
Crop yield probability density forecasting via quantile random
forest and Epanechnikov Kernel function.

Samuel Asante Gyameraha, Philip Ngareb, Dennis Ikpec

aPan African University, Institute for Basic Sciences, Technology, and Innovation, Kenya
bUniversity of Nairobi, Kenya

cMichigan State University, USA

Abstract

A reliable and accurate forecasting method for crop yields is very important for the
farmer, the economy of a country, and the agricultural stakeholders. However, due to
weather extremes and uncertainties as a result of increasing climate change, most crop
yield forecasting models are not reliable and accurate. In this paper, a hybrid crop
yield probability density forecasting method via quantile regression forest and Epanech-
nikov kernel function (QRF-SJ) is proposed to capture the uncertainties and extremes of
weather in crop yield forecasting. By assigning probability to possible crop yield values,
probability density forecast gives a complete description of the yield of crops. A case
study using the annual crop yield of groundnut and millet in Ghana is presented to il-
lustrate the efficiency and robustness of the proposed technique. The proposed model is
able to capture the nonlinearity between crop yield and the weather variables via random
forest. The values of prediction interval coverage probability and prediction interval nor-
malized average width for the two crops show that the constructed prediction intervals
cover the target values with perfect probability. The probability density curves show
that QRF-SJ method has a very high ability to forecast quality prediction intervals with
a higher coverage probability. The feature importance gave a score of the importance of
each weather variable in building the quantile regression forest model. The farmer and
other stakeholders are able to realize the specific weather variable that affect the yield
of a selected crop through feature importance. The proposed method and its application
on crop yield dataset is the first of its kind in literature.

Keywords: climate change, crop yield uncertainty, crop yield forecasting, quantile
random forest, kernel density estimation, Epanechnikov kernel

1. Introduction

The agriculture sector is seen as one of the biggest emitter of greenhouse gases and
concurrently a major sector that is affected by climate change. In reviewing the factors
that affect crop growth, productivity, and yield, [1] indicated that soil moisture, the
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availability of soil nutrients, and solar radiation are the top three factors that limit the
growth of crops and hence limit the yield of crops. Changes in the surface temperature,
humidity, and rainfall affects the moisture content of the soil and the level of nutrients
in the soil. Hence, there is a direct effect of climate change on crop growth, productivity
and yield. It can therefore be stated that variations in the yield of are mostly affected
by the change in weather. Even more is the effect of the uncertainties in the pattern
of weather both between and within planting seasons on the crop production and yield.
This has significantly affected the yield of most crops causing economic and food security
risks in most developing and under-developed countries. Crop yields are less predictable
than ever before because of the direct effect of weather events and changing weather
patterns caused by climate change.
Weather variables are difficult to control especially for small-holder farmers in most de-
veloping and under-developed countries and mostly have great impact on the farming
activities of these farmers. For this reason, an effective and reliable insurance is needed
to hedge farmers and stakeholders from the peril of weather uncertianties. Traditional
insurance for agricultural risk management is not patronized in most developing coun-
tries because of high premiums, loss adjustments, moral hazards, adverse selections,
and complex information requirements [2]. However, weather derivatives and index
based insurance such as area-yield and weather index insurance are seen as effective
risk management tools in the agricultural sector for both small and large scale farmers in
developing/under-developed countries. Accurate forecasting of crop yields is a principal
component for the ratemaking process in the derivative and index-insurance markets.
An accurate and mathematically tractable crop yield forecasting model, especially for
crops with high out-of-sample forecasting propensity is important for the farmer, policy-
makers, the government, field managers, and industry players in decision making process
[3]. On the part of the government, this will enable an effective planning to avoid food
shortage and if possible governments can arrange for food imports rather than seeking
for emergency food assistance. For the industry players like the insurance and financial
sector, crop yield forecasting helps in measuring crop loss’ in advance. Consequently, fair
premium rates and pricing of agricultural index insurance and weather derivatives can
be determined. The farmer however is able to measure the future uncertainties of the
farm produce and make effective plans for a set of possible outcomes and in particular
precision farming. Crop yield forecasting is important for trade development policies and
other humitarian assistance connected to food security.

