimate against threshold

We applied formula (4.2.0.13) in the estimation of the extreme conditional quantile on

real data (negative returns), from BASF in the period ranging from 1/1990 to 12/1992.

First we estimated the QAR of Yt at θ = 0.9 by the procedure described in chapter (3)
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Figure 11: Hill estimates of tail distribution

and the conditional mean. Then we adjusted and scaled the resulting residuals. We

then estimated the shape parameter from the scaled excesses over the QAR using Hill’s

estimator. Figure (10) depicts a plot of the Hill’s estimates of the shape against the

excesses. We choose ξ = 0.31 ( corresponding to the stable areas) and estimated the

tail distribution, which is depicted in figure (11) as a red curve. The circle represent the

empirical distribution. The blue and green curves represent the Hill estimates of the tail

distribution when the threshold is fixed at θ = 0.6 and 0.85. Estimation for the latter

two were done with their respective estimates of the shape parameter. For low threshold,

the Hill’s estimator underestimate the degree of heavy tailedness of the distribution. At

θ = 0.90, it produces almost the same distribution as the empirical. For higher threshold,

we expect it to produce even heavier tail than the empirical. The estimate of the QAR at

ϕ = 0.95 and 0.99 are shown in figure (12) with blue and red colored curves respectively.

We deffer all other comments to section (4.6), where a detailed simulation study is carried

out.

4.3 Parametric estimation of extreme quantile(iid case)

This section presents some results on parametric fitting of distribution to a series of iid

excesses beyond a high threshold. This results are useful for the work in the following

section.
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Figure 12: Hill estimates( blue at 0.95 and red at 0.99) superimposed on daily negative

returns on BASF.

Definition 4.3.1 Let et be iid random variables and z1, . . . , zNθ
be the series of ex-

ceedances over the threshold u = qe
θ. The excess distribution function of the random

variable et with the distribution function F over the threshold u is defined as

Fu

(
z
)

= Pr
(
et − u ≤ z

∣∣∣et > u
)
, z > 0 (4.3.0.16)

It is assumed that the excesses are iid with distribution function Fu and u is less than

eF
37 . In terms of distribution function, (4.3.0.16 ) can be written as

Fu

(
z
)

=
F

(
u + z

)
− F

(
u
)

1− F
(
u
) (4.3.0.17)

which, when rearranged, one arrives at the tail distribution of the random variable et

above the threshold u

F (u + z) = F (u).F u(z) (4.3.0.18)

This result makes it possible to estimate the tail of the original distribution, by sep-

arately estimating F and Fu in (4.3.0.18 ). The Peak Over Threshold (POT), due to

37eF = supe∈R{F
(
e
)

< 1}, the right- hand endpoint of the distribution, usually but not necessarily,

assumed to be +∞
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Todorovic and Zelenhasic (1970), can be used to model all large observations exceeding

a high threshold u. In this context a fully parametric model based on the generalized

Pareto distribution (GPD), defined below, can be fitted to the excesses.

Definition 4.3.2 (Standard generalized Pareto distribution (GPD)) .

The generalized Pareto d.f Gξ, is defined by

Gξ(z) =





1− (1 + ξz)−
1
ξ : if ξ 6= 0

1− exp(−z) : if ξ = 0
(4.3.0.19)

where z ≥ 0 if ξ ≥ 0 and 0 ≤ z < −1
ξ
, if ξ < 0.

The location-scale family, denoted as Gξ,ν,β(e), of (4.3.0.19) is obtained by replacing

z by e−ν
β

for ν ∈ R, β > 0, i.e

Gξ,ν,β(e) =





1−
(
1 + ξ

β
(e− ν)

)− 1
ξ

:

1− exp(− e−ν
β

) :
(4.3.0.20)

where

e ∈ D(ξ, β) =





[0,∞) : if ξ ≥ 0[
0,−β

ξ

]
: if ξ < 0

and G0,ν,β = limξ→0 Gξ,ν,β

(
e
)
. For 0 < ξ < 1

2
, the random variable et which follows a

Gξ,ν,β has the mean and variance equal to

E
[
et

]
= ν +

β

1− ξ

and

var
[
et

]
= 2

β2

ξ3

Γ(ξ−1 − 2)

Γ(ξ−1 + 1)

respectively. As an abbreviation, we write Gξ,β ≡ Gξ,0,β for the GPD with location

parameter ν = 0.

Two approaches can be considered when fitting a GPD. The first one is based on

the assumption that the unknown distribution function F has an exact GPD tail: Let

e1, . . . , en be iid with distribution function F whose tail above a threshold u follows exactly

a GPD tail, i.e.



4 EXTREME QUANTILE AUTOREGRESSION (EXTREME QAR) 96

Fu

(
z
)

= Gξ,β(u)

(
z
)

= 1−
(

1 +
ξ

β(u)
z

)− 1
ξ

. (4.3.0.21)

The estimates for ξ and β(u) can be otained by maximum likehood estimation. The

estimates exist so long as ξ > −1 and are asymptotically normal and efficient when

ξ > −1
2
, see Smith [103]. For high u, the density of the excesses can be approximated at

an arbitrary Zi by

fξ,β(u)

(
z
)

=
ξ

β(u)

(
1 +

ξz

β(u)

)− 1
ξ
−1

,

whose log-likelihood function is

L
(
ξ, β(u)

)
= Nθ log

(
β(u)

)
−

(1

ξ
+ 1

) Nθ∑
i=1

log
(
1 +

ξZi

β(u)

)

as given in Embrechts et al. [39]. Hosking and Wallis (1987) have shown that the MLE,

although asymptotically most efficient, it is not as efficient as the method of moment even

in samples as large as 500. The GPD estimators based on the method of moments are of

the form

ξ̂ =
1

2

(
1− z − u

s2

)

β̂(u) =
z − u

2

(z − u

s2
+ 1

)

where z and s2 are empirical mean and variance respectively.

To relax the strictness of the exact type of the distribution a more realistic approach

is to use, that for any heavy tailed distribution F , the following result due to Balkema-de

Haan and Pickands(1975) holds.

Theorem 4.2 (Limiting distribution of F u(z))

For F ∈ MDA(Hξ, ξ > 0) , the generalised Pareto distribution (GPD) is the limiting

distribution for the distribution of excesses, as the threshold tends to the far right endpoint

eF .i.e
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lim
u→eF

sup
0<z<eF−u

∣∣∣F u(z)−Gξ,β(u)(z)
∣∣∣ = 0 (4.3.0.22)

So

F (u + z) ≈ F (u).Gξ,β(u)(z) (4.3.0.23)

The result states that if F is in the maximum domain of attraction of a Fréchet dis-

tribution, then as the threshold u approaches the endpoint of F , the GPD asymptotically

approximates the excess distribution function Fu

(
z
)
.

In order to exploit theorem 4.2 in our problem, we summarize the asymptotic prop-

erties of the ML estimates of the GPD parameter estimates in the following lemma. For

the proof, see Smith [103]

Lemma 4.1 (Asymptotic properties)

Let F ∈ MDA
(
Hξ, ξ > 0

)
, i.e L

(
e
)

= e
1
ξ F

(
e
)

is slowly varying at ∞ and suppose

Nu → ∞, u → eF simultaneously. Then the ML estimates,


 ξ̂

β̂(u)


, are consistent

and asymptotically normal with

√
Nu


 ξ̂ − ξ

bβ(u)
β(u)

− 1


 →D N

[ 
 0

0


 ,M−1

]
, (4.3.0.24)

where M = 1
(1+ξ)(2ξ+1)

[
2 1

1 1 + ξ

]
is the Fisher information matrix for (ξ, β(u))

′

and M−1 =
[
1 + ξ

][ 1 + ξ −1

−1 2

]
.

This result can be used to make inferences on the estimates. The next section develops

a procedure, similar to section (4.2), for dependent data.

4.4 Extreme QAR: Part II

In Chapters (2) and (3), we gave consistent estimators for µθ

(
xi

)
and scale function,

σθ

(
xi

)
via conditional distribution function estimators and direct minimization. These
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two approaches were shown to work with dependent data under strong mixing conditions.

As already seen, in order to exploit results from extreme value theory, independence in the

series is required. We propose to filter the trend due to stochastic location or in general,

QAR, and volatility by adjusting the QAR and then scaling the difference. Let us denote

the filtered excess residuals by

Z+
t =

(
Yt − µθ(Xt)

σθ(Xt)

)
> 0, t = 1, . . . , n (4.4.0.25)

Note that the assumption of independence are relaxed up to some high levels of θ.

That is, whereas the mean-variance method38 assumes standardized excesses over the

conditional mean are iid , our proposed approach only assumes independence for only Z+
t

corresponding to large θ. In practice, if we replace µθ

(
Xt

)
and σθ

(
Xt

)
by their esti-

mates, this assumption is only approximately satisfied. However, the following discussion

shows that the resulting estimates of the Z+ are at least uncorrelated to a good degree of

approximation.

We note that scaling a conditional variable, helps to reduce the dependence structure in

the data. This is clearly evident from figures ((13),(14) and (15)), where the maximum

autocorrelation for the first five lags39 are plotted against the increasing levels of θ corre-

sponding to the threshold estimate µ̂θ

(
Xt

)
. In all the plots, the continuous line represents

the 95% confidence level of the autocorrelation, computed as Φ−1(0.95)√
Nθ

, of the events in

excess of the threshold. The dotted line represents the maximum autocorrelation from

the unscaled residuals and the thick dotted, the autocorrelation from the scaled residuals

in (4.4.0.25). In all cases, we observe that as the threshold increases, the autocorrelations

for the scaled excesses become statistically insignificant. It should be noted that that

because of sparseness of the extremes, the level θ for the scale function should neither be

too high nor too low.

