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Abstract. We consider the problem of pricing derivatives written on some
industrial loss index via utility indifference pricing. The industrial loss index
is modeled by a compound Poisson process and the insurer can adjust her
portfolio by choosing the risk loading, which in turn determines the demand.
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1. Introduction

It was recognized shortly after the Hurricane Andrew in 1992, then the most
costly natural catastrophe in history, that events of this magnitude significantly
stress the capacity of the insurance industry. On the other hand, the accumu-
lated losses of those events are rather small relative to the US stock and bond
markets. Thus, securitization offers a potentially more efficient mechanism for
financing CAT losses than conventional insurance and reinsurance, see Cum-
mins et al, [CLP04].

The first contracts were launched by the Chicago Board of Trade (CBOT),
which introduced catastrophe futures in 1992 and later introduced catastrophe
put and call options. The options were based on aggregate catastrophe-loss
indices compiled by Property Claims Services, an insurance industry statistical
agent, see [Cum06].

In the absence of a traded underlying asset, insurance-linked securities have
been structured to pay-off on three types of variables: Insurance-industry catas-
trophe loss indices, insurer-specific catastrophe losses, and parametric indices
based on the physical characteristics of catastrophic events. The first variant
involves higher basis risk and less exposure to moral hazard than the second,
the third variant tries to balance the two risks in a suitable way, cf. Cummins
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[Cum06]. In this paper we solely concentrate on index-based derivatives.

A simple example of such a derivative is provided by the aforementioned call
options on an insurance-industry catastrophe loss index. The variant introduced
by CBOT was actually a call option spread, that is, a combination of a call
option long and another call option short with a higher strike.

A more popular type of catastrophe derivative is the CAT bond. This is a
classical bond in which there is an option embedded which is triggered by a de-
fined catastrophic event. In this paper we will again only consider those bonds
where this catastrophic event depends on some industry-loss index, though in
practice both of the other variants are of importance as well. From our point of
view there is little difference between CAT bond and CAT option, since on eval-
uating a CAT bond we concentrate on the embedded option. There is however
some danger of confusion regarding the role of buyer/seller with CAT bonds:
The issuer of the bond actually buys the embedded option while the buyer of
the bond sells the option.

For the issuer of a CAT bond – typically an insurance or reinsurance com-
pany – it serves as a reinsurance. On the other hand, the investor who buys the
bond (and therefore sells an option) receives a coupon over the market interest
and can, at the same time, diversify her risk by investing in a security whose
payoff is largely uncorrelated with classical financial instruments.

Geman and Yor [GY97] analyze catastrophe options with payoff (C(T )−K)+

where C is the aggregate claims process which is modeled by a jump-diffusion
process. Cox [CFP04] used a pure Poisson process to model the aggregate loss
of an insurance company, and derived the pricing formula of CATEputs under
the assumptions of constant arrival rates of catastrophic events. Jaimungal and
Wang [JW06] used a compound Poisson process to describe the dynamic losses
more accurately, but maintain the assumption of the constant arrival rate of
claims.

We model the arrival of claims, which are accounted for in some industrial
loss index, as a Poisson process with fixed arrival intensity. The underlying of
the CAT derivative, the index, is itself not tradable. It therefore makes sense
to use the method of indifference pricing via expected utility of Hodges and
Neuberger [HNb89] to price the derivative. A similar approach can be found in
Egami and Young [EY08], where the authors used utility indifference pricing
techniques to price structured catastrophe bonds. However, there is a big dif-
ference in our modeling of the hedging opportunity. In our setup this is done
via adjusting the insured portfolio.

For catastrophic events, the assumption that the resulting claims occur at
jump times of a Poisson process as adopted by most previous studies is not be-
yond justifiable critique. Therefore alternative point processes have been used
to generate the claim arrival process. Lin et al [LCP09] proposed a doubly sto-
chastic Poisson process, (also called “Cox process”, see [CFP04, Gra76, Gra91,
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Bre81, Lan94]) to model the arrival process for catastrophic events and derived
pricing formulas of contingent capital. See also Fuita et al [FIT08] for arbitrage
pricing of CAT bonds in such a context. Jaimungal and Chong [JC14] consider
valuation of catastrophe derivatives when the rate of the claims is modulated
by a Markov chain.

Charpentier [Cha08] considers hedging of catastrophe derivatives with stocks
whose jumps depend on catastrophic events and how to compute a utility in-
difference price in this setup.

