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ABSTRACT
Choosing a suitable threshold has been an issue in practice. Based
on the mean excess plot (MEP), the eyeball inspection approach
(EIA) is mainly used to determine the threshold. This involves fitting
the threshold at the point the plot becomes approximately linear
solely using one’s sense of judgement in such a way that
Generalized Pareto model is valid. This is a rather subjective choice.
In this paper, we propose an alternative way of selecting the thresh-
old where, instead of choosing individual thresholds in isolation and
testing their fit, we make use of the bootstrap aggregate of these
individual thresholds which are formulated in terms of quantiles.The
method incorporates the visual technique and is aimed at reducing
the subjectivity associated with solely using the EIA. The new
approach is implemented using simulated datasets drawn from three
different distributions. An application to the NSE All share Nigerian
stock index is presented. The performance of the proposed model
and the EIA are judged based on standard error, Negative log likeli-
hood, the Akaike Information Criteria and the Bayesian Information
Criteria. The results show that the new technique gives similar esti-
mates as the EIA and in some cases it performs better. In compari-
son to other existing methods, the proposed model performs well.
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1. Introduction

In the field of Extreme value theory (EVT), threshold selection is critical especially
when the threshold-based methods (such as the Peaks-over-threshold (POT) technique)
are considered. This selection has to be done first, before we can fit the Generalized
Pareto Distribution (GPD) to the given data. The choice of threshold comes at a cost. A
high threshold value reduces bias while increasing variance for the estimators of the
GPD parameters. A low threshold on the other hand, brings about an opposite effect.
Thus, choosing a suitable threshold has been an issue in practice. Hence the importance
of selecting an appropriate threshold that balances the two.
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In literature, not much attention has been dedicated to the issue of selecting an optimal
threshold which we denote by u. Some authors who have highlighted on this problem and
proffered varied solutions include Lang et al. (1999), Dupuis (1999), Zoglat et al. (2014), and
Thompson et al. (2009). Suggested approaches range from graphical (approaches based on
visual inspection) to analytical methods (approaches based on goodness of fit tests) or a com-
bination of both. The MEP is an example of the graphical approach which was proposed by
Davison and Smith (1990) based on the linearity of the mean excess function for the GPD.
When the Hill estimator is used to estimate the tail index, Guillou and Hall (2001) proposed
a way of determining the optimal threshold by choosing the number of upper order statistics
k such that the mean of the bias is significantly different from zero. Examples of the analytical
approaches include the Multiple Threshold method (MTM), the Square Error method (SE)
and the Likelihood Ratio Test method (LRT).
Focusing on the MEP, the data is ordered and the sample mean excess function of

the ordered data M̂ðXðiÞÞ is plotted against the set of ordered data XðiÞ: The plot
becomes linear above u from where the GPD is valid for positive shape parameter. It is
important to note that if the GP model is valid for excesses above u, then is also valid
for u �>u: Judging from where the graph is approximately linear using only the eyeball
inspection approach, is a rather subjective choice. Different thresholds may be selected
by different viewers of the plot which in turn affects reproducibility and further infer-
ences. This is a key drawback. We propose an alternative way of selecting the threshold
as an improvement on the visual approach. This will provide a new insight on how to
tackle the problem of selecting the best threshold from the MEP with the aim of reduc-
ing the subjective nature of such a choice.
What sets our proposed model apart from other threshold estimation models is the

incorporation of the underlying idea from the bootstrap aggregation technique in
improving the choice of the threshold (on an existing graphical procedure-MEP) which
currently solely depends on visual inspection. Tancredi et al. (2006) used the Bayesian
approach to overcome the difficulty of the fixed threshold technique, making use of
both the extreme and non-extreme data. Bermudez et al. (2001) consider the probability
cumulated up to the threshold and estimate it based on the data and the frequency of
occurrence. A mixture of two distributions (GPD and Weibull) with data dependent
weights are implemented in Frigessi et al.’s (2002) model. Here the threshold choice is
indirectly performed. Most resampling approaches extensively reviewed in Scarrott and
MacDonald (2012) were developed to obtain the optimal tail index estimate.
This paper is organized as follows. In Section 2, the EVT is briefly discussed and the

underlying assumptions of the MEP is explained. Section 3 provides the basic concept
of order statistics, quantile modeling and bootstrap aggregation. The new technique is
also introduced here. Applying the proposed method, Section 4 presents the results of
the simulation study and it is compared to other existing methods. We apply our model
to a real dataset in Section 5. The paper ends with the concluding remarks in Section 6.