Let fXt

(
z
)

be the conditional density of Ẑt on Xt. The following assumption is im-

posed on the QAR adjusted-scaled residuals, Ẑt.

38 Which involves historical simulation (HS) in finding the threshold.
39For various excesses obtained on returns from Commerzbank, Deutsche Bank and DAX30 over three

year periods.
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Figure 13: Commerzbank: Maximum autocorrelation for the first 5 lags against the in-

creasing threshold(theta). The upper curve was obtained from the unscaled QAR adjusted

negative returns. The lower was obtained from the QAR adjusted-scaled returns.

Conditions 4.4.1 Let Ẑt = Yt−bµθ(Xt)
bσθ(Xt)

be the sample residuals approximating the Zt. We

assume that, at least, to a good approximation the conditional density function gxi

(
z
)

of

the excesses of Ẑt over the threshold qz
θ given Xt = xi is such that

gxi

(
z
)

= g
(
z
)
, ∀xi and G

(
z
)
∈ MDA

(
Hξ, ξ > 0

)
. (4.4.0.26)

The condition states that the excess conditional distribution of the QAR adjusted-

scaled residuals is heavy tailed and independent of the covariate beyond the threshold at

high probability level, (i.e from the definition of Zt, they are iid ). Our main interest is

now to find the distribution function of the data well above the threshold u = qz
θ = 0,

whose inverse gives the QAR-scaled extreme quantile. From (4.3.0.18), the implicit form

of this distribution can be written as

F
(
qz
θ + z

)
= F

(
qz
θ

)
+

(
1− F

(
qz
θ

))
Fqz

θ

(
z
)

(4.4.0.27)

whose estimate we denote as

F̂
(
q̂z
θ + z

)
= F̂

(
q̂z
θ

)
+

(
1− F̂

(
q̂z
θ

))
F̂bqz

θ

(
z
)
.

From chapter (2), see also Cai, Z and Roussas [20], we have

F̂
(
q̂z
θ

)
= F

(
qz
θ

)
= θ (4.4.0.28)
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Figure 14: Deutsche Bank: Maximum autocorrelation for the first 5 lags against the in-

creasing threshold(theta). The upper curve was obtained from the unscaled QAR adjusted

negative returns. The lower was obtained from the QAR adjusted-scaled returns.

Therefore F̂
(
q̂z
θ + z

)
= θ +

(
1 − θ

)
F̂bqz

θ

(
z
)
. Since µt,θ and σt,θ have already been

consistently estimated in chapters (2) and (3), we assume they are known. This simplifes

our tail estimator to

F̂
(
qz
θ + z

)
= θ +

(
1− θ

)
F̂qz

θ

(
z
)
⇔ F̂

(
z
)

= θ +
(
1− θ

)
F̂0

(
z
)

(4.4.0.29)

where z > 0 and qz
θ = 0 by the definition of our model. The following lemma shows

that F̂
(
z
)

is asymptotically a generalized Pareto distribution function estimator.

Lemma 4.2 (Tail distribution)

Let Zt, t = 1, . . . , n be independent random variables with zero θ-quantile, i.e qz
θ = 0, and

let their excess distribution F0

(
z
)

above qz
θ be a GPD with parameters ξ and β. Then,

F
(
z
)

= θ +
(
1− θ

)
F0

(
z
)

= Gξ,ν,eβ

(
z
)

is again a GPD with the same shape parameter ξ, scale parameter β̃ = β
(
1 − θ

)ξ

and

location parameter ν = β
ξ

((
1− θ

)ξ

− 1
)

=
eβ
ξ

(
1−

(
1− θ

)−ξ)
.

Proof of lemma 4.2
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Figure 15: DAX30: Maximum autocorrelation for the first 5 lags against the increasing

threshold(theta). The upper curve was obtained from the unscaled QAR adjusted negative

returns. The lower was obtained from the QAR adjusted-scaled returns.

As F0

(
z
)

= Gξ,0,β

(
z
)
,

F
(
z
)

= θ + (1− θ)Gξ,0,β

(
z
)

= 1−
(
1− θ

)[
1 +

ξ

β
z

]− 1
ξ

= 1−
[( 1

1− θ

)ξ

+
ξ

β(1− θ)ξ
z

]− 1
ξ

= 1−
[

ξ

β(1− θ)ξ

(
z +

β

ξ

)]− 1
ξ

= 1−
[
1 +

ξ

β(1− θ)ξ

(
z +

β

ξ

)
− 1

]− 1
ξ

= 1−
[
1 +

ξ

β(1− θ)ξ

(
z +

β

ξ
− β(1− θ)ξ

ξ

)]− 1
ξ

= Gξ,ν,eβ

(
z
)

(4.4.0.30)

where β̃ = β(1−θ)ξ is the scale parameter and ν =
eβ
ξ

(
(1−θ)ξ−1

)
, the location parameter.

¤

If our original data Yt follow a QAR-model Yt = µt,θ +σt,θZt with innovation Zt having

zero θ-quantile, then µt,θ is the QAR of Yt at θ. If we choose the threshold u = µt,θ, the
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excess distribution function of Yt is

F Y
u

(
y
)

= P
(
Yt ≤ u

∣∣∣Yt > u
)

= P
(
Zt ≤ y

σt,θ

∣∣∣Zt > 0
)

= F0

( y

σt,θ

)
. (4.4.0.31)

Heuristically, for θ → 1, we have µt,θ = u → ∞, and by theorem 4.2, we can expect F Y
u

and, then, F0 to be well approximated by a GPD. By lemma 4.2, this will also hold for

F .

Let qθ,ϕ be the quantile above a threshold qz
θ = 0 based on Zt and derived by inverting

the distribution F
(
z
)

at a particular level of ϕ > θ. That is for a fixed ϕ ∈ (0, 1),

qz
ϕ = inf

z>0

{
F

(
z
)
≥ ϕ

}

= inf
z>0

{
1−

(
1− θ

)(
1− F0

(
z
))

≥ ϕ
}

, from (4.4.0.27)

≈ sup
z>0

{
Gξ,β(θ)

(
z
)
≤ 1− ϕ

1− θ

}
, for θ → 1 and G = 1−G

= G
−1

ξ,β(θ)

(1− ϕ

1− θ

)

=
β(θ)

ξ

((1− ϕ

1− θ

)−ξ

− 1
)

(4.4.0.32)

Compare (4.2.0.12). We denote its estimate by q̂z
ϕ = infz>0

{
F̂

(
qe
θ + z

)
≥ ϕ

}
=

bβ
(

θ

)

bξ

((
1−ϕ
1−θ

)−bξ
− 1

)
. Intuitively, q̂z

ϕ will be a consistent estimate of qz
ϕ. Since

√
Nθ

(
ξ̂ −

ξ,
bβ(θ)
β(θ)

− 1
)

is consistent and asymptotically normal with zero mean and covariance given

in lemma 4.1, it follows that
(
ξ̂− ξ, β̂(θ)−β(θ)

)
→p

(
0, 0

)
as θ → 1 and Nθ →∞. Then

by by corollary 6.3.14 (iv) in Dudewicz and Mishra [35], page 323,
bβ(θ)
bξ

((
1−ϕ
1−θ

)−bξ
− 1

)

estimates G
−1

ξ,β(θ)

(
1−ϕ
1−θ

)
consistently. The latter coincides approximately with qz

ϕ by the

heuristic arguments we have given above for F
(
z
)

being approximately a GPD. For an

exact proof, however, we would need a version of theorem 4.2 for dependent data, i.e. in

particular for our QAR-process Yt. As the extreme value theory for financial time series

models is still in its infancy, such a result is beyond the scope of this thesis.

For random variables Yt, t = 1, 2, . . ., generated by the process (1.4.0.2) with Zt, t = 1, . . . ,

being iid with F ∈ MDA
(
Hξ, ξ > 0

)
, the conditional QAR of Yt at ϕ is given by

µθ,ϕ = µθ

(
Xt

)
+ σθ

(
Xt

)
qz
ϕ. In the following section, it is argued heuristically that the

estimator for µθ,ϕ

(
Xt

)
is consistent.
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4.4.1 Consistency of the extreme QAR function estimator

In the QAR model the conditional quantile estimate of Yt given Xt, µ̂θ

(
Xt

)
, becomes

the initial estimate as well as the conditional threshold. The GPD is parametrically fitted

to the excesses over µ̂θ

(
Xt

)
. The overall estimator at point, Xt = xi, then becomes

µ̂θ,ϕ

(
xi

)
= µ̂θ

(
xi

)
+ σ̂θ

(
xi

)
q̂z
ϕ, i = 1, . . . , n, (4.4.1.1)

where q̂z
ϕ is estimated from the residuals Ẑt = Yt−bµθ(Xt)

bσθ(Xt)
by fitting a GPD as described in the

previous section. The intuition for the estimate µ̂θ,ϕ

(
xi

)
which combines a nonparametric

quantile estimate with a parametric fit in the extreme tail using theorem 4.2 is quite similar

to the VaR-estimates of McNeil and Frey (2000) based on the POT-model.

The following heuristic argument shows that we can expect

µ̂θ,ϕ

(
xi

)
− µθ,ϕ

(
xi

)
→p 0 (4.4.1.2)

for n →∞, Nθ →∞, θ → 1 and θ < ϕ < 1.