To improve the performance of the methods used in crop yield forecasting, a lot of re-
search have been done in recent decades. A number of literature based on statistical
models have been used to predict the yield of crops [4, 5, 6]. These literatures have serve
as a substitute to process-based models, which always involve a comprehensive data
on the conditions of the soil, cultivar, and management. [7] used different time series
models (simple and double exponential smoothing, Damped-Trend Linear Exponential
Smoothing and autoregressive moving averages (ARMA)) to predict maize yield in five
communities in Ghana. The authors concluded that the ARMA model was more robust
than the other time-series models. However, time series models such as moving aver-
ages, simple and double exponential smoothing, quadratic and linear regression perform
poorly in predicting crop yields [8, 9]. These statistical predictions suffer from different
sources of error like variations in weather variables. In most statistical methods, there are
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always little or no interaction between the features for prediction. However, crop yield
and weather variables are highly nonlinear and there are interactions between weather
variables. Hence, using statistical methods will be computationally costly and may not
lead to an optimal performance especially when there are cases of extreme events. Al-
ternative to statistical models, are the emergence of machine learning (ML) techniques
such as random forest, support vector regression, and neural networks. These ML tech-
niques are able to capture the nonlinearity of crop yields and its predictors [10, 11, 12].
Hybrid methods between statistical and machine learning approach are seen to improve
the accuracy of predictions in most forecasting problems [13, 14].
Generally, most statistical and machine learning literatures on crop yield forecasting are
based on point forecasts [5, 7, 10, 11]. Point forecasts give an estimate of the future crop
yield for each time horizon and do not convey any information about the uncertainty
of the predictions. Different from point forecasting is interval prediction. Interval pre-
diction tries to build a well-calibrated lower and upper bounds of the future unknown
predictions with a prescribed probability (1− τ) called the confidence level. Due to the
increased uncertainty of weather in recent years as a result of climate change [15, 16],
point and interval prediction are not able to predict the yield of crops accurately. The
uncertainties of weather variables directly influence the development of crops and hence
the quantity and quality of crop yields. It is therefore imperative to quantify the prob-
able uncertainties associated with crop yield forecasts. Contrary to point and interval
prediction, probability density forecasting. Probability density forecasting gives a new
approach to solve this forecasting problem in the midst of uncertainties. Probability
density forecasting quantifies the uncertainty and give estimates of the complete proba-
bility distribution of the future crop yield. Despite the importance of probability density
forecasting, there is no empirical evidence to crop yield forecasting in literature.
In probability density forecasting, Kernel density estimation (KDE) is very important
in the density estimation process. KDE is a non-parametric method of estimating the
distribution of a dataset without prior assumptions of the datasets. Appropriate choice
of bandwidth for a kernel density estimator is of crucial importance to the density func-
tion of random variables. To obtain a complete crop yield probability density curve,
Epanechnikov kernel function and solve-the-equation plug-in approach of Sheather and
Jones (SJ) bandwidth selection method are combined with QRF model. Our proposed
method (from hence QRF-SJ) will help to obtain a complete conditional probability den-
sity in different time horizons by selecting a suitable bandwidth and kernel function
Quantile regression (QR) can be used to to construct a nonparametric probability den-
sity forecasting. Given one or more covariates, QR generalizes the theory of a univariate
quantile to a conditional quantile. Because of the robustness of QR in handling outliers in
explained measurements, it is widely used for regression analysis in the areas of economet-
rics and statistics [17]. Conventional linear QR is however unable to deal with complex
non-linear problems [18]. To explore non-linear functions for QR, [19] proposed a quan-
tile random forest (QRF) model, which combines the advantages of random forest and
quantile regression models. In furtherance to the application of Meinshausen proposed
model, [14] proposed a hybrid semi-parametric quantile regression forest to estimate the
non-linear relationship in multi-period value-at-risk. They concluded that their proposed
method was more accurate compared to common distributions like normal distribution.
In the area of medicine, [13] applied quantile regression forest to Cancer Cell Line Ency-
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clopedia (CCLE) dataset to give a point and interval prediction. The quantile regression
forest improved the accuracy of prediction of drug response. However, these literatures
[e.g. 13] are not able to obtain the probability density functions of the future response
variable in a single QRF model. Hence the need to combine quantile regression forest
and kernel density estimation to estimate the probability density functions of future crop
yields.
Due to the nonlinearity of crop yield and its predictors (weather variables), we propose
a forecasting model by combining quantile random forest and kernel density estimation.
The contributions of this paper are: 1) We implemment a comprehensive probabilistic
crop yield forecasting method based on quantile random forest and Kernel density es-
timation (QRF-SJ). The full conditional probability density curve of future crop yields
are illustrated and all the observed crop yield values are within the forecasted proba-
bility density curve. 2) Two interval prediction evaluation metrics (prediction intervals
coverage probability and prediction interval normalized average width) are used to as-
sess the performance of the proposed QRF-SJ. 3) We demonstrated the superiority and
feasibility of the proposed QRF-SJ model using groundnut and millet as case studies.
4) The feature/variable importance (a score that gives the effectiveness of each feature
in predicting the yield of the crop) is presented. This gives information to agricultural
stakeholders about the imporatant features that affect the yield of a specific crop.
The rest of the paper is organized as follows: section 2 explains the mathematical back-
ground of quantile regression, random forest, quantile random forest, and kernel density
estimation. The model evaluation metrics for point prediction and prediction intervals
are presented in section 3. In section 4, we consider a case study to show the effectiveness
and superiority of the proposed method using crop yield dataset. The conclusion and
future work are outlined in section 5.