2. EVT background

The foundations of EVT were developed by Fisher and Tippett (1928). Coles (2001)
gives a very detailed presentation of the theoretical background of EVT. The classical
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EVT comprises mainly of two approaches - the block maxima (BM) and the POT
approaches. In the former, the data is divided into blocks and the generalized extreme
value (GEV) distribution is fitted to the maxima. In the latter, a threshold is determined
above which the excesses are fitted with the GPD.

2.1. Generalized extreme value (GEV)

Let X1; :::;Xn be a sequence of independent and identically distributed (iid) random var-
iables with distribution function F. This could be observations of insurance claims in a
year. Define

Mn ¼ max X1; :::;Xnf g
The distribution of Mn can thus be derived as:

IP Mn � zf g ¼ IP X1 � z; :::;Xn � zf g
¼ IP X1 � zf g � ::: � IP Xn � zf g ¼ F zð Þ� �n

We state a modified version of the extremal types theorem, that is, the Fisher-Tippet
theorem (Fisher and Tippett 1928) (referred to as Theorem 1 below). This theorem
allows for the characteristics of an asymptotic distribution for the maxima to be defined.
We can estimate Fn by the limiting distribution as n ! 1:

Theorem 1. If there exist sequences of constants ðanÞn�0>0 and ðbnÞn�0 such that for a
non-degenerate distribution G,

IP
Mn�bn

an
� z

� �
! G as n ! 1 (2.1)

then G is a member of the generalized extreme value family

G zð Þ ¼ exp � 1þ n
z�l
r

� �� ��1
n

þ

( )
(2.2)

with l, the location, r>0; the scale and n, the shape parameters. zþ ¼ maxfz; 0g:
It is important to note that the shape parameter n, is the dominant factor in deter-

mining which particular distribution is obtained.

Definition 1.1. Domain of Attraction.
A distribution t is said to be in the domain of attraction of an extreme value type

distribution G (either Gumbel, Fr�echet, or Weibull), represented as t 2 GðtÞ; if there

exist an>0 and bn 2 R such that the distribution of Mn�bn
an

converges weakly to G, where

Mn :¼ max1�i�nXi for an i.i.d. sequence ðXiÞi2N with distribution t:

2.2. The generalized pareto distribution (GPD) and the threshold approach

This method considers more of the most extreme observations. This is one of the main
advantage it possesses when compared to the BM approach. This technique is due to
Pickands (1975). The Pickands–Balkema–de Haan Theorem (here denoted as Theorem 2)
is stated below (see Embrechts et al. (2005) Theorem 7.20)
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Theorem 2. Let X1;X2; ::: be a sequence of iid random variables with common distribu-
tion function F and let

Mn ¼ max X1;X2; :::;Xnf g
Let us denote an arbitrary term in Xi sequence by X and suppose that X satisfies

Theorem 1 so that for large n

IP Mn � z½ � � z ! G zð Þ as n ! 1
For a non-degenerate distribution function G given as

G zð Þ ¼ exp � 1þ n
z�l
r

� �� ��1
n

þ

( )

for some l;r>0 and n, then for large enough u the distribution function of X condi-
tional on X> u can be approximated as

IP X � yjX>u
� 	 ! H yð Þ as u ! 1

where

H yð Þ ¼ 1� 1þ n
y�u
ru

� ��1
n

þ
y>u (2.3)

H(y) is the GPD with the modified scale parameter ru ¼ rþ nðu�lÞ corresponding to
the excess of the threshold u.