The left hand of (4.4.1.2) can be expressed as

µ̂θ,ϕ

(
xi

)
− µθ,ϕ

(
xi

)
= µ̂θ

(
xi

)
− µθ

(
xi

)
+ σ̂θ

(
xi

)
q̂z
ϕ − σθ

(
xi

)
qz
ϕ (4.4.1.3)

Under conditions (B1)-(B6), (C1)-(C6), (D1), (E1) and for n →∞, we have µ̂θ

(
xi

)
−

µθ

(
xi

)
→p 0, and σ̂θ

(
xi

)
−σθ

(
xi

)
→p 0, see chapters (2) and (3). For F ∈ MDA

(
Hξ, ξ >

0
)

and Nθ → ∞, θ → 1, we have heuristically q̂z
ϕ →p qz

ϕ by the argument in previous

section. By using corollary 6.3.14(iii), page 323 in Dudewicz and Mishra [35]), we get

σ̂θ

(
xi

)
q̂z
ϕ − σθ

(
xi

)
qz
ϕ →p 0, as θ → 1, n →∞. Finally, the application of corollary

6.3.14(i), Dudewicz and Mishra [35], on µ̂θ,ϕ

(
xi

)
completes the argument. For exact

proof, again we would need theorem 4.2 for QAR-processes.

4.4.2 Estimation strategy

In all we adopt the following strategy in the estimation of the extreme QAR function:

Assume Yt, t = 1, 2, . . . , n + d are generated by the QAR-QARCH process.

(1) For m equally spaced θ ∈
(
0.55, 0.9

)
and j = 1, 2, . . . , m, use the QAR-QARCH

model to estimate the conditional threshold, µθj

(
Xt

)
, and scale function, σθj

(
Xt

)
at
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xi, i = 1, . . . , n. Denote the estimates at Xt = xi as µ̂θj

(
xi

)
and σ̂θj

(
xi

)
. Adjust Yt

of µ̂θj

(
xi

)
and scale the resulting residuals to obtain a series of scaled excess quantile

residuals over the scaled threshold;
Yt−bµθj

(xi)

bσθj
(xi)

> 0, i = 1, . . . , n for every j = 1, . . . ,m.

(2) For equally spaced ϕ ∈ [0.95, 1] fit the GPD on the excesses in (1) and graph the set

of fitted quantiles for the respective thresholds.

(3) Make visual judgement to see whether the required level of θ (in this case ϕ) falls

in an appropriate region (the peak area). Proceed to step (4) if the finding is positive,

otherwise, use other appropriate method. As an illustration of this step, we generated

a series of iid random variables, et of size 1000 from a t-distribution with 3 degrees of

freedom. We then fitted a set of quantiles on the excesses over the quantile adjusted ran-

dom variable et. The surface of the estimated quantiles is shown in figure (16). Clearly

for low quantiles (corresponding to (vartheta)), the GPD underestimates as the thresh-

old increases. For higher quantiles the GPD gives the peak quantiles as the threshold

increases. Let us note such visual observation helps in deciding whether the estimation

of the required quantile corresponding to a probability level needs a combination of EVT

or not. If one is interested in the quantile at ϕ = 0.98, say, the GPD and high threshold

would underestimate the quantile. On the other hand, taking a high threshold would

deliver the desired quantile at high levels above 0.990, because the peak over threshold

(POT) quantiles are generated. That is high threshold delivers the peak of the required

quantile in heavy tailed distribution.

(4) Choose a final high level threshold µ̂θ

(
xi

)
, by setting θ ∈

(
0.85, 0.92

)
, depending on

the size of the series or by using the mean excess graph to select the θ where the curve

appears to strech out linearly.

(5) Fit the GPD over the excesses and extract the required quantile.

Step (5) completes the main computation required. To get back the extreme QAR,

rearrange
bµθ,ϕ

(
xi

)
−bµθ

(
xi

)

bσθ

(
xi

) = q̂z
ϕ.

If the underlying process is assumed to be an AR-ARCH, with the conditional mean

known ( or equal to zero), step (1) of the strategy can be omitted. In this case, the
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simplest scale function is µ̂θ

(
xi

)
for θ > 0.5 in step (2). The scaled excesses become

Yt

µ̂θ

(
xi

) − 1 > 0, θ > 0.5. (4.4.2.1)

Figure 16: Surface plot of the fitted ϕ-quantile on the excesses over threshold θ( cor-

resonding to qe
θ)

We applied the above strategy in the estimation of the extreme QAR at ϕ = 0.95 and

0.99 from negative returns on BASF, see figure (12). The normal quantile-quantile plot

in figure (17) shows the returns have heavier tail than normal distribution. In order to

determine the shape parameter, ξ, we fitted the GPD on the excesses over the quantile

residuals corresponding to 100 equally spaced θ ∈ (0.45, 0.92) and plotted the estimated

shape against the level (1 − θ) shown in figure (18). From the graph we chose ξ̂ = 0.25

which correspond to the fairly stable areas (between 1 − θ = 0.10 and 0.3). This area is

also supported by the plot of mean excess function (MEF) in figure (19) which indicate a

linear stretch in areas beginning θ = 0.65 ( given on the third axis) corresponding to the

threshold value of about 0.015, on the first axis. The estimated tail distribution is given in

figure (20), where the dots represent the empirical estimates. Both of the estimated tails
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(blue and green) are heavier than the empirical distribution in 1−F ∈ (0.019, 0.15). Below

0.019, the estimate obtained by using the threshold at θ = 0.85, provides a heavier tail

then the other one at θ = 0.6. As compared to the Hill’s estimate of the tail distribution

(see figure (11)), the GPD appears to be capable of capturing large values at relatively

high levels of ϕ as opposed to the Hill’s estimator which produces tails thinner then the

empirical distribution at θ = 0.85 for relatively high quantiles. The estimates of the

conditional quantile functions at ϕ = 0.95 using direct conditional quantile regression

(QAR) method, QAR augmented with GPD based on unscaled QAR adjusted residuals

(QAR+GPD) and QAR augmented with GPD based on QAR adjusted-scaled residuals

(QAR+sc.GPD) are respectively shown in figure (21) as blue, green and red curves. The

threshold was taken to be at θ = 0.85. The QAR estimates for all the three approaches do

not seem to be quite different from each other, with the exception of the QAR+GPD which

appears to underestimate in cases of high volatlities. We again applied the three methods

in the estimation of the extreme QAR, on the same data, at ϕ = 0.99. The result is shown

in figure (22), where the blue, green and red curves represent estimates obtained by QAR,

QAR+GPD and QAR+sc.GPD respectively. Clearly the estimates are different. The

QAR ( so is QAR+GPD), do not appear to exhibit the characteristics of the underlying

volatility. On the other hand, the QAR+sc.GPD appears to adjust quite well according

to the underlying volatility. Lastly, we superimposed the estimates of extreme QAR at

ϕ = 0.99 in figure (23), obtained by using the QAR augmented with the Hill estimator

(QAR+sc.Hill) and QAR+sc.GPD, represented in green and blue curves respectively.

Both estimates appear to adjust according to the underlying volatility. However, there

is marked diffference in the estimates where the volatility is high. The above discussion

repesents only the beginning of a detailed numerical study of the performance of the

introduced model and its variants in section (4.6)

4.5 Threshold problem

An important issue in the estimation of extreme quantile by EVT, is the choice of an

appropriate threshold, µθ

(
Xt

)
, that determines the number of order statistics to be used

in the estimation procedure. If the threshold is too high, there are too few exceedances

resulting in a high variable estimator. On the other hand, a low threshold produces a
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Figure 17: Returns on BASF: Quantile-quantile plot of residuals against normal distribu-

tion shows the quantile residuals to be leptokurtic

biased estimator, because the asymptotic approximation becomes very poor. This was

cleary seen in figure (11), in the estimation of the tail distribution through the Hill’s

estimate of shape parameter; as the threshold increased the tail estimator become thicker

and better for heavy tailed. A small monte-Carlo study was performed to illustrate the

sensitivity of the estimator to the threshold. We generated 500 samples of size 1000 using

student t-distribution with 4 degrees of freedoms. Then we estimated 95%, 99%, and

99.5% quantiles using the GPD formula. The threshold values θ corresponding to qe
θ were

chosen by decreasing the proportion40 (1− θ) of the sample exceeded from θ = 0.6 to 0.95

using 200 equal intervals. The bias and variance were computed, respectively, as

Bias
(
q̂θk,ϕ

)
=

500∑
j=1

q̂
(j)
θk,ϕ

500
− qϕ

)
, k = 1, . . . , 200.

and

var
(
q̂θk,ϕ

)
=

1

500

500∑
j=1

(
q̂
(j)
θk,ϕ − qϕ

)2

−Bias2
(
q̂θk,ϕ, k = 1, . . . , 200.

where qϕ is the true quantile. The results were the plotted in figures (24), (25) and

(26). Clearly, there seem to be a compromise between the variance and the bias, which

40That is by reducing the number of exceedances n(1− θ)
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Figure 18: The shape estimate against increasing threhold (1 − θ), where θ varies from

high levels to low. The shape was taken as 0.25

theoretically could be obtained by minimizing the mean squared error. But because quan-

tiles are not observable, in practice, basing the selection on minimum MSE would result in

a biased estimator. Some recent statistical developments in threshold selection have been

oberved in Danielsson and de Vries [31], where a two step bootstrap method to select the

sample fraction on which Hill estimator is based, is proposed. To current, threshold selec-

tion when using the GPD has remained a graphical solution, see for example figure (19)

and Embrechts et al. [39] for more details. Moreover there is a consensus in literature41

that taking a very high threshold suffices. This is in line with the fact that the GPD

quantile estimation are usually repeated several times to have a graph of quantiles depict-

ing the quantile of stable areas and the POT quantiles, see again figure (16). Seemingly,

the latter one is more important as in the estimation of risk, one better overestimate than

underestimate.