2. Quantile Random Forest based on Kernel Density Estimation

This section provides a comprehensive explanation used in developing the probabilis-
tic crop yield forecasting. Generally, three steps are used for the probabilistic crop yield
forecasting. Firstly, the dataset are divided into a training and testing dataset. In the
second phase, the training dataset is used to train the quantile regression forest (QRF)
model. The QRF model is then used to predict the testing data on different quantiles.
In the final step, the probability density function are obtained by using kernel density
estimation with Epanechnikov kernel function and SJ bandwith selection. Our model
has not been applied in other field of research or in the agriculture sector so far. It is
therefore the first of its kind in literature.

2.1. Quantile Regression (QR)
Conventional linear regression models make a summary of the average relation be-

tweeen explanatory variablesX = [X1, X2, · · · , Xk]′ and a response variable Y depending
on the conditional mean function E(Y |X). It gives a partial estimate of the relationship,
as it might be needed in recounting the relationship of distinct points in the conditional
distribution of Y . Contrary to the conventional linear regression, QR gives the quan-
tiles of the conditional distribution of Y as a function of X [20]. That is, QR provides
much detail information about the distribution of Y than conventional linear regression
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model. By using QR, we can make a good inference on the distribution of the predicted
values. Machine learning techniques that are based on quantile regression such as the
quantile random forest have an extra advantage of been able to predict non-parametric
distributions. A QR problem can be formulated as;

qY (τ | X) = X′iβτ (1)

where qY (τ | ·) is the conditional τth quantile of crop yield variables Y , X are the
explanatory variables or regressors, and βτ = [βτ (0), βτ (1), · · ·βτ (k)]′ is a vector of values
of quantile τ . By minimizing the loss function of a specific τth quantile, vector of values
can be evaluated,

min
β

N∑
i=1

ρτ (Yi −X′iβ) =min
β

[ ∑
i:Yi≥X′

i
β

τ | Yi −X′iβ | +
∑

i:Yi<X′
i
β

(1− τ) | Yi −X′iβ |
]
,

=min
β

[∑
i

| τ − 1yi<X′
i
β | (Yi −X′iβ)

]
(2)

Where 1 is the indicator function, N is the size of the sample data, and Xi = (x1i, x2i, x3i, · · · , xki)
are the independent variables. Now, consider the distribution of a discrete random vari-
able Yi with a less-than-well-behaved density, then the conditionbal density function at
the τth quantile given xi is defined as

qτ (x) = inf{y : Fτ
(
y | X = x

)
≥ τ} (3)

where Fτ
(
y | X = x

)
is the distribution function for Yi conditional on Xi.

2.2. Random Forest (RF)
RF is a binary tree machine learning algorithm and a non-parametric method for

regression and classification problems. The aim of RF is to predict the square integrable
random response Y ∈ R by computing the regression function c(x) = E

[
Y |X = x

]
.

Assume a training dataset Dn = {
(
Xi, yi

)n
i=1|Xi ∈ RM , y ∈ R} of an observed dataset is

randomly selected from an (unknown) probaility distribution (xi, yi) ∼ (X, Y ). We seek
to use Dn to build an estimate. Where n is the total number of training samples and M
is the total number of features.
Suppose θ is the parameter that determines a specific splitting node of RF regression
trees. Let T (θ) be the decision tree under consideration. Consider the conditional dis-
tribution of Y given X = x depending on the decision tree and the event that x can be
determined at a point on the decision tree R. If there is one and only one leaf node which
satisfies x and is represented as `(x, θ) for the decision tree T (θ), then the prediction of
a single tree T (θ) for a point x in the observed data is the average over the observed
values in `(x, θ). The weight vector wn(x, θ) for the total observation in `(x, θ) is given
as

wn(x, θ) =
1{Xn∈R`(x,θ)}
{p : Xp ∈ Ω`(x,θ)}

. (4)
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Where
∑n
i=1 wn(x, θ) = 1, and the prediction of the single tree Y | X = x is the weighted

average of true observation Yi(i = 1, 2, · · · , n),

ϑ̂(x) =
n∑
i=1

wn(x, θ)Yn (5)