2.3. Mean excess plot

A very popular diagnostic tool which aids in the selection of u is the mean excess (ME)
plot. The ME function of a random variable X is defined as

M uð Þ :¼ E X�ujX>u½ � 0 � u � xF (2.4)

given that EXþ<1: This is also called the mean residual life function, especially in
reliabilty theory field. Its formula, given that X is a positive random variable is

M uð Þ ¼
Ð xF
u

�F xð Þdx
�F uð Þ 0<u<xF

where xF is the endpoint of the distribution function F and �F is the survivor function.
If a distribution function is subexponential the mean excess function tends to infinity,

if it is an exponential distribution the mean excess function is a constant and for the
normal distribution the mean excess function tends to zero.
When working with the data, the empirical ME is used as an estimate of M(u). Given

an i.i.d sample X1; :::;Xn from F(x), the empirical ME function is defined as

M̂ uð Þ ¼
Pn

i¼1 X ið Þ

 �

I X ið Þ>u½ �Pn
i¼1 I X ið Þ>u½ �

�u ¼
Pn

i¼1 X ið Þ � u

 �

I X ið Þ>u½ �Pn
i¼1 I X ið Þ>u½ �

u � 0 (2.5)

XðiÞ represents the order statistics of the data.
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The ME function of the random variable X, is linear in u in the case of the GPD.
The formula is given below.

M uð Þ ¼ r
1� n

þ n
1� n

u (2.6)

where 0 � u<1 if 0 � n<1 and 0 � u � �r
n if n<0:

Based on the linearity property of the ME function in the case of the GPD, Davison
and Smith (1990) used this property to develop the MEP in which they plot the points

ðXði;nÞ; M̂ðXði;nÞÞ: For a detailed discussion on MEP see Ghosh and Resnick (2010).

3. Basic concept of quantiles and order statistics

Given that the MEP basically requires that the data be ordered, it is important to under-
stand the basic properties of order statistics as it relates to our proposed method. First,
the exact distribution theory of order statistics for a finite sample is discussed, this is
then followed by the asymptotic distribution theory.

Definition 3.1. Order statistics.
Let X1;X2; :::;Xn be independent and identically distributed random variables. Let

X1:n � X2:n � ::: � Xn:n which we simply write as Xð1Þ � Xð2Þ � ::: � XðnÞ denote the
ordered values of X1;X2; :::;Xn: Then we call Xð1Þ � Xð2Þ � ::: � XðnÞ the order statistics
of X1;X2; :::;Xn: The kth order statistic XðkÞ is the kth observation in order. That is, the
kth smallest of X1;X2; :::;Xn

The asymptotic theory for order statistics simply has to do with the distribution of
Xr:n; suitably standardized, as n ! 1: Here are the three distinguishing cases:

1. Central Order Statistics (Central Percentiles). This corresponds to
ffiffiffi
n

p ðknn �pÞ ! 0;
for 0<p<1

2. Intermediate Order Statistics. Here n�kn ! 1 and kn
n ! 1

3. Extreme Order Statistics having n�kn fixed

kn represents the k upper order statistics. The subscript n stresses the dependence of k
on the sample size

Definition 3.2. Quantile.
A quantile is the value that corresponds to a specified proportion of a sample

or population.
Let Q(p) be the quantile function (QF). This function gives the quantile values for all

probabilities p, 0 � p � 1: That is,

Q pð Þ ¼ F�1 pð Þ ¼ inf x : F xð Þ � p
� �

0 � p � 1 (3.1)

F�1 represents the inverse of F. On the other hand, the tail quantile is defined as

Q 1� 1
x

� �
¼ inf y : F yð Þ � 1� 1

x


 �
x>1
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Gilchrist (2000) states: The definitions of the QF and the CDF can be written for any
pair of values (x, p) as x ¼ QðpÞ and p ¼ FðxÞ: These functions are thus simple inverses
of each other, provided that they are both continuous increasing functions.

) p ¼ Q�1 xð Þ and x ¼ F�1 pð Þ
Hence, QðpÞ ¼ F�1ðpÞ and FðxÞ ¼ Q�1ðxÞ
Given the sample X1;X2; :::;Xn of observations on F, we define the sample pth quan-

tile as the pth quantile of the sample (empirical) distribution function Fn which is

denoted as Q̂ðpÞ ¼ F�1
n ðpÞ

Some very interesting properties of the quantile function are

1. The sum of two quantile functions is also a quantile function.
2. The product of two positive quantile functions is a quantile function.