41See for example McNeil [87].
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Figure 19: Returns on BASF: Plot of mean excess function against the ordered quantile

ajusted-scaled excesses. The third axis indicate the increasing proportion of the ordered

excesses.

4.6 The performance of extreme QAR models

In this section we evaluate the performance of various quantile models in the estimation of

extreme QAR using artificial42 and real data. In particular, we will estimate the extreme

QAR using Historical simulation (HS), direct estimation by generalized Pareto distri-

bution (GPD), direct estimation through the Hill’s estimator (Hill), direct QAR-ARCH

model (QAR), the QAR augmented with GPD on unscaled residuals (QAR+GPD), the

QAR augmented with Hill estimator on unscaled residuals (QAR+Hill), the QAR aug-

mented with GPD on scaled residuals (QAR+sc.GPD) and the QAR augmented with

(Hill) on scaled residuals (QAR+sc.Hill). The QAR+GPD and QAR+Hill can be thought

as a combination of GPD, respectively Hill, with the usual quantile regression model where

the unscaled quantile residuals residuals are assumed to be iid. The QAR+sc.GPD and

QAR+sc.Hill are a combination of GPD (respectively Hill) with quantile regression model

where the unscaled quantile residuals are not assumed independent.

42 The advantage of working with artificial data is that the true (extreme) QAR is known. This makes

it possible to quantify the errors associated with a particular method for measuring extreme QAR.
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Figure 20: Reurn on BASF: Estimates of the tail distribution. Dot represent the empirical.

Green and blue are estimates obtained by setting the threshold to θ = 0.6 and 0.85,

respectively.

4.6.1 A monte Carlo study

We perform a Monte Carlo study to compare our estimates with various direct estimators

and their combination. We generated 500 samples of size 1280 observations for four

different threshold processes, AR(1)-TARCH(1),

Yt = 0.5 + 0.3Yt−1 +

√
0.01 + 0.1Y 2

t−1 + 0.35
( |Yt−1| − Yt−1

2

)2

et, t = 2, , , (4.6.1.1)

where et are zero mean-unit variance iid errors. The errors were generated using random

number generator with the following distributions: standard normal, student43-t with 3

& 4 degrees of freedom and Gamma44 with (2,2) degrees of freedom. Considering only the

student-t distributed error with 4 d.f, an example of the scale function estimate is given

in figure (27), where the dotted represents an estimate of the true scale function, solid,

at θ = 0.90.

The performance of the models were then evaluated using the mean average squared

43To make the errors iid with zero mean-unit variance, we scaled the t-ditributed errors by
√

v
v−2 ,

where v is the degrees of freedom.
44The mean, ab, was first subtracted from the errors and the result divided by the standard deviation

√
ab2.
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Figure 21: Returns on BASF: Plot of negative returns against time. Superimposed are

the estmated conditional quantile at ϕ = 0.95

error (MASE):

MASE
(
µ̂θ,ϕ

(
Xt

))
=

1

500

500∑
j=1

[ 1

1000

∣∣∣
∣∣∣µ̂(j)

θ,ϕ

(
Xt

)
− µ

(j)
θ,ϕ

(
Xt

)∣∣∣
∣∣∣
2]

(4.6.1.2)

where ||.|| denote the Euclidean norm, µ̂
(j)
θ,ϕ

(
Xt

)
and µ

(j)
θ,ϕ

(
Xt

)
are (1000× 1) vectors

of estimated and true functions of extreme QAR at ϕ respectively, for the jth sample.

We used 280 less observations in all the models, except in HS where 281 were used in

the rolling window. The results are shown in table (6). The GPD, Hill and HS did

worse than the QAR and the combination at the 95% level. This is partly due to poor

asymptotic approximation at θ = 0.95 and their underlying assumptions do not conform

with the simulated process. Under normal errors, the GPD appears to perform better

than HS, although both assumes iid. The stars indicate no evaluation was performed as

the estimator is only suitable for heavy tailed distributions. As the level of ϕ increases

to 0.995, the MASE for both GPD and Hill tend to decrease , under nonnormal errors.

Calculating the ratios of the MASE for the direct methods;

MASE
(
Hill

)

MASE
(
QAR

) and
MASE

(
GPD

)

MASE
(
QAR

)

at ϕ = 0.95, 0.99, 0.995 and for all errors, we observe the ratio goes to below 1 from above
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Figure 22: Returns on BASF: Plot of the negative returns against time. Superimposed

are conditional 0.99-quantile estimates

1. This indicates clearly that the rate at which the MASE increase with the increasing ϕ

is slower45 for the estimates obtained by direct application of Hill and GPD than for the

direct QAR. Thus the estimates from Hill and GPD tend to be better than QAR in the

extremes than in the interior where the QAR is good. This support our idea of combining

the direct quantile regression with extreme value theory for high levels. From the table,

it is noted that all the QAR models and their combinations produces similar estimates at

ϕ = 0.95, but increasingly differ as ϕ increases. This confirm the observations made in

figures (21),(22) and (23). By introducing the scale, we observe that the QAR + sc.GPD

and QAR + sc.Hill are clearly superior in terms of the efficiency gained, to the direct

QAR and QAR + GPD. However, the estimates from QA+sc.GPD outperforms the cor-

responding ones from QAR+sc.Hill.

4.6.2 Backtesting

Many banks that use VaR46 models routinely test the performance of the models by

comparing the daily profit and losses with model-generated risk measures to guage the

45 Given that at ϕ = 0.95, the MASE for the Hill and GPD were at least 4 times as large as the MASE

for the QAR.
46 See definition (1.2.1).
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Figure 23: Returns on BASF: Plot of negative returns against time. Superimposed are the

conditiona 0.99-quantile estimates obtained by QAR+sc.Hill(green) and QAR+sc.GPD

(blue).

accuracy of their risk measurement systems. Such testing is refered to as backtesting.

There are quite a number of techniques that test the performance of VaR models, see for

example Kupiec [79] and Cassidy and Gizycki [23]. Kupiec [79] presents an approach to

analyse exceptions47 based on the observations that a comparison between daily profit

and loss outcomes and the corresponding VaR gives rise to a binomial experiment. Under

the assumption that the daily VaR measures are independent, the binomial outcomes

represent a sequence of independent Bernoulli trials each with probability of failure equal

to 1 minus the models specified level of confidence. For instance a 95% level gives a 5%

as the probability of failure on each triall. Hence testing the accuracy of the model is

equivalent to testing the null hypothesis that the probability of failure on each trials equals

the model’s specified probability. The test we consider is known as Kupiec’s POF-Test

which is based on the proportion of failures observed over the entire sample period. The

null hypothesis test that the VaR model’s stated level is equal to the realized probability

level covered by the model (Ho : ϕ = ϕ̃) is achieved by the Likelihood-Ratio-Tests (LR)

statistics given by

47If the actual trading loss exceed the VaR estimate the result is recorded as a failure or exception.
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Figure 24: The variance (solid) and bias (dotted) for the estimate at ϕ = 0.95 against the

threshold (theta)

Table 5: Model Verification: Nonrejection regions. Number of failures at 5% level

Probability level,ϕ T=250 days T=500 days T=750 days T=1000 days

0.0500 7 ≤ N ≤ 19 17 ≤ N ≤ 35 27 ≤ N ≤ 49 38 ≤ N ≤ 64

0.010 1 ≤ N ≤ 6 2 ≤ N ≤ 9 3 ≤ N ≤ 13 5 ≤ N ≤ 16

0.0050 0 ≤ N ≤ 4 1 ≤ N ≤ 6 1 ≤ N ≤ 8 2 ≤ N ≤ 9

0.0010 0 ≤ N ≤ 1 0 ≤ N ≤ 2 0 ≤ N ≤ 3 0 ≤ N ≤ 3

0.0001 0 ≤ N ≤ 0 0 ≤ N ≤ 0 0 ≤ N ≤ 1 0 ≤ N ≤ 1

LR = −2ln

(
ϕN

(
1− ϕ

)T−N

ϕ̃N
(
1− ϕ̃

)T−N

)

where T represents the number of backtesting points, N denotes a Bernoulli random

variable representing the total number of observed failures and ϕ̃ is the maximum likeli-

hood estimator, given by N
T

, for N ≥ 1. The statistic is asymptotically distributed as a

chi-square disribution with 1 degrees of freedom. If the LR statistics exceed the critical

value, 99% quantile of the χ2
1, the hypothesis Ho : ϕ = ϕ̃ against a two sided is rejected.

In accordance with the convention, we will set the size of the test to 5%. For a number of

left tail probabilities and evaluation sample sizes, table (5) gives the nonrejection regions.

To perform the backtest we considered a one period ahead returns data and used the
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Figure 25: The variance (solid) and bias (dotted) for the estimate at ϕ = 0.99 against the

threshold (theta)

first 501 observations to estimate µt+1,θ and σt+1,θ. This means we effectively had 500 pairs

of observations
(
Yt+1, Xt

)
for the estimation of µt+1,θ,ϕ under the assumption that the

underlying process is QAR-QARCH. In the case of historical simulation, we considered

the first 680 returns from which we used the first 181 as a rolling window. The result is

depicted in table (7), for the levels ϕ = 0.95, 0.99 and 0.995.