Our study contributes to the literature by presenting a new approach to
hedging a CAT derivative via adjustment of the insured portfolio, which in
turn is done via adjusting the risk loading and an exogenously given demand
curve. The main idea is that the loss in the portfolio of a single insurance
company is necessarily correlated with an industrial loss index that includes
the losses of that insurance. The introduction of the derivative has therefore
an influence on the pricing policy of the insurance company.

It has been noted by Cummins [Cum06] that the relatively low volume in
the CAT derivatives market may in part be due to insufficient understanding
of how these products may be hedged. Our paper gives a new perspective to
the hedging of CAT derivatives via the most basic operation of an insurance
company, i.e. the choice of a suitable risk loading for a particular risk. Future
work may combine this approach with other hedging methods, like trading in
shares that are correlated with catastrophic events, such as those of construc-
tion companies.

The paper is organized as follows: In Section 2 we give the problem descrip-
tion: We assume a global claims process C, which keeps track of all claims due
to a specific event in a given country and we consider an insurance company
in the same country, so that the index will contain the losses of that particular
insurance company among others. The insurance company is facing a certain
demand curve which determines the fraction of the insurance market that the
company gets to insure, dependent on the risk loading it charges. We therefore
have to model the ξ-fraction of the claims process C, for an insurance company
with a ξ-fraction of the market. Such a model is constructed in Section 2 where
we also derive the wealth process for the insurance company. We conclude that
section by giving a short introduction into the concept of utility indifference
pricing.

Section 3 constitutes the main part of our paper: We derive a suitable
Hamilton-Jacobi-Bellman (HJB) equation for an insurance that holds k units of
a derivative written on the total number of claims (Subsection 3.1). We use the
concept of piecewise deterministic Markov decision process as presented, e.g.,
by Bäuerle and Rieder in [BR10, BR11]. In particular, we will make use of a
verification theorem from [BR11] to show that a solution to the HJB equation
also solves the optimal control problem. At that stage we will have to specialize
to exponential utility.

Two subsections, 3.3 and 3.4, are devoted to special demand functions. While
Subsection 3.3 looks into the details of the very special case of linear demand,
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Subsection 3.4 presents a class of demands that are more general than the
previous linear one, but still preserve the property of leading to a unique optimal
risk loading. By the end of Section 2.4, in Subsection 3.5, we give a numerical
example for linear demand. In the technical Subsection 3.6 we show that the
conditions of the verification theorem are satisfied.

Section 4 is devoted to the question under which conditions the derivative
could actually be sold, that is, when the buyer’s price is at least as big as the
seller’s price. To that end we study a couple of different pricing concepts related
to the utility indifference price.

2. Model setup

2.1. Study problem. Suppose we have a global claims process C = (Ct)t≥0,
which keeps track of all insurance claims due to a specific type of event in a
country. That is, Ct is the cumulative sum of all claims up to time t. We assume
that there are M possible clients in the market which potentially contribute to
the claims process. If all those clients had insurance contracts with the same
insurance company, then C were the claims process of this insurance company.
Let a be the “fair” annual premium for one client, that is E(C1) = M · a. The
annual premium for one contract therefore has to be greater or equal than a,
since otherwise the insurance will make an almost sure loss in the long run.

Assume that an insurance company faces a demand curve q such that if the
premium the insurance charges for the claim is a(1 + θ), then the company

gets to insure the q(θ)
M -th part of the whole claim process for the total annual

premium a(1 + θ)q(θ), where M is the total number of clients. It is assumed
that q is continuous and strictly decreasing in θ. We further make the reason-
able assumption that the insurance gets to insure the whole process if it does
not charge any risk loading (any strictly risk-averse client would enter such a
contract) and it gets 0 contracts if the risk-loading exceeds some fixed number
m > 0. In our model θ may vary over time and we assume that the number
of contracts is adjusted instantaneously via the demand function q. This is a
simplifying assumption that will not be met in practice. However we will see
in our numerical examples that there are large areas where the risk loading is
almost constant over time and the index value. Thus our analysis can either
be viewed as a first order approximation to more realistic models or as a model
that has practical relevance only under certain market conditions.