If we denote L(p) as the basic form of our quantile, then the generalized form of the
quantile model will include the position (k) and the scale (g) prameters which we can
represent as

Q pð Þ ¼ kþ gL pð Þ (3.2)

Other variables that affect these parameters can also be included depending on the
problem at hand.
Recall that the expected value of X is

E X½ � ¼
ð1
�1

xf xð Þdx

Noting that x ¼ QðpÞ and dp ¼ f ðxÞdx; it implies that in terms of the quantile function

E X½ � ¼
ð1
0
Q pð Þdp (3.3)

From the following property of expectation E½aþ bX� ¼ aþ bE½X�
) E kþ gL pð Þ� 	 ¼ kþ gE L pð Þ� 	

if k and g are constants.

3.1. Relationship between order statistics and quantiles

The order statistics of a sample which is equivalent to the sample distribution function
Fn, plays a major role in modeling with quantile-defined distributions. We can therefore

express the pth sample quantile Q̂ðpÞ as

Q̂ pð Þ ¼ X npð Þ if np is an integer
X npþ1ð Þ if np is not an integer



(3.4)

3.2. Bootstrap technique

Bootstrapping is a statistical technique that is used for estimating quantities about a
given population. This is done by averaging estimates from several small data samples
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that are drawn from a larger dataset. From literature, it is a well known fact that full
sample bootstrap does not work for the extremes (see Politis and Romano (1994), Wu
(1990), and G€otze and K€unsch (1990)), the conventional remedy for this problem is to
use an m-out-of-n bootstrap or subsampling. This involves sampling m times without
(or with) replacement from a sample size of n such that m< n and the condition m !
1 and m

n ! 0 as n ! 1 holds.

3.2.1. Bootstrap aggregation (bagging)

This is an ensemble method introduced by Breiman (1996). It consists of combining
multiple predictors in order to get an aggregated predictor. In most cases the procedure
has been shown to reduce the variance of the predictor whilst keeping the magnitude of
the bias roughly the same. The basic idea of bagging which serves as one of the main
motivation for the construction of our proposed model is bootstrapping and averaging.
Bootstrap is not appropriate when the dataset is small. This is because the original sam-

ple is no longer a good approximation of the population. Bagging can be used to overcome
this difficulty. To apply bagging, the dataset is first divided into a training set and a test set.
Bootstrap samples are taken from the training set, these can be referred to as bags. A model
is trained on each of these bags and tested using the test set. The final model is then
obtained through majority voting or aggregation. The basic algorithm is outlined below.
Repeating B number of times:

� Get bootstrap samples Lk from L(the original training data). A rule of thumb is
to use two-thirds of the original sample.

� Fit a model using Lk.

Then, combine the B models by voting (for classification problem) or averaging (for
estimation problem).

3.3. The quantile bootstrap aggregation procedure

In this section we lay out the assumptions of our model. The procedure is explained in
an algorithmic format and then, the model is represented mathematically.

Assumptions
1. The observations are independent and identically distributed (iid).
2. The distribution is in the maximum domain of attraction (MDA) of the general-

ized extreme value distribution.

The algorithm
This is a two step procedure.
First step: Inspecting the MEP.

1a. Specify a suitable threshold uj by visually inspecting the MEP of the data (D) of
size n obtained at the point where the plot becomes positively linear.

i. Check model fit to confirm that GPD is valid at uj. A simple graphical plot can
be used to check for good fit, for example the QQ plot.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 7



ii. Then, obtain an approximate corresponding quantile value Q̂j of uj.

1b. Next, a sequence of quantile values are selected that satisfies the range L ¼
Qj�1<Qj<Qjþ1 We denote L as the quantile threshold sample (QTS). The size of
L is three. That is, n(L) ¼ 3 with range Qj60:01:

Remark 1. In step 1a, we note that different threshold candidates are present. The eye
inspection approach (EIA) will aid the practioner in choosing the first threshold and
then our proposed method is applied to refine the threshold choice by making use of
an interval of thresholds which includes the first threshold choice. Qj, the first threshold
choice, serves as a reference point to obtain the end points of the interval L. Moreover,
L contains an infinite number of fractions. This is based on the fact that between any
two real numbers numbers there are infinitely many rational numbers.