RF uses the average prediction of k individual trees, each built with an i.i.d. vector
θi i = 1, 2, 3, · · · , k to approximate E(Y | X = x). Denote wn(x) as the average of of
wn(θ) over the ensemble of trees,

wn(x) = 1
k

K∑
i=1

wn(x, θi) (6)

Then, the prediction of RF is

ϑ̂(x) =
N∑
n=1

wn(x)Yn (7)

RF estimates the conditional mean of Y , given X = x, by weighting the sum of all the
observations. The weight is larger when the conditional distribution of Y given X = Xn,
is identical to the conditional distribution of Y given X = x [21].
RF depends on some parameters for optimal performance. The number of tress (ntree)
to grow and the number of variables that is sampled as candidates for each split (mtry).
For regression problems, mtry = M

3 , where M=number of features for prediction. Apart
from using RF for quantile regression forest, we shall use RF for feature importance
and partial dependence plots (PDP). For the feature importance, we use the percentage
mean decreasing accuracy (“%IncMSE") to know the importance of each of the features
in building the prediction model. The PDP illustrates how the RF model predictions are
affected by each feature assuming the rest of the features in the RF model are controlled.

2.3. Quantile Random Forest (QRF)
Conventional RF predict values in individual leaf node, which is considered as the

sample mean in the leaf node. This can lead to biasness extreme values in the data
samples can be over- or under-estimated. To improve th accuracy of the prediction when
there are extreme values in the sample dataset, the median can be used. Hence, the
median is used for point prediction in QRF model.
QRF is a robust, non-linear, and non-parametric regression method based on random
forests method for determining conditional quantiles [19]. QRF gives an approximation
of the complete conditional distribution. Just like RF, QRF is a set of binary regression
trees. However, for each leaf node of the tree, QRF evaluates the estimated distribution
F (y | X = x) = P (Y ≤ y) | X = x) = E(1{Y≤y} | X = x) as alternative to only
the mean of Y values in RF. Given a probability p, the quantile qτ (X) is evaluated as
q̂τ (X = xnew) = inf{y : F̂ (y | X = xnew) > τ}. The quantiles provide a comprehensive
information on the distribution of Y as a function of the predictands (X) than only the
conditional mean. For interval prediction,[

qτl(X), qτu(X)
]

=
[

inf{y : F̂ (y | X = x) ≥ τl}, inf{y : F̂ (y | X = x) ≥ τu}
]

(8)
6



where τl < τu and τu − τl = α, α is the probability that the predicted value fall within y
to lie in the interval [qτl(X), qτu(X)].
We define an approximation to the acummulated conditional probability E(1{Y≤y} | X =
x) by the weighted mean of all the observations of 1{Y≤y} as,

F (y | X = x) =
N∑
n=1

wn(x)1{Yn≤y}, (9)

where wn(x) is the same weights as in random forests. By plugging F̂
(
y | X = x

)
into

3, the estimate q̂τ (x) of the conditional quantiles qτ (x) are derived,

q̂τ (x) = F̂−1(τ) = inf{y :
N∑
n=1

wn(x)1{Yn≤y} ≥ p} (10)

2.4. Kernel density estimation using Epanechnikov Kernel function
Kernel density estimation (KDE) is a non-parametric method of estimating the prob-

ability density function (pdf) or regression functions. KDE is basically used for data
smoothing. A Kernel density estimator at x for an observed independent and identically
distributed (i.i.d.) and data X = (X1, X2, · · · , Xn) drawn from an unknown distribution
with an unknown density fX(x), is

f̂(x; b) = 1
Nb

N∑
i=1

K
(Xi − x

b

)
(11)

where N is the sample size, K is the Kernel function, h > 0 is the smoothing pa-
rameter also called bandwidth. The Kernel function is non-negative and is defined as∫∞
−∞K(x)dx = 1. Gaussian, Rectangular, Uniform, Cosine, Epanechnikov, and Quartic
are but some common examples of kernel functions used in literatures. Different results
are obtained depending on the type of Kernel function used. In this study, we use, we
use the Epanechnikov Kernel to build our QRF-SJ model. The Epanechnikov Kernel is
defined as:

K(u) =
{

3
4 (1− u2) | u |≤ 1,
0 otherwise.