At ϕ = 0.95, the Kupiec test rejects the direct GPD and Hill methods under BASF,

because of overestimation. At 99%, the QAR+GPD and QAR+Hill models significantly

overestimate the risk in BMW and DBK companies, whereas the HS method significantly

underestimate the risks in BMW and DAX. At 99.5%, except QAR, QAR+sc.GPD and

QAR+sc.Hill, all other methods either under-or overestimate the risk in most of the

portfolios. According to the Basel accord directives, it is only the histotical simulation

the would be penalized, for example at 99% level, because it underestimate the VaR

in DAX. However, for banks, it is not only important to know whether their model

underpredicts the VaR but also if the model is too conservative, because the latter would

unnecessarily jeopardize their profit opportunities. Hence, for the banks, all the models

which significantly overestimate would also be unfavourable. We however remark that the

Kupiec’s test does not seem to be reliable for high values of ϕ. This is seen, for example,

in the case of QAR, which is not significant at ϕ = 0.995 but appears to be poor in terms

of the MASE provided in section (4.6)
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Figure 26: The variance (solid) and bias (dotted) for the estimate at ϕ = 0.995 against

the threshold (theta)

4.6.3 T-periods extreme Value-at-Risk

For prediction purpose, usually a portfolio returns is split up into estimation and evalua-

tion sample for each VaR technique. The estimation sample is used to estimate the model

in question and predict the VaR of the portfolio and then the adequacy of the model is

assessed by the means of evaluation sample. This procedure works well with parametric

models, where the estimation sample is used to estimate the parameters of the model (

e.g normal GARCH), which is then used in the second sample. In nonparametric set up,

such parameters are not there and to our knowledge, one has to estimate directly the

T-periods ahead VaR by conditionally regressing the T-periods returns on the current.

The estimated function is then used for backtesting. This turns out to work well when

T is small, for instance, the one period backtesting that we carried out in section (4.6.2).

However as T increases such estimates are known to be unreliable. In this section, we

propose an approach for T-periods estimation of VaR, in terms of negative returns, which

could be thought as a partial solution to the problem.

Before we go into details, let us note that most VaR models based on variance tech-

niques assume normality, despite the well known fact that high frequency financial data

have fatter tails than can be explained by the normal distribution. For good reasons,

the parameters of normal distribution are usually easier to estimate as there is often an
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Figure 27: Scale function at θ = 0.9 based on AR(1)-TARCH(1) data, n = 1000:-Dotted

is estimate and solid, the true function.

analytical solution for them. Second and perhaps the most important, is the additivity

of the normal48 distribution: The sum of two normally distributed random variables is

also normally distributed. This characteristic is very important for the calculation of

multi-days VaRs based on one-day VaR- a feature of the Basel guidlines. Let us define a

T-period ahead returns as

et+T = log
(Pt+T

Pt

)
=

T∑
j=1

log
( Pt+j

Pt+j−1

)
(4.6.3.1)

where Pt and Pt+T are the current and T-periods ahead stock prices respectively. If

we assume that the returns are iid with zero mean-constant( or unit) variance, it is well

known, see Dacorogna et al. [30], that self additivity implies the
√

T scaling factor for

the T-periods ahead risk of a portfolio on the basis of one-period ahead risk:

V aRt+T,ϕ ≈
√

TV aRt+1,ϕ. (4.6.3.2)

Approximation (4.6.3.2), which is already implimented in Riskmetrics, is known as

48Normal distribution belongs to a class of sum-stable distributions which is characterised by the fact

that sums of random variables from a sum-stable distribution again follow that sum-stable distribution.
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the square root of time rule.

Suppose we now assume that a one period returns are iid with fat tailed distribution.

Then we know the tail distribution belongs to the MDA
(
H 1

α
, 1

α
> 0

)
and looks like a

Pareto tail distribution. To the first order approximation, see (4.2.0.6), we have

1− P
(
et+1 ≤ e

)
= F

(
e
)
≈ (1− θ)

( e

qe
θ

)−α

, e > qe
θ > 0, θ → 1

where qe
θ is the threshold above which a Pareto like tail holds, e can be regarded as a

portfolio’s loss and α is the tail index. The method of obtaining a T-step period prediction

can be based on the work in Feller [49](VIII. 8) where it is shown that the tail risk for

fat tailed distributions is, to a first approximation, linearly additive. Hence for T-period

ahead returns, we have

1− P
(
et+T ≤ e

)
≈ T (1− θ)

( e

qe
θ

)−α

. (4.6.3.3)

Such result has been discussed in the case of nonnormal stable distribution ( with α < 2)

in Fama and Miller [44], page 270. Because of additivity of the tails of heavy tailed

distributions it is easy to see from (4.6.3.3), see also in Danielsson and de Vries [31], that

for a T-periods ahead VaR based on one period VaR a factor of T
1
α is needed, i.e

V aRt+T,ϕ ≈ T
1
α V aRt+1,ϕ, based on iid data

This is called α-root of time rule.

If we now turn back to our problem, clearly the α- root of time rule cannot be applied

directly to the random variable Yt+1, because it is not iid. However, if we assume the

functions µt+1,θ and σt+1,θ are fairly constant within a specified period, T, we can use the

rule to predict a T-period ahead risk. Consider a one period QAR adjusted-scaled returns

Yt+1 − µt+1,θ

σt+1,θ

= Zt+1

which we assume to be iid with Pareto like beyond
qe
θ

Me
θ
, see equation (4.2.0.11). The

extreme unconditional quantile of Zt+1 is given as
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µt+1,θ,ϕ − µt+1,θ

σt+1,θ

= qz
ϕ

The T-periods prediction based on the unconditional random variable Zt+1 is cleary

seen as

µt+T,θ,ϕ − µt+1,θ

σt+1,θ

≈ T
1
α qz

ϕ

Hence, by rearranging we obtain the a T-periods VaR as

V aRt+T,θ,ϕ ≈ µt+1,θ + T
1
α σt+1,θq

z
ϕ

where the quantile qz
ϕ is based on Pareto distribution with 1

α
> 0, as in (4.2.0.12). The

T-periods estimate of VaR, V aRt+T,ϕ is then given by

V̂ aR
(T )

θ,ϕ

(
xi

)
= µ̂θ

(
xi

)
+ T

1
α σ̂θ

(
xi

)
q̂z
ϕ, (4.6.3.4)

where the components µ̂θ

(
xi

)
, σ̂θ

(
xi

)
and q̂z

ϕ are consistent estimates.

4.7 Conclusion

We have combined the QAR-QARCH model, based on nonparametric quantile regression

methodology, with extreme value theory, in the estimation of extreme QAR. We have

argued that the overall estimator is heuristically consistent for the true one. The per-

formance of different models were evaluated by using artificial and real data. The result

shows that QAR-QARCH augmented with GPD performs best: It overcomes the problem

in QAR alone (caused by the sparseness of data in high levels) and the direct application

of EVT which do not cope with the volatility clustering and low thresholds, clearly noted

in the Monte Carlo results. The problem of multiperiod estimation has been discussed

and procedure proposed.

However, the method only models the behaviour of profit and loss (P& L) of a portfolio

and therefore has the following disadvantages: In the case a portfolio consist of multiple

risk factors (market rates), and VaR estimates based on the model indicates an increase

in risk, the source of the increase will not be apparent because the approach does not

model the behaviour of individual risk factors.
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Table 6: Monte Carlo simulation. The thresholds were fixed at θ = 0.90

ϕ = 0.95 Norm. Stud.-t(3) Stud.-t(4) Gamm.(2,2)

HS 1.9900 12.140 7.9200 8.0400

GPD 1.8600 9.4600 4.8900 5.2100

Hill *.**** 10.787 6.7623 7.3456

QAR 0.3900 1.1400 0.8600 1.2600

QAR+ GPD 0.5800 1.6100 1.2000 1.4200

QAR+ Hill *.**** 1.8100 1.4700 1.4920

QAR+sc.GPD 0.3500 1.0200 0.8740 1.1000

QAR+sc.Hill *.**** 1.3140 1.1734 1.4672

ϕ = 0.99

HS 6.2300 64.410 44.100 27.810

GPD 3.6000 16.280 15.460 13.530

Hill *.**** 18.490 14.740 15.140

QAR 1.3700 15.640 9.8400 13.010

QAR+ GPD 0.8800 6.3200 3.8000 6.8300

QAR+ Hill *.**** 6.2200 4.0000 6.7600

QAR+sc.GPD 0.7200 3.8000 2.9000 4.0000

QAR+sc.Hill *.**** 4.3670 3.4010 4.4607

ϕ = 0.995

HS 26.010 94.760 80.520 82.460

GPD 10.570 70.640 54.410 57.320

Hill **.*** 71.440 69.260 59.124

QAR 19.780 80.43 70.600 67.840

QAR+ GPD 4.9400 51.46 43.660 40.470

QAR+ Hill *.**** 51.46 44.780 39.280

QAR+sc.GPD 3.9400 9.960 7.4200 7.2800

QAR+sc.Hill *.**** 11.60 7.7410 8.9978
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Table 7: Backtesting on 510 points. Threshold taken at θ = 0.80.