Second step: Bootstrapping and Aggregating.
Repeat Bm times:

2a. Sample randomly from L. Having selected Ns random values, we obtain the mean

E½L� ¼ 1
Ns

PNs
i¼1 Li: This step provides random quantile estimates for each bootstrap

sample in 2 b(i)
2b. i. Obtain bootstrap samples from D of size n2<n without replacement.

ii. Based on the value generated in step 2a, compute the initial quantile. That is, the
mean obtained in 2a is the quantile that is fitted on 2b(i).

iii. Compute the probability of exceeding Qj�1 and multiply the result by that obtained
in 2b(ii). This gives the final quantile.

iv. Obtain a threshold at Qj�1 by summing the threshold evaluated at quantile Qj�1 (i.e.
uj�1ðQj�1Þ) and the result in 2b(iii).

2c. Combine the Bm thresholds (in 2 b(iv)) by averaging. This gives us the aggregated
threshold value to which we fit the GPD.

Remark 2. By making use of subsamples of the given data through bootstrapping and
averaging over the bootstrapped samples, we incorporate the underlying idea of the bag-
ging approach which is bootstrapping and aggregation. Step 2b(iv) can be viewed as
Bm-point thresholds (or simply, bags of point estimate thresholds), obtained using the
steps 2a -2b(iii) as opposed to just choosing a threshold using the EIA. The relationship
between order statistics and quantiles makes it possible to obtain uj�1ðQj�1Þ
Mathematical representation
Our model incorporates the general form of the quantile model described in Section 3.1.

1. The position vector is set at Q̂j�1 ¼ Q0: This is the lower end of the range. This
is the deterministic part of our model which does not allow for chance or vari-
ability. The threshold corresponding to this point is denoted by u0ðQ0Þ.

2. The fixed quantile threshold sample is L. The pth quantile of each bootstrap sub-
sample Bi will be fitted at point EðLiÞ the expected value of L which we denote
as Q̂½EðLiÞ�: This serves as the basic quantile form (the initial quantile).
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3. The probability that X is greater than the lower end of our fixed range is taken
into account since different subsamples from the given original data will be used.
This condition allows us stay within the range of the tail and it allows for the
influence of uncertainty. It is estimated using the formula

IP X>Q0ð Þ ¼ nu
n

where nu is the number of variables exceeding Q0 and n represents the size of sample.
Thus, our proposed threshold quantile model function is

Û i ¼ u0 Q0ð Þ þ IP X>Q0ð ÞQ̂ E Lið Þ½ � Bið Þ (3.5)

The empirical model is

Û
�
i ¼ u0 Q0ð Þ þ nui

ni
Q 1

Ns

PNs

k¼1
Qk


 � Bið Þn o
Q0<Qk<Qjþ1 (3.6)

The optimal threshold quantile estimate is therefore computed as

Uagg ¼ 1
Bm

XBm

i¼1

U�
i (3.7)

Û agg is the aggregate threshold, Ns is the sample size when sampling from L, the quan-
tile threshold sample. With respect to the ith bootstrap sample from the original data,
nui
ni

represents the probability of exceedence, Qið:Þ is the quantile fitted at point ð:Þ and

Bm is the number of bootstrap samples from the original data (D).

4. Simulation study

The three distributions used are the Skewed generalized t (simply called Skewed t),
Pareto and Lognormal distributions. These are heavy-tailed distributions. For the
Skewed t distribution we show results for simulations with sample sizes 10000 and 1000
while for the other two distributions we only display results for n¼ 1000.

4.1. Skewed generalized t distribution

Miljkovi�c and Radovi�c (2006) have shown that asset returns are leptokurtic and skewed.
To model asset returns we generate data from the Skewed generalized t distribution. A
Skewed t distribution with between 3-5 degrees of freedom (df) is a fat-tailed distribu-
tion. It includes distributions that have both heavy tails and skewness (Arslan and
Genç, 2009). Theodossiou (1998) showed that it is suited to fit asset returns in general.
The MEP of the simulated data (for n¼ 10000) is displayed in Figure 1.
By the EIA a threshold u of 1.2 is quite appropraite as seen by the dotted vertical

line and the graphs for the goodness of fit shows that the GPD is valid (Figure 2).
The approximate quantile to u¼ 1.2 is the 89th quantile. Next we choose the quantile

threshold sample (QTS) which in this case will be the sequence (0.88,0.89,0.90). We set
n1 to 100, n2 to 500ð5% of 10000Þ and perform steps already described in the algo-
rithm in Section 3.3. u0ðQ0Þ in this simulation is 1.16 corresponding to the 88th