(12)

Where u = Xi−x
b . when building the QRF-SJSTE model. The choice of the Epanech-

nikov kernel is motivated because it has the lowest (asymptotic) mean square error (MSE)
[22, 23].

Solve-The-Equation Plug-In Approach of Sheather and Jones (SJ)
Bandwidth determines the smoothness of the kernel density plot and is comparable

to the binwidth in a histogram. The selection of a proper bandwidth is the most difficult
problem in obtaining a good KDE [23]. A larger value bandwidth value causes over
smoothing and a very small bandwidth value causes under smoothing. To get better
results of kernel density estimator, this paper uses Sheather and Jones (SJ) solve-the-
equation (SJ) bandwidth selector [see 24, 25] for estimating the bandwidth parameter.
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To quantify the accuracy of the kernel density estimator, the asymptotic mean integrated
squared error (AMISE) is used. AMISE is an approximation of mean integrated squared
error ( when n→∞ and b = b(n)→ 0) of f̂(x),

AMISE(f̂b(x)) = (nb)−1R(K) + b4R(f ′′)
(∫

x2K/2
)2

(13)

where the notation R(g) =
∫
g2(x)dx for a function g,

∫
x2K =

∫
x2K(x)dx, and f ′′ is

the second derivative of f . The first and second term in equation 13 are the integrated
variance and integrated squared bias respectively. A very small h results in a large
integrated variance and a very large h results in a large integrated squareed bias.

Figure 1 is the schematic structure of the QRF-SJ model.

Figure 1: The flowchart of QRF-SJ probability density forecasting model
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3. Model Evaluation Metrics

3.1. Evaluating point prediction errors
We use root mean squared error (RMSE), mean absolute percentage error (MAPE),

mean squared error (MSE), and level of Accuracy to compare the performance of different
forecasting models for point/deterministic forecasting.
RMSE estimates the residual betweeen the observed and the predicted values. The
smaller the RMSE, the better the model.

RMSE(yi, ŷi) =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (14)

MAPE gives the average of the absolute percentage errors. An optimal model has the
lowest MAPE.

MAPE(yi, ŷi) = 1
N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (15)

Just like RMSE and MAPE, the smaller the MSE, the better the model. Unlike MAPE,
MSE is greatly influenced by outliers.

MSE(yi, ŷi) = 1
N

N∑
i=1

(yi − ŷi)2 (16)

Accuracy is used to measure the precision of the model in predicting the observed dataset.
The higher the accuracy values, the better the prediction model. It is given as

Accuracy(yi, ŷi) = 1− 1
N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (17)

yi, ŷi are the actual and the predicted values of the crop yield.

3.2. Uncertainty of Prediction Intervals
Different metrics are used to evaluate the prediction intervals for the results obtained

from the probability density forecasting; prediction intervals coverage probability (PICP)
and prediction interval normalized average width (PINAW).
PICP is the percentage of the testing data that fall in the interval specified by the
upper bound Ui and the lower bound Li of the prediction interval (PI). A larger PICP
indicates that most of the forecasted data fall within the PI. Generally, the value of the
PICP should be greater than the nominal confidence level.

PICP = 1
N

N∑
i=1

ci

where N is the total number of years over the period of forecasting and ci is a Boolean
variable define as

ci =
{

1, if yi ∈ [Li, Ui]
0 if yi < [Li, Ui]
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If the quality of the forecast depends only on the PICP, the coverage probability can be
artificially improved by increasing the range between the upper and the lower bound.
However, a larger interval width is empirically not informative. To better evaluate the
quality of the PIs, the width of the PI’s must be measured. A narrow PI gives more
information to the forecaster than a wider PI. Therefore, a normalized metric, PINAW
which measures the average width of the PIs can be use. PINAW is defined as:

PINAW = 1
NR

t∑
i=1

(Ui − Li)

where R is the range of the underlying targets (difference between minimum and maxi-
mum targets)

4. Numerical Results

. To demonstrate the feasibility and suitability of the proposed QRF-SJ method,
historical crop yield1 data from 2000 to 2016 for different crops in Tamale metropolitan2