ϕ = 0.95 (25) BASF(745) BMW(744) DAX(745) DBK(745) BAI(745)

HS 00028 00027 00024 00026 00024

GPD 00016 00020 00017 00022 00022

Hill 00016 00018 00018 00020 00021

QAR 00025 00024 00025 00025 00023

QAR+GPD 00020 00021 00019 00019 00020

QAR+Hill 00019 00018 00019 00021 00020

QAR+sc.GPD 00022 00023 00024 00024 00025

QAR+sc.Hill 00017 00020 00019 00020 00019

ϕ = 0.99 (5)

HS 00008 00010 00010 00006 00007

GPD 00004 00003 00005 00004 00006

Hill 00002 00004 00006 00004 00003

QAR 00005 00005 00004 00005 00006

QAR+GPD 00003 00001 00004 00001 00004

QAR+Hill 00002 00001 00003 00001 00003

QAR+sc.GPD 00005 00006 00005 00005 00005

QAR+sc.Hill 00005 00006 00004 00004 00006

ϕ = 0.995 (3)

HS 00007 00005 00009 00006 00004

GPD 00000 00000 00002 00002 00000

Hill 00000 00000 00000 00002 00001

QAR 00003 00002 00002 00005 00001

QAR+GPD 00000 00000 00001 00001 00000

QAR+Hill 00000 00000 00000 00001 00000

QAR+sc.GPD 00002 00003 00002 00002 00003

QAR+sc.Hill 00001 00002 00001 00002 00002
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5 Conditional expected shortfall

In the last decade, there has been regulatory concerns in the financial sector on the

question of how to evaluate portfolio risk. Artzner, Delbaen, Eber and Heath (1999),

provides an axiomatic foundation for ”coherent” risk measures.

5.1 Coherent risk measure

Definition 5.1.1 (Artzner et al. [6])

Consider a set V of real-valued random variables on some probability space
(
Ω,F,P

)

with finite first moment (tail index α > 1) for all e ∈ V . The function ρ : V → R is a

coherent risk measure if the following axioms( or properties) hold

(i) Monotonicity: e1, e2 ∈ V,with e1 ≤ e2 ⇒ ρ
(
e1

)
≥ ρ

(
e2

)

(ii) Sub-additivity: e1, e2, e1 + e2 ∈ V ⇒ ρ
(
e1 + e2

)
≤ ρ

(
e1

)
+ ρ

(
e2

)

(iii) Positive homogeneity: For all λ > 0, e ∈ V, ⇒ ρ
(
λe

)
= λρ

(
e
)

and

(iv) Translation invariance: For all λ ∈ R e ∈ V, ⇒ ρ
(
e + λ1

)
= ρ

(
e
)
− λ

for a numeraire 1.

The sub-additivity axiom is of particular interest here. It expresses the fact that

a portfolio made up of sub-portfolios will risk an amount which is at most the sum of

separate amounts risked by its sub-portfolios. The global risk of a portfolio will be the

sum of the risks of its parts only in the case when the latter can be triggered by concurrent

events, namely if the sources of these risks conspire to act together. In all other cases, the

global risk of the portfolio will be strictly less than the sum of its partial risks. Thus if a

measure is sub-additive, the portfolio diversification will always lead to risk reduction. If

a risk measure is not sub-additive, diversification could produce an increase in their value

even when partial risks arise from independent ( or mutually exclusive) events, Acerbi et

al. [2].

An obvious area in the financial industry, where sub-additivity plays a great role, is in

capital adequacy requirements in banking supervision: If a bank is made up of several

branches such that the capital requirement of each branch is dimensioned on its own,
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then under sub-additivity, the regulator is confident that also the overall bank capital is

an adequate one. Outside sub-additivity, the risk of the whole bank may turn out to be

much bigger than the sum of the branches risks.

Unfortunately, risk measures based on second moments including the standard deviation,

as well as quantile based measures like VaR are not necessarily subadditive and hence not

coherent risk measure, Artzner et al. [6]. This happens in situations where a portfolio

is split into subportfolios such that the sum of the V aR for individual subportfolio is

required to be at least the global portfolio one. The second disadvantage is that it only

gives a bound on the losses that occur with a given frequency; it tells nothing about the

potential size of a loss given that it has exceeded the bound. To correct these problems,

we take the (conditional) average of those events exceeding the VaR. In the following

section, we consider the case for iid data.

5.2 Expected shortfall under iid case

Let F
(
z
)

be a probability distribution function of iid random variables Zt, t = 1, . . . based

on the process (1.4.0.2) and for some probability ϕ ∈ (0, 1) such that 0 << θ < ϕ < 1,

consider the ϕ-quantile as

qz
ϕ = inf

{
z ∈ R

∣∣∣F
(
z
)
≥ ϕ

}
(5.2.0.5)

If F is continuous, then P
(
Zt = qz

ϕ

)
= 0 and F

(
qz
ϕ

)
= ϕ, while if F is discontinuous

in qz
ϕ, then P

(
Zt = qz

ϕ

)
> 0 and F

(
qz
ϕ

)
= P

(
Zt ≤ qz

ϕ

)
> ϕ.

Consider the order statistics zn,n ≤ . . . ≤ zk+1,n ≤ zk,n ≤ . . . z1,n as the sorted values of

the n-tuple
(
Z1, . . . , Zn

)
and let k = [n(1 − ϕ)]

(
= maxm∈N

{
m ≤ n(1 − ϕ)

})
be the

integer part of n(1−ϕ) . The set of observations which constitute the 100(1−ϕ)% largest

of the total values in the sample is represented by the largest k observations (outcomes){
zk,n . . . , z1,n

}
. As usual, zk+1,n, denotes the empirical quantile which we may write as,

qz
ϕ,n where ϕ stands for the proportion of observations below zk,n. The average of the

observations or losses in the 100(1 − ϕ)% worst cases, denoted as =Zt

(
qz
ϕ,n

)
, can be

obtained as



5 CONDITIONAL EXPECTED SHORTFALL 124

=Zt

(
qz
ϕ,n

)
=

1

k

1∑

t=k

zt,n. (5.2.0.6)

It is simply the mean of the k largest observations. By including all the observation

in a sample, one derives a theoretical limit value for (5.2.0.6):

=Zt

(
qz
ϕ,n

)
=

1

k

1∑
t=n

zt,nI{t≤k}

=
1

k

1∑
t=n

zt,nI{zt,n>zk+1,n}

=
1

k

1∑
t=n

ZtI{Zt>zk+1,n}

=
n

k

1

n

1∑
t=n

ZtI{Zt>zk+1,n}

(5.2.0.7)

where we assume that F has a density and, therefore, P
(
zk,n > zk+1,n

)
= 1. With

n− k = nϕ + o
(
n

1
2

)
, i.e. k

n
= 1− ϕ + o

(
n−

1
2

)
, the central limit theorem gives,

qz
ϕ,n ∼ N

(
qz
ϕ,

ϕ
(
1− ϕ

)

nf 2
(
qz
ϕ

)
)

. (5.2.0.8)

by theorem 7.4.2.1, page 374 in Dudewicz and Mishra [35]. Moreover, if limn→∞ qz
ϕ,n = qz

ϕ

with probability 1, then

lim
n→∞

=Zt

(
qz
ϕ,n

)
=

1

1− ϕ
E

[
ZtI{Zt>qz

ϕ}
]

(5.2.0.9)

with probability 1. Hence we give a general definition of the expected shortfall in the

upper tail of a distribution:

Definition 5.2.1 ( Acerbi and Tasche [4])

Let
{

Zt, t = 1, . . . , n
}

be iid random variables representing negative returns of a portfolio

on some specified length of time, and ϕ ∈ (0, 1) be some specified probability level. The

expected 100(1− ϕ)% shortfall of the random variable Zt is defined as
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=Zt

(
qz
ϕ

)
=

1

1− ϕ
E

[
ZtI{Zt>qz

ϕ}
]

+ qz
ϕ

(
1−

P
(
Zt > qz

ϕ

)

1− ϕ

)
(5.2.0.10)

This definition was first introduced in Acerbi and Tasche [4] where it is shown that the

simple sub-additive nature of the sample expected shortfall estimator generalizes easily

to (5.2.0.10). The second part on the right hand side is a correction term to allow also

for discrete distributions with a point mass at qz
ϕ. If F has a density, this term vanishes

as the P
(
Zt > qz

ϕ

)
= 1− ϕ, and the expected shortfall becomes

=Zt

(
qz
ϕ

)
=

1

1− ϕ
E

[
ZtI{Zt>qz

ϕ}

]
. (5.2.0.11)

The idea of fitting a GPD to the extreme tail, explained in chapter 4,is easily adapted to

estimating the conditional expected shortfall. Since from the definition of Zt in (1.4.0.2),

qz
ϕ = qz

θ,ϕ > qz
θ = 0, the excesses over qz

ϕ given that Zt exceeds qz
ϕ, can be written as

Zt − qz
ϕ

∣∣∣Zt > qz
ϕ = (Zt − qz

θ)− (qz
ϕ − qz

θ)
∣∣∣(Zt − qz

θ) > (qz
ϕ − qz

θ) (5.2.0.12)

The following lemma shows that the conditional distribution of Zt− qz
ϕ given Zt > qz

ϕ,

is also a GPD if Zt − qz
θ given Zt > qz

θ is.