Note that in the above setting the insurance company is not necessarily a mo-
nopolist: q is the demand that the company faces, which may well be influenced
by other insurance companies’ decisions. We only assume that competing firms
respond consistently to changes in the risk loading, so that q does not change
over time and is not influenced by earlier policy decisions. We will ignore the
influence of the derivative that we want to price on demand, i.e. we assume
that the demand the insurance company faces on its insurance contracts is the
same regardless of whether the insurance company introduces the derivative or
not.

One question arising here is how we can model the ξ-th part of the industry
loss process in a way that an insurance company which holds contracts for the
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ξ-th part of the market will only be confronted with the ξ-th part of the claims?
For fixed ξ this will be a thinning of the original process. Once we have found
a model for this, we find that the wealth process of the insurance company can
be controlled via the risk loading process and therefore we can ask for optimal
strategies for maximizing terminal utility. This in turn will make it possible to
use the method of utility indifference pricing for CAT-derivatives.

Since the wealth process is obviously correlated to the global claims process
C, any derivative written on CT , for some fixed T > 0, can be partially hedged.
This will result in a utility indifference price that is different from the utility
equivalence price.

2.2. Exposure to industry loss. We assume as given a Poisson process N
with intensity λM , which models the arrivals of claims, as well as sequences
of i.i.d. random variables Y1, Y2, . . . with values in R+, the sizes of the claims.
Moreover we assume that there are i.i.d. random variables U1, U2, . . . with
values in the space of all possible insurance clients. The Yk’s and the Uk’s are
assumed to be independent of each other and independent of N . That is, N
tells us at which time τk the k-th claim occurs, Yk models its size and Uk tells us
who is affected. Actually, from the point of view of an insurance company the
only interesting information about Uk is whether it is one of their own clients
who is affected or not. We will therefore assume that the Uk’s are uniformly
distributed on [0, 1] and that a particular insurance company which holds the
ξ-th part of the market is therefore affected with probability ξ.

Hence the claims process for this insurance company can be modeled by

Cξt :=

Nt∑
k=1

Yk1Uk≤ξτk .

The cumulative claims process of all claims constitutes our industrial loss index
and is defined as

Ct := C1
t =

Nt∑
k=1

Yk .

Note that, for constant ξ ∈ [0, 1], the process Cξ is a thinning of C and therefore
is a compound Poisson process with intensity ξλM (see, e.g., [Res92, Section
4.4]). The joint process (C,Cξ) is therefore a compound Poisson process with
values in [0,∞)× [0,∞) and with jump distribution

P((∆Cτk ,∆C
ξ
τk

) ∈ A) = ξP((Yk, Yk) ∈ A) + (1− ξ)P((Yk, 0) ∈ A) .

for all Borel measurable sets A ∈ [0,∞)× [0,∞).

2.3. Demand function and wealth process. We now turn to the function
q which determines the fraction of the market that the company gets to insure
depending on the risk loading it chooses. We assume that q is a strictly de-
creasing continuous function on R with q(θ) = M for θ ≤ 0 and q(θ) = 0 for
θ ≥ m, where m is some positive real number. Therefore q is rather general,
even the requirement that it vanishes above some level m is rather innocuous:
suppose the annual premium were much larger than the expected claim size,
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then surely this insurance could not be sold.

We further define a := λE(Y1), the expected annual claim per client. In
particular we assume E(Y1) < ∞. In fact we will have to assume the stronger
assumption E(ebY1) <∞ for some given constant b > 0.

For a measurable function θ : [0,∞) → R we therefore define the dynamics
of the wealth process for the insurance company as

Xθ
t := x0 +

∫ t

0
a(1 + θs)q(θs)ds−

Nt∑
k=1

Yk1Uk≤q(θτk )/M ,(1)

= x0 +

∫ t

0
a(1 + θs)q(θs)ds− Cq(θ)/Mt(2)

where q is the absolute demand function as introduced above, and x0 is the
initial wealth.

The process (C,Xθ) is a special case of a piecewise deterministic Markov
process, where the flow does not depend on X. See [BR11, Chapter 8] or [BR10]
for the definition and theory of piecewise deterministic Markov processes. The
corresponding data is given by

• the state space [0,∞)× R;
• the control space R (we will later see that we may restrict the controls

to the compact space [0,m]);
• the deterministic flow d(Ct, X

θ
t ) = (0, aq(θt)(1 + θt))dt between jumps;

• the jump intensity Mλ;
• the stochastic kernel Q,

Q(A|(c, x), θ) = q(θ)P((Y,−Y ) ∈ A− (c, x))

+ (1− q(θ))P((Y, 0) ∈ A− (c, x)) ,

where A− (c, x)) = {(a1 − c, a2 − x) : (a1, a2 ∈ A)};
• the zero reward rate;
• the discount rate, which we set 0 for simplicity.