(Northern region) were obtained from the Statistics, Research and Information Direc-
torate (SRID) of the Ministry of Food and Africulture, Ghana. The Northern region
of Ghana is much drier3 as compared to the southern part of Ghana and agriculture
contributes more than 75% of the economic activities in the metropolis. The region is
considered to be the food basket of Ghana. Cowpea, cassava, groundnut, maize, millet,
sorghum, rice, and yam are the major crops grown in this region. For the purpose of this
research, two of the crops (groundnut and millet) are selected as a case study to evaluate
the performance of our proposed model. These selected crops can be used as a proxy to
create an area-yield index insurance instrument for the insurance sector.
Station based daily sunlight, humidity, precipitation, minimum temperature, maximum
temperature and average temperature from 2000 to 2016 are obtained from the Ghana
Meteorological Service. The k-nearest neighbors (KNN) algorithm was used for imputing
missing data points in the datasets. KNN locates the k closest neighbors to the observed
dataset with the missing data point and imputes the data point based on the non-missing
data points in the neighbors. The datasets are then averaged to the same size as the crop
yield dataset. Because of the scaling sensitivity of the inputs fed into most forecasting
techniques, the variables for the inputs are set into an identical scale. The scale used is
the min-max normalization which was set to be in the interval [0, 1]. The normalization
is given as:

INORM = I − IMIN

IMAX − IMIN

where INORM is the normalized numerical value; IMIN , IMAX is the minimum and
maximum values of the inputs respectively.

1crop yield is defined as the harvested production of a crop per unit of the harvested area and is
measured in metric ton per hectare (Mt/Ha).

2The capital town of the Tamale metropolitan is Tamale, which also happens to be the regional
capital of the Northern region.

3This is because of its close proximity to the Sahara, and the Sahel.
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To validate the model, we divided the dataset into a training (80%) and testing dataset
(20%). That is, the dataset from 2000-2013 are selected as the training dataset and
2014-2016 are selected as the testing dataset.

Crop Mean Std Min Max Skewness Variance
Groundnut 1.22 0.50 0.50 1.90 0.05 0.25

Millet 1.19 0.30 0.72 1.70 0.10 0.09

Table 1: Summary Statistics of Groundnut and Millet Yield

4.1. Empirical results and analysis of the Models
In order to prove the superiority of the QRF, it is compared with some popular forcast-

ing techniques like Radial Basis Neural Network (NN), Generalized Linear Model (GLM),
Support Vector Regression with linear (SVR(linear)) and radial basis (SVR(radial)) ker-
nel function. For the QRF, both the predicted median and mean of the crop yield are
used as the point prediction for the testing dataset. The evaluation metrics using RMSE,
MAPE, MSE, and Accuracy of these methods are given in Table 2. Figures 2 and 3 show
the visual performance of the evaluation metrics of the forecasting techniques. Compar-
ative to the four benchmark methods, it is evident that QRF (both mean and median
prediction) performed better in predicting the yield of groundnut and millet. Quantita-
tively, the RMSE, MAPE, MSE, and Accuracy of predicting the yield of groundnut are
27.05%, 24.25%, 7.32% and 62.73% respectively. The RMSE, MAPE, MSE, and Accu-
racy of millet yield prediction are 1.77%, 1.02%, 0.03% and 97.37% respectively. It can be
observed that the QRF median prediction is the same as the mean prediction. Generally,
QRF is optimal in predicting the yield of all the two crops. For this reason, we conclude
that QRF is the best forecasting technique for predicting the yield of the two crops as
compared to the other benchmark forecasting techniques. This motivated us to use QRF
for our probability density forecasting.
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Figure 2: Bar chart of RMSE, MAPE, MSE, Accuracy of groundnut yield responses and predicted
values by QRFs, SVR(radial), SVR(linear), NN, and GLM. QRF (mean): mean prediction of crop yield
given weather features using QRF; QRF (median): median prediction of crop yield response using QRF;
SVR(radial): prediction of crop yield using SVR radial basis kernel function; SVR(linear): prediction of
crop yield using SVR linear kernel
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Figure 3: Bar chart of RMSE, MAPE, MSE, Accuracy of millet yield responses and predicted values
by QRFs, SVR(radial), SVR(linear), NN, and GLM. QRF (mean): mean prediction of crop yield given
weather features using QRF; QRF (median): median prediction of crop yield response using QRF;
SVR(radial): prediction of crop yield using SVR radial basis kernel function; SVR(linear): prediction of
crop yield using SVR linear kernel

Method
Groundnut Millet

RMSE MSE MAPE Accuracy RMSE MSE MAPE Accuracy

QRF(mean) 27.05 7.32 37.27 62.73 1.77 0.03 2.63 97.37

QRF(median) 27.05 7.32 37.27 62.73 1.77 0.03 2.63 97.37

SVR (radial) 33.18 11.01 52.27 47.73 10.56 1.11 22.57 77.43

SVR (linear) 51.87 26.91 83.13 16.87 15.90 2.53 41.48 58.52

NN 47.91 22.95 76.34 23.66 29.18 8.52 74.12 25.88

GLM 36.02 12.97 58.25 41.75 30.95 9.58 84.65 15.35

Table 2: Evaluation metrics using RMSE (%), MAPE (%), MSE (%), and Accuracy (%) of point
prediction via QRFs, SVR(radial), SVR(linear), NN, and GLM.