Lemma 5.1 Let Fqz
θ

(
z
)

= P
(
Zt − qz

θ ≤ z
∣∣∣Zt > qz

θ

)
= Gξ,β(θ)

(
z
)

with 0 < ξ < 1. Then,

for ϕ > θ, the conditional distribution of Zt − qz
ϕ given Zt > qz

ϕ is also a GPD

P
(
Zt − qz

ϕ

∣∣∣Zt > qz
ϕ

)
= Gξ,β(ϕ)

(
z
)
, (5.2.0.13)

with the same shape parameter ξ and scale β(ϕ) = β(θ) + ξqz
ϕ, and the expected shortfall

is

=Zt

(
qz
ϕ

)
=

qz
ϕ(1 + ξ) + β(θ)

1− ξ
=

qz
ϕ + β(ϕ)

1− ξ
(5.2.0.14)

Proof of lemma 5.1

Let F denote the conditional distribution of Zt − qz
θ , F = 1 − F . The conditional

probability, Fqz
ϕ

(
z
)
, of the excesses is given by
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P
(
Zt − qz

ϕ ≤ z
∣∣∣Zt > qz

ϕ

)
= P

((
Zt − qz

θ

)
−

(
qz
ϕ − qz

θ

)
≤ z

∣∣∣Zt − qz
θ > qz

ϕ − qz
θ

)

=
F

(
z + qz

ϕ − qz
θ

)
− F

(
qz
ϕ − qz

θ

)

1− F
(
qz
ϕ − qz

θ

)

This implies 1− Fqz
ϕ

(
z
)

=
F̄

(
z + (qz

ϕ − qz
θ)

)

F̄
(
qz
ϕ − qz

θ

) =
F qz

θ

(
z + qz

ϕ

)

F qz
θ

(
qz
ϕ

) .

Hence, by our assumptions,

F qz
ϕ

(
z
)

=
Gξ,β(θ)

(
z + qz

ϕ

)

Gξ,β(θ)

(
qz
ϕ

)

= Gξ,β(θ)+ξqz
ϕ
(z), (5.2.0.15)

using Gξ,β

(
y
)

=
(
1 + ξ

β
y
)− 1

ξ
.

The second part,

=Zt

(
qz
ϕ

)
=

1

1− ϕ
E

[
ZtI{Zt>qz

ϕ}

]

= qz
ϕ +

1

1− ϕ
E

[(
Zt − qz

ϕ

)
I{Zt−qz

ϕ>0}
]
,

(5.2.0.16)

where the second term on the right is the mean excess function (MEF) over the

threshold qz
ϕ. We know that the mean excess function for the GPD with ξ < 1 and

threshold u has the following expression

MEF
(
u
)

= E
[
Zt − u

∣∣∣Zt > u
]

=
β + ξu

1− ξ
, β + ξu > 0 (5.2.0.17)

and therefore combining (5.2.0.15) and (5.2.0.17), we get

=Zt

(
qz
ϕ

)
= qz

ϕ + MEF
(
qϕ)

= qz
ϕ +

β(ϕ) + ξqz
ϕ

1− ξ
,

=
qz
ϕ + β(ϕ)

1− ξ
=

qz
ϕ

(
1 + ξ

)
+ β(θ)

1− ξ
. (5.2.0.18)
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¤

A general result concerning the existence of moments is that if Zt is a GPD, then for

all integers r, such that r < 1
ξ
, the rth first moments exist, see Embrechts et al. [39], page

165. Denote the estimate of the expected shortfall in (5.2.0.18) by

=̂Zt

(
q̂z
ϕ

)
= q̂z

ϕ

1 + ξ̂

1− ξ̂
+

β̂(θ)

1− ξ̂
. (5.2.0.19)

Since ξ̂ and β̂(θ) are obtained by ordinary ML or moment methods, and q̂z
ϕ is intuitively

consistent by the heuristics (from chapter (4)), then =Zt

(
q̂z
ϕ

)
→p =Zt

(
qz
ϕ

)
heuristically.

By the same argument as in section (4.4), =̂Zt

(
q̂z
ϕ

)
should also be a consistent estimate

of the expected shortfall if Fqz
θ

(
z
)

is not exactlty a GPD but only in the limit for θ → 1

using theorem 4.2.

5.2.1 Alternative Expected shortfall

An equivalent alternative representation of expected shortfall which reveals in a transpar-

ent way its direct dependence on ϕ is obtained via the inverse of a distribution function

F
(
z
)

= P
(
Zt ≤ z

)
. Define the quantile function, qz

ϑ, as usual as

qz
ϑ = inf

{
Zt ∈ R

∣∣∣F
(
z
)
≥ ϑ

}
, ϑ ∈ (0, 1)

Then =Zt

(
qz
ϕ

)
can be expressed as the mean of qz

ϑ on the interval [1− ϕ, 1), i.e

=Zt

(
qz
ϕ

)
=

1

1− ϕ

∫ 1

1−ϕ

qz
ϑdϑ, (5.2.1.1)

see Acerbi and Tasche [3]. The second alternative which can be derived from (5.2.0.10)

has been formulated in Rockafellar and Uryasev [99] where the expected shortfall is given

by

ES
(
., ϕ

)
= TCE

(
., ϕ

)
+ (λ− 1)

(
TCE

(
., ϕ

)
− V aR

(
., ϕ

))

with λ ≡
P

(
Zt>qz

ϕ

)

1−ϕ
≥ 1 and TCE stands for tail conditional expectation. For the case

that F has a density, λ = 1, and the second term vanishes.
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5.3 Conditional expected shortfall for the dependent case

This section uses the extreme QAR or V aRt,ϕ, for ϕ ≥ 0.95, and proposes the conditional

expected shortfall for dependent data. Recall the model (1.4.0.2) has VaR given as

V aRt,ϕ = µt,θ + σt,θq
z
ϕ (5.3.0.2)

where qz
ϕ is the marginal ϕ-quantile of Zt. The conditional extreme V aR given the

past information satisfies the following probability

ϕ = P

(
Yt ≤ V aRt,ϕ

∣∣∣Ft−1

)
(5.3.0.3)

where (1 − ϕ) is the loss probability and V aRt,ϕ = µt,ϕ. Note that for nonnegative

returns, the V aR is usually a function of the loss probability ranging from 1% to 5%

while stock returns are usually measured over one day or ten day period. However, to

be consistent with previous notations, we will continue working with negative log returns

which means the VaR will remain a function of ϕ ≥ 0.95. The conditional expected loss

knowing that the loss is above the V aR is then defined by

=Yt

(
V aRt,ϕ

)
= E

[
Yt

∣∣∣Yt > µt,ϕ;Ft−1

]

= E
[
Yt

∣∣∣Yt > V aRt,ϕ,Ft−1

]
(5.3.0.4)

Proposition 5.1 Let µ : Rd → R be unknown function and (Yt,Xt) ∈ Rd+1 be real

random variables on the probability space (Ω,F,P) from model (1.4.0.2). For a fixed

ϕ ≥ 0.95, define H : Rd+1 → R+ as

H
(
µ
)

= E
[
Mϕ

(
Yt, µ

)∣∣∣Ft−1

]
. (5.3.0.5)

The conditional expected shortfall given that Yt > V aRt,ϕ is given as

=Yt

(
V aRt,ϕ

)
=

1

1− ϕ
H

(
V aRt,ϕ

)
+ µt (5.3.0.6)

with µt = E
[
Yt

∣∣∣Ft−1

]
being the conditional expectation of Yt given the information in

Ft−1.
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Proof of Proposition (5.1)

H
(
µ
)

is convex ( and continuous) with lim|µ|→∞ H
(
µ
)

= ∞. We can take V aRt,ϕ as

a unique minimizer of the objective function, (5.3.0.5), at a fixed ϕ. The expansion of

H
(
V aRt,ϕ

)
yields

H
(
V aRt,ϕ

)
= E

[(
Yt − V aRt,ϕ

)(
I{Yt−V aRt,ϕ>0} − (1− ϕ)

)∣∣∣Ft−1

]

= −(1− ϕ)E
[
Yt

∣∣∣Ft−1

]
+ (1− ϕ)

{
E

[
YtI{Yt−V aRt,ϕ>0}

∣∣∣Ft−1

]

1− ϕ

+ V aRt,ϕ

(
1− ϕ− P

(
Yt − V aRt,ϕ > 0

∣∣∣Ft−1

))

1− ϕ

}

= −(1− ϕ)µt + (1− ϕ)=Yt

(
V aRt,ϕ

)
(5.3.0.7)

and hence,

=Yt

(
V aRt,ϕ

)
=

1

1− ϕ
H

(
V aRt,ϕ

)
+ µt (5.3.0.8)

¤

This result is similar to ”α-risk” in Bassett et al. [8] for iid case. For Yt having a

continuous distribution, then 1−ϕ = P
(
Yt−V aRt,ϕ > 0

∣∣∣Ft−1

)
and putting H

(
V aRt,ϕ

)

in equation (5.3.0.8), we get

=Yt

(
V aRt,ϕ

)
=

1

1− ϕ
E

[
YtI{Yt>V aRt,ϕ}

∣∣∣Ft−1

]
(5.3.0.9)

5.3.1 Estimation under EVT framework

We assume that the excess residuals over the initial QAR adjusted-scaled threshold, qz
θ ,

are iid with distribution that belong to the MDA
(
Hξ, 0 < ξ < 1

)
. From (5.3.0.2), the

VaR is given

V aRθ,ϕ

(
Xt

)
= µθ

(
Xt

)
+ σθ

(
Xt

)
qz
ϕ, ϕ > θ (5.3.1.1)

with qz
ϕ being the quantile of Zt obtained from the GPD fitted to the excesses over qz