Here and throughout the paper, Y denotes a random variable having the
same distribution as the Yk.

A Markovian control for this system is a measurable function

f : [0,∞)× R× [0,∞) −→ {θ : [0,∞)→ R, θ measurable}

which describes for input data (Cτ , Xτ , τ) — where τ is the time of a jump and
(Cτ , Xτ ) is the state of the process immediately after the jump — the control
until the next jump.

2.4. Utility and utility indifference pricing. Throughout the paper we as-
sume that investors and insurance companies have a utility function, by which
we mean a function u : R −→ R which is strictly increasing and concave, and
that they aim to maximize the expected utility of their wealth at some time T
in the future.
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We recall the general idea of utility indifference pricing as introduced in
Hodges and Neuberger [HNb89]. An excellent introduction is Henderson and
Hobson [HH09], from which we will repeat the basic definitions.

The utility indifference buy (or bid) price pb is the price at which the investor
is indifferent (in the sense that his expected utility under optimal trading is
unchanged) between paying nothing and not having the claim ZT and paying
pb now and receiving the claim ZT at time T .

Consider the problem with k ≥ 0 units of the claim. Assume an investor
with utility u who initially has wealth x and zero endowment. Define

V (x, k) := sup
XT∈A(x)

E(u(XT + kZT ))

where A(x) is the set of all wealths XT which can be generated from initial
fortune x by following admissible strategies. The utility indifference buy price
pb(k) is the solution to

(3) V (x− pb(k), k) = V (x, 0) .

That is, the investor is willing to pay at most the amount pb(k) today for k
units of the claim ZT at time T . Similarly the utility indifference sell price
ps(k) is the smallest amount the investor is willing to accept in order to sell
k ≥ 0 units of ZT . That is, ps(k) solves

V (x+ ps(k),−k) = V (x, 0) .

The two prices are related via pb(k) = −ps(−k). With this in mind we can
define the utility indifference price p(k) as the solution to (3) for all k ∈ R.

Henderson and Hobson [HH09] note two features of the utility indifference
price.

• Non-linear pricing: In contrast to the Black-Scholes price (and many
alternative pricing methodologies in incomplete markets), utility prices
are generally non-linear in the number of claims, i.e. k.
• Recovery of complete market price: If the market is complete or if the

claim ZT is replicable, the utility indifference price p(k) is equal to the
complete market price for k units of the claim.

It should be noted that, in general, the utility indifference price p(k) also de-
pends on x. This dependence usually vanishes for exponential utility: Suppose
that u(x) = − exp(−ηx), for some η > 0. Then

V (x− p(k), k) = sup
θ∈Θ

E
(
u(x− p(k) +GθT + kZT )

)
= −e−ηxeηp(k) inf

θ∈Θ
E
(

exp(−η(GθT + kZT ))
)
,

V (x, 0) = −e−ηx inf
θ∈Θ

E
(

exp(−η(GθT ))
)
,

such that, with our former notation
(4)

p(k) = −1

η

(
log

(
inf
θ∈Θ

E(exp(−η(GθT + kZT )))

)
− log

(
inf
θ∈Θ

E(exp(−ηGθT ))

))
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(provided that the arguments in the logarithms are finite).
See also [Bec03] for additional properties of the utility indifference price for

exponential utility.
We mention another feature of the utility indifference price: Suppose the

payment ZT is independent of GθT for every choice of θ. Then

E(exp(−η(GθT + kZT ))) = E(exp(−ηGθT )E(exp(−ηkZT ))

and therefore

p(k) = −1

η
logE(exp(−ηkZT )) .

This price is also called the certainty equivalence price of the derivative ZT .
Note that one special case where ZT is independent of GθT occurs when GθT is
deterministic.

3. Computation of the utility indifference price

3.1. Optimal dynamic risk loading. We now want to apply the concept
of utility indifference pricing to the model presented in Section 2. Consider a
derivative written on CT , the total claims process at time T . Let its payoff be
of the form ψ(CT ) where ψ is a continuous and bounded function on [0,∞).
For example, if the derivative is a CAT (spread) option then ψ has the form

ψ(c) = max(0,min(c−K,L−K)) .