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 9



quantile. This gives an aggregate threshold of uagg ¼ 1.2482. The quantile and probabil-
ity plots in Figure 3 also confirm that it is a good fit.
A head-view of the aggregate bootstrap subsamples along with their respective thresh-

olds for the Skewed t distribution is shown in Table 1. The choice of m is 5% of n. The
fitted GPD parameters (estimated using MLE) are displayed in Table 2 with their
respective standard errors enclosed in braces.
The EIA threshold is still u¼ 1.2 for n¼ 1000 and we get an aggregate threshold of

1.17 resulting in scale and shape parameters 0.72804576 (0.1033164) and 0.08106162
(0.1079181) respectively. Fitting the GPD based on the EIA gives 0.75102348
(0.1079566) for scale and 0.06615288 (0.1081323) for shape. We observe that in com-
parison with the EIA, the standard errors (in braces) are a little lower for the aggregate
threshold with sample size 1000 than it is when the sample size is 10000.

4.2. Pareto and lognormal distributions

Similar analysis is carried out on the simulated datasets for the Pareto and Lognormal
distributions (Figure 4).
In addition to the quantile threshold sample having width ±0.01, a wider threshold

sample of width ±0.05, that is (0.45,0.50,0.55), is also tested for the Lognormal sample
whose EIA is set at 7.5. The two vertical lines in Figure 4a correspond to the wider
width, 6.9 and 8.1 being the respective thresholds at quantiles 0.45 and 0.55. The boot-
strap samples are taken from within this range. It is noted that in this case, a lower
aggregate threshold of 7.2779 is gotten which is much closer to the lower 6.9 threshold
than the upper one. This can increase the uncertainty involved in the process hence, the
need to use smaller quantile threshold sample widths. Table 3 displays the results for
both the Pareto and Lognormal simulated distributions with sample size n¼ 1000 and
m¼ 5%. The estimated GPD parameters are also provided. In order to ascertain the

Figure 1. Mean excess plot fitted to the simulated Skewed t distribution.
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performance of each fit, the Negative log likelihood (NLL) was applied. Also, the
Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values were
obtained for the three simulated datasets (Table 4).
Decision rule: The threshold having the lowest values for NLL, AIC and BIC gives

the optimal threshold.

4.3. Discussion of findings

Although the standard errors for the aggregated and the single thresholds are roughly
the same, the statistical tests (NLL, AIC and BIC values) for the aggregate threshold,
uagg, are noticeably lower than that of the single threshold for the Lognormal and
Pareto cases. It is however a little higher for skewed t distribution. From Table 1 we
note that the procedure makes it possible for every point within the selected interval to
be sampled equally. It is noted that the subsample size does affect the threshold value
obtained and consequently the goodness of fit tests. Generally, an increase in m leads to

Figure 2. Diagnostic plots for single threshold.
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a slight increase in the SE of the parameters but exhibiting lower NLL, AIC and BIC
values. Thus the practitioner’s discretion needs to be applied in this case in order to
obtain a reasonable tradeoff between the standard errors and the other goodness of
fit tests.

Figure 3. Diagnostic plots for aggregate threshold.

Table 1. View of aggregated bootstrap subsamples.
89.04% 88.98% 88.93% 89.02% 88.95%
1.248015 1.225361 1.262530 1.231192 1.234448

89.08% 88.91% 88.98% 88.98% 88.94%
1.238739 1.263966 1.261112 1.237068 1.222176

Table 2. Fitting the GPD (Skewed t).
Single threshold (using) Aggregate threshold (uagg)

threshold 1.2 1.2482
scale(r) 0.7277(0.0334) 0.7234(0.0346)
shape(n) 0.1158(0.0340) 0.1228(0.0357)
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4.4. Comparing the result obtained with other threshold methods

The R package tea, by Ossberger (2017), describes different threshold estimation
approaches that have been developed by various authors along with their specific details.
Table 5 gives the thresholds (u) and their corresponding shape parameters (n) for sam-
ple size n¼ 1000. Only point estimates are provided. To have a fair base for compari-
son, similar thresholds to other existing methods are chosen for our model in order to
align its result with the results obtained from other methods. Thresholds much higher

Figure 4. Mean excess plot of simulated data. lognormal (a), Pareto (b).