θ . Note

that we write V aRθ,ϕ

(
Xt

)
to emphasise that the estimation of V aRϕ

(
Xt

)
is done via
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an initial estimator of µθ

(
Xt

)
. Because the continuity assumption holds, the conditional

expected shortfall at point xi can be written using (5.3.0.9) as

=Yt

(
V aRθ,ϕ

(
xi

))
=

1

1− ϕ
E

[(
V aRθ,ϕ

(
Xt

)
+ σθ

(
Xt

)(
Zt − qz

ϕ

))

. I{V aRθ,ϕ(Xt)+σθ(Xt)(Zt−qz
ϕ)>V aRθ,ϕ(Xt)}

∣∣∣Xt = xi

]

= V aRθ,ϕ

(
xi

)
+

σθ(xi)

1− ϕ
E

[(
Zt − qz

ϕ

)
I{Zt−qz

ϕ>0}
]

= µθ

(
xi

)
+

σθ(xi)

1− ϕ
E

[
ZtI{Zt−qz

ϕ>0}
]

= µθ

(
xi

)
+ σθ(xi)=Zt

(
qz
ϕ

)
(5.3.1.2)

with =Z

(
qz
ϕ

)
given by (5.2.0.18) and Zt = Yt−µθ(Xt)

σθ(Xt)
. Denote the estimator for (5.3.1.2)

as

=̂Yt

(
V̂ aRθ,ϕ

(
xi

))
= µ̂θ

(
xi

)
+ σ̂θ

(
xi

)
=̂Zt

(
q̂z
ϕ

)
. (5.3.1.3)

We note that by the previous heuristic arguments all the quantities in (5.3.1.3) should

be consistent estimators for their respective true functions at point xi. Therefore, the

expected shortfall estimator given by (5.3.1.3) should intuitively also be a consistent

estimator of (5.3.1.2) as n →∞, θ → 1, Nθ →∞.

The procedure presented holds in general set up, which include AR-(T)ARCH processes

with their extensions like AR-GARCH. Simplified versions for the expected shortfall could

be derived, but they may not hold in general. For example, consider the case where the

conditional mean of an AR-(T)ARCH process is zero. The expected shorfall estimator,

at point xi, can be written in a manner that does not involve σ̂θ

(
xi

)
, i.e

=̂Yt

(
V̂ aRθ,ϕ

(
xi

))
= µ̂θ

(
xi

)
+ µ̂θ

(
xi

)
=eet

(
q̂eeϕ

)
, for 0.5 < θ < ϕ < 1,

where ẽt = Yt−bµθ(Xt)
bµθ(Xt)

at Xt = xi are assumed approximately iid with zero θ-quantile. The

QAR, µ̂θ

(
Xt

)
, becomes the threshold as well as the scale function. This setting do not

hold when the conditional mean of the process is non zero.
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5.3.2 Estimation under general framework

The straightforwardness of equation (5.3.0.6) motivates direct estimation of the expected

shortfall without transforming the excesses over the VaR into iid. At point Xt = xi, the

expected shortfall estimator is

=̂Yt

(
V̂ aRθ,ϕ

(
xi

))
=

1

1− ϕ
H

(
V̂ aRθ,ϕ

(
xi

))
+ µ̂

(
xi

)
(5.3.2.1)

where µ̂
(
xi

)
is a conditional mean function estimator for µ

(
Xt

)
at xi obatined as in

(4.2.0.14). The expected shortfall estimator, (5.3.2.1), is consistent if V̂ aRθ,ϕ

(
xi

)
and

µ̂
(
xi

)
are consistent.

A simple estimation algorithm would be to start by estimating the functions in QAR-

QARCH model. Then fit the GPD on the scaled excesses over the QAR estimator and

derive the unconditional quantile which is then used to estimate V aRϕ

(
xi

)
. Finally,

obtain a local linear estimate of µ
(
xi

)
and put the estimated quantities in (5.3.2.1).

Note that for more robust estimator, the quantity µ̂
(
xi

)
could be replaced by a consistent

estimator for µ0.5

(
xi

)
, see chapters 2 and 3.

Under the assumption that the conditional mean function, µ
(
xi

)
, is zero, the expected

shortfall estimator reduces to the simplest form;

=̂Yt

(
V̂ aRθ,ϕ

(
xi

))
=

1

1− ϕ
H

(
V̂ aRθ,ϕ

(
xi

))
(5.3.2.2)

which is faster to compute.

Note that both results on expected shortfall estimators in (5.3.1.3) and (5.3.2.1) assume

that the first moment is finite. However, from practical point of view the latter result can

be used not only with the integrable variables or variables with continuous distributions,

but also in situations where discontinuities arises.

5.4 T-periods conditional expected shortfall and backtesting

This section formulates T-periods ahead prediction of the expected shortfall with either

of the approaches presented in sections (5.3.1) or (5.3.2). Let us define a T-period ahead

returns by

Yt+T = − log
(Rt+T

Rt

)
= −

T∑
j=1

log
( Rt+j

Rt+j−1

)
, t = 1, . . . , n
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where Rt and Rt+T are the current and T-period ahead, for instance of stock prices,

respectively.

(1) Based on α-root of time rule

In this case, we have a T-period ahead estimator of the expected shortfall, c.f (4.6.3.4),

as

=Yt

(
V̂ aR

T

θ,ϕ

(
xi

))
= µ̂

(1)
θ

(
xi

)
+ T

1
α σ̂

(1)
θ

(
xi

)
=(1)

Zt

(
q̂z
ϕ

)
(5.4.0.3)

where µ̂
(1)
θ

(
xi

)
and σ̂

(1)
θ

(
xi

)
are 1-period ahead estimates of QAR and scale function, at

point Xt+1 = xi, respectively. The expected shortfall estimator, =(1)
Zt

(
q̂z
ϕ

)
, is based on iid

random variable Zt+1 whose quantile q̂z
ϕ is obtained using (4.2.0.12). The random variable

Xt+1 is Ft-measurable.

(2) Under GPD framework

Here a T-periods expected shortfall, at point xi, is defined as

=Yt

(
V̂ aR

(T )

θ,ϕ

(
xi

))
=

1

1− ϕ
E

[
Yt+T I{Yt+T >[V aRθ,ϕ(Xt+1)}

∣∣∣Xt+1 = xi

]

= µ̂
(T )
θ

(
xi

)
+ σ̂

(T )
θ

(
xi

)
=(T )

Zt

(
q̂z
ϕ

)
(5.4.0.4)

with µ̂
(T )
θ

(
xi

)
and σ̂

(T )
θ

(
xi

)
being T-periods estimates of QAR and scale function re-

spectively, and =(T )
Zt

(
q̂z
ϕ

)
is the expected shortfall estimate derived from GPD and based

on iid random variable Zt+T .

(3) Under general framework

We define a T-periods expected shortfall as

=Yt

(
V̂ aR

(T )

θ,ϕ

(
xi

))
=

1

1− ϕ
H

(
V̂ aR

(T )

θ,ϕ

(
xi

))
+ µ̂(T )

(
xi

)
(5.4.0.5)

where µ̂(T )
(
xi

)
is the estimate for the conditional mean function, µ(T )

(
Xt+1

)
, of Yt+T at

Xt+1 = xi.

An extensive Monte Carlo study would need to be carried out to determine which of

these formulae is better for periods T > 1. One way of performing such study would be
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to determine the mean average squared error (MASE) for =Yt

(
V̂ aR

(T )

θ,ϕ

(
xi

))
, at levels

ϕ = 0.95, 0.99, 0.995, against T , for T = 2, . . . ,. On real data situation, the performance

of the expected shortfall formulae may be investigated by evaluating the magnitude of the

descrepancy between Yt+T and estimate, =Yt

(
V̂ aR

(T )

θ,ϕ

(
Xt+1

))
, in the event of failures in

the VaR models for T = 2 . . . , 10 and at levels ϕ = 0.95, 0.99, 0.995. Define the theoretical

residuals as

rt+T =
Yt+T −=YT

(
V aR

(T )
θ,ϕ

(
Xt+1

))

σ
(T )
θ

(
Xt+1

)

= Zt+T −=Zt

(
qz
ϕ

)

Since Zt+T in our model are iid with zero θ-quantile and unit scale, then rt+T I{Zt+T−qz
ϕ>0}

are also iid with zero expectation and some constant variance. The empirical version of

the failures can be formulated as r̂t+T I{Yt+T−[V aR
(T )

θ,ϕ(Xt+1)>0}, where r̂t+T is the estimate

of rt+T using the estimated quantities. Under the null hypothesis that the functions

V aR
(T )
θ,ϕ

(
Xt+1

)
, σ

(T )
θ

(
Xt+1

)
and the first moment of the truncated errors, E

[
Zt+T I{Zt+T >qz

ϕ}
]
,

are correctly estimated, the residuals should behave like an iid sample with zero mean

and some constant variance and therefore bootstrap methods in Efron and Tibshirani [38]

could be used to test one sided hypothesis against the alternative that the conditional

expected shortfall is systematically underestimated. See McNeil and Frey [88], where the

procedure is used in the case of AR-GARCH approach.

5.5 Conclusion

This chapter dealt with the problem of capital adequacy requirement posed by VaR as a

risk measure. We have proposed two semiparametric estimator of the conditional expected

shortfall. The first estimator is based on fitting the GPD to the excesses over VaR and the

second one, which we consider more general, is based on Koenker-Bassett loss function.

The consistency for the two estimator have also been discussed.
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