For a given utility function u we want to maximize expected utility from
terminal wealth, i.e. we want to compute

sup
θ

E(u(Xθ
T + kψ(CT ))) ,

where θ ranges over all Markovian controls.
We have the following simple lemma which allows us to limit our considera-

tions to bounded θ:

Lemma 3.1. Let θ : [0,∞)→ R be measurable. Define κ by

κ =

 0 if θ < 0
θ if 0 ≤ θ ≤ m
m if θ > m .

Then κ is measurable with values in [0,m] and for all τn ≤ t < τn+1

Xκ
t −Xκ

τn ≥ X
θ
t −Xθ

τn .

Proof. It holds that q(κ) = q(θ) throughout by our assumptions on q. We
therefore have

Xκ
t −Xκ

τn −X
θ
t +Xθ

τn =

∫ t

τn

a(1 + κs)q(κs)− a(1 + θs)q(θs)ds

= a

∫ t

τn

(κs − θs)q(κs) ≥ 0 ,

since κ ≥ θ if θ ≤ m and q(κ) = 0 if θ > m. �
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Define the value function of the problem as

(5) V (t, x, c, k) := sup
θ

E(u(Xθ
T + kψ(CT ))|Xθ

t = x,Ct = c) ,

where the supremum is taken over all Markovian controls θ. According to
Lemma 3.1 we may concentrate on θ with values in [0,m]. Note that due
to the boundedness of ψ we have for θ ≡ m that E(u(Xθ

T + kψ(CT ))|Xθ
t =

x,Ct = c) > −∞ for all x, c, k, such that V (t, x, c, k) > −∞. Furthermore the
expected terminal wealth XT is bounded from above, since the growth rate of
X is bounded and only negative jumps can occur. V is therefore a well-defined
real-valued function.

[BR10] prove that under fairly general conditions there exists an optimal
relaxed control for finite horizon problems for piecewise deterministic Markov
decision processes. They also give conditions under which there exists a non-
relaxed policy. Those later conditions are not satisfied for our problem, but
relaxed controls are to weak for the purpose of utility indifference pricing. We
therefore take a slightly different path using a Hamilton-Jacobi-Bellman (HJB)
equation and a slight variation of the verification theorem [BR11, Theorem
8.2.8].

Definition 3.2. A measurable function b : [0,∞) × R −→ [0,∞) is called
a bounding function for the piecewise deterministic Markov decision model, if
there exist constants cu, cQ, cflow ≥ 0 such that for all c ∈ [0,∞), x ∈ R

(i) |u(c, x)| ≤ cub(c, x);
(ii)

∫
b(c, x)Q(dc× dx|c, x, θ) ≤ cQb(c, x) for all θ ∈ [0,m];

(iii) b(c,
∫ T

0

∫m
0 aq(y)(1 + y)αs(dy)ds) ≤ cflowb(c, x) for all α ∈ R.

Here R is the space of relaxed policies, i.e. of measurable maps [0,∞) →
P([0,m]), where P([0,m]) is the space of all probability measures on the Borel
σ-algebra on [0,m]. See again [BR10].

Definition 3.3. Let b : [0,∞) × R −→ [0,∞) be a measurable function. For
some fixed γ > 0 we define

b(c, x, t) := b(c, x) exp(γ(T − t)) .
Further we define, for any measurable function v : [0,∞)× R× [0, T ] −→ R,

‖v‖b := ess sup
(c,x,t)

|v(c, x, t)|
b(c, x, t)

,

where we set 0
0 := 0, and we denote by Bb the Banach space

Bb := {v : [0,∞)× R× [0, T ]→ [0,∞) : v is measurable and ‖v‖b <∞} .
Theorem 3.4 (Verification Theorem). Let a piecewise deterministic Markov
decision process be given with a bounding function b, and E

(
|b(CT , Xθ

T )|
∣∣C0 =

c,X0 = x
)
<∞ for all θ, x. Suppose that v ∈ C0,1,1([0,∞)×R× [0, T ])∩Bb is

a solution of the HJB equation and that f∗ is a maximizer of the HJB equation
and defines a state process (X∗t ).

Then v = V and θ∗ = f∗(X∗t−) is an optimal Markov policy (in feedback
form).
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Proof. This can be proved like [BR11, Theorem 8.2.8]. �

Remark 3.5. In the statement of Theorem 8.2.8 in [BR11] there is another
condition required, namely that αb < 1 for a number αb depending