Table 3. Fitting the GPD (Lognormal and Pareto).
using Lognormal Pareto

u 7.5 0.3
r 5.9753(0.4187) 0.8175(0.0489)
n 0.1442(0.0541) 0.2590(0.0473)

uagg
u 7.6282 0.3094
r 5.8538 (0.4184) 0.7785 (0.0486)
n 0.1571 (0.0559) 0.3115(0.0509)

Table 4. NLL, AIC and BIC values.
using uagg

Skewed t
NLL 86.55253 89.0668
AIC 177.1051 182.1336
BIC 182.5241 187.675

Lognormal
NLL 1454.187 1432.842
AIC 2912.375 2869.683
BIC 2920.788 2878.072

Pareto
NLL 727.5075 721.0393
AIC 1459.015 1446.079
BIC 1468.083 1455.126
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than the needed range are not reflected on the table (i.e methods 3 and 6 for
Lognormal). It is important to note that for each approach (methods 3 to 6), only the
tail index is generated alongside the threshold hence, to obtain the shape parameter we
use the relation

tail index ¼ 1
shape parameter

Thresholds from the range 1 to 3 for Skewed t, 8.5 to 9.5 for Logn and 1 to 2.5 for
the Pareto distribution are chosen. Having close enough thresholds will enable us obtain
comparable results for n. Close estimates of n are realized in the case of the Skewed t
distribution. For the Lognormal and Pareto distributions, the values differ slightly.
These differences however, are not significant. In general, the proposed method which
we can term as the quantile bootstrap aggregation technique, performs reasonably well
when compared to other methods especially the eyeball approach.

5. An illustration using the Nigerian stock exchange all share index (NSE
ASI) (2005-2015)

In practice, the three thresholds on Table 6 represent thresholds that can be chosen by
different practitioners. The data made use of here is the NSE ASI stock index obtained
from the Nigerian Stock Exchange website www.nse.com.ng. The EIA threshold is 1.2
whose shape and scale parameters are 0.3892 (0.0686) and 0.5418 (0.04701) respectively.
The corresponding approximate quantile is the 89th quantile (1.214075) and the QTS
becomes (0.88,0.89,0.90). Applying the proposed model (with m¼ 5%) to the 2700 daily
standardized residual returns of the NSE ASI (left tail) in order to obtain an aggregate
threshold between 1.1 and 1.3, we get uagg¼ 1.1783 (note that this is different from tak-
ing a simple arithmetic average of the three thresholds in Table 6). The GPD parame-
ters set at uagg result in n¼ 0.3778671 (0.06650394) and r¼ 0.5499974 (0.04666013)
which have slightly lower standard errors when compared to the EIA results.

Table 5. Results from other threshold methods.

Technique

Skewed t Lognormal Pareto

u n u n u n

1 Eyeball 2.5 0.17 8.5 0.14 1.30 0.26
2 Proposed model 2.29 0.25 8.76 0.13 1.32 0.26
3 Gerstengarbe plot� 2.48 0.26 – – 1.33 0.61
4 Developed by Danielsson et al. (2016) 2.78 0.33 9.18 0.50 1.40 0.60
5 Developed by Caeiro and Gomes (2016) 1.27 0.43 8.53 0.51 1.75 0.50
6 Developed by Guillou and Hall (2001) 2.03 0.32 – – 2.02 0.49
�Developed by Gerstengarbe and Werner (1989).

Table 6. Parameters for different thresholds.
Threshold shape scale

1.1 0.3752 0.5234
1.2 0.3892 0.5418
1.3 0.4337 0.5248
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6. Conclusion

In this paper we developed a quantile-based model that can serve as an alternative to
selecting the threshold when the MEP is used. Simulated datasets and a real dataset
were employed to test the model. In comparison to simply inspecting the MEP with the
eye to obtain a single threshold, the use of the proposed method shows that a more
optimal threshold can be estimated when we consider an aggregate of the thresholds.
Future research may take into account a parametric or semi-parametic approach in

which the GPD distribution will be used.
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