To show the satisfactory performance of the proposed QRF-SJ model, PICP and
PINAW are used as the evaluation metrics. The performance of the model is presented
in Table 3. It is clear from the table that the constructed PI cover the target values
with perfect probability. This is very important for effective decision making process.
For both groundnut and millet, the PICP was evaluated to be 100%. The PINAW of
groundnut is however smaller than that of millet. Considering the high variance of the
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yield of groundnut in table 1, the probabilistic performance of our proposed method is
sufficient.
To study the performance of the prediction in an intuitive way, a visual representation
of the prediction results for the two crops are presented. Figures 4 and 5 give the point
forecast and the prediction interval for the QRF-SJ of groundnut and millet respectively.
To assess the performance of point forecast for the QRF-SJ model in a quantitative way,
the model performance metrics over the predicted period for the two crops are presented
in table 4. It is clear from figures 4 and 5 that the target values lie within the prediction
interval. We can therefore conclude that the proposed model captures the uncertainty
of the two crop yields accurately.
A visual representation of the probability density curve for the predictions based on
QRF-SJ for the yield of groundnut and millet is presented in figures 6 and 7 respectively.
The actual crop yield for the specific year are presented in orchid, blue, and red dots for
2014, 2015, and 2016 respectively. In figures 6 and 7, the respective actual crop yields
of groundnut and millet for each of the predicted year fall within the predicted region of
the forecast distribution. The probability density curve gives the complete probability
distribution of the future crop yield and hence the uncertainty of the forecasting can be
quantified.

Eventhough there are different kernels in kernel density estimation that can capture the
nonlinearity of the crop yield and weather variables, we chose to use a relatively simple
and conventional kernel, the cosine kernel.

Crop Confidence level (%) PICP (%) PINAW (%)

Groundnut 90 100 12.65

Millet 90 100 16.76

Table 3: Prediction Interval evaluation metrics of QRF-SJ method

Crop Confidence level (%) MAPE (%) RMSE (%) MSE (%) Accuracy (%)

Groundnut 90 27.50 28.947 13.96 76.59

Millet 90 1× 10−14 0.72 7.83 98.03

Table 4: Evaluation metrics using MAPE, RMSE, and MSE of point prediction via QRF-SJ for testing
data
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Figure 4: Prediction results based on QRF-SJ probability density forecasting model from 2014-2016 for
the yield of groundnut

Figure 5: Prediction results based on QRF-SJ probability density forecasting model from 2014-2016 for
the yield of millet
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Figure 6: probability density curve based on QRF-SJ from 2014-2016, the dots on the x-axis represents
the actual values of the crop yield.

Figure 7: probability density curve based on QRF-SJ from 2014-2016, the dots on the x-axis represents
the actual values of the crop yield.

4.2. Feature Importance
The level of variable importance measures according to random forest is shown in Ta-

ble 5. The higher the percentage increase in mean square error (%IncMSE) of a feature,
the higher the importance of that feature in the prediction model.
From the feature importance measure in Table 5, average temperature, minimum tem-
perature, and rainfall are the three most important features among the six features that
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affect the yield of groundnut. Humidity, rainfall, and average temperature are the top
three features that influences the yield of millet. The amount of sunshine does not have a
lot of effect on the yield of groundnut. Maximum temperature do not have a lot of effect
on the yield of both crops. Generally, the average temperature do have a lot of effect
on the yield of these two crops. The partial dependence plots (PDP) in Figure 8 and 10
show the marginal effect of the top three important features of the yield of groundnut
and millet respectively.
From the PDP of groundnut, an increase in the amount of average and minimum tem-
peratures result in a decrease in the yield of groundnut. However, an increase in the
amount of rainfall, increases the yield of groundnut. An aincrease in the amount of
rainfall increases the yield of groundnut. An increasing relative humidity and minimum
temperatures decreases the yield of millet. In both crops, the yield is minimum when
the minimum temperature os around 23.2◦. From the PDPs, it can be concluded that
the yield of groundnut and millet increases as the amount of rainfall increases to about
100mm. The yield of groundnut and millet decreases as the minimum temperature in-
ceases from about 22◦ to 23.2◦. Figures 9 and 11 show the three-dimensional (3-D)
partial dependence of the top 3 ranked features from feature importance measures of
Random Forests model for groundnut and millet respectively. From table 5, it is clear
that all the six weather features do influence the yield of all the two crops.

Feature
Groundnut Millet

Rank %IncMSE Rank %IncMSe
Sunshine 6 0.101 4 0.120
Humidity 4 0.144 1 0.210
Rainfall 3 0.162 2 0.198
AvgT 1 0.175 3 0.121
MaxT 5 0.125 5 0.114
MinT 2 0.171 6 0.115

Table 5: Rank corresponds to variable importance measure determined by Random Forest (RF) model
for each crop dataset. AvgT, MaxT, MinT represent average, maximum and minimum temperature
respectively.
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Figure 8: Partial dependence plot of groundnut for the top 3 ranked predictor variable from variable
importance measures of Random Forests models.

Figure 9: Groundnut: A 3-D surface Partial dependence of Rainfall on Average and Minimum Temper-
ature based on a random forest.
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Figure 10: Partial dependence plot of millet for the top 3 ranked predictor variable from variable
importance measures of Random Forests models.

Figure 11: Millet: A 3-D surface Partial dependence of Average temperature on humidity and rainfall
based on a random forest
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4.3. Empirical Application of crop yield probabilistic density forecasting
4.3.1. QRF-SJ method

Due to the variability of the yield of crops as a result of weather variables, a method
that can effectively handle this effect is proposed using quantile random forest and kernel
density estimation to study the lower and upper bounds of the predictions. QRF does
not only outperform other benchmark methods like SVR, NN, and GLM in point fore-
casting but also gives useful probability distribution when combined wth kernel density
estimation. The main objective of probability density forecasting is to verify if the prob-
ability distributions of the crop yields fall wihin the prediction intervals. Forecasting the
distributions serves as an indicator for the accuracy of forecast and provides important
information for decision making. Crop yield forecasting is an integral factor in precision
farming and can promote the expansion of the agricuture sector. Robust and efficient
crop yield forecasting model increases the ratemaking framework in crop (re)insurance
and weather derivatives market, thereby enhancing the participation of agricultural in-
surance in the insurance community. During premium calculation and claims liquidation,
crop insurance and weather derivatives companies are very functional in crop yield fore-
casting.

4.3.2. Feature Importance
The feature importance gave a score of the importance of each weather variable

in building the quantile regression forest model. By identifying the contributions of
these weather variables to crop yields and applying effective forecasting models, there
can be effective decision making process’ in the agricultural sector. The farmer is able
to detect the specific weather variable that affects the yield of crops and can make
pragmatic interventions to curtail any uncertainties. The insurance sector is able to
realize the speicific weather variable which correlates with the actual farm yield. This will
enable insurance company to sell different weather-index insurance products to farmers
depending on the weather variable that affect the yield of the crop. Payouts of this
weather insurance will be triggered based on the level for which the weather varaible
affects the yield of the crop. Base on feature importance, insurers and re-insurers are
able to price their insurance product base on the specific climatic factors that affect the
yield of a specific crop. They can also merge the most important climatic factors in their
pricing models.

5. Conclusion

Crop yield forecasting that considers the uncertainty of weather as a result of changes
in climate is of crucial importance to efficient decision making process for the agricultural
sector. In this paper, a hybrid crop yield probability density forecasting method that
has the potential to draw total conditional probability density curve of future crop yields
is presented. In the method, quantile regression forest is used to build the nonlinear
quantile regression forecasting model and to capture the nonlinear relationship between
the weather variables and crop yields. Epanechnikov kernel function and solve-the equa-
tion plug-in approach of Sheather and Jones are employed in the method to construct
the probability density forecasting curve. Prediction interval coverage probability and
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prediction interval normalized average width are used to evaluate the quality of the pre-
diction intervals constructed by QRF-SJ. The performance and accuracy of the QRF-SJ
crop yield forecasting model are evaluated using two real dataset (groundnut and mil-
let yields) as case studies. That is, the results of the predicted crop yield for distinct
quantiles are employed as the input of the kernel density estimation. The numerical
results give a 100% PICPs and narrow PINAWs. Also, all the observed groundnut and
millet crop yield values are located in the probability density curves. The results show
the superiority and feasibility of the proposed QRF-SJ model in forecasting the yield of
crops in the midst of of weather uncertainties. Using the feature importance, agricultural
stakeholders will be able to detect the major weather variables that affect the yield of
crops and can make pragmatic interventions to curtail any uncertainties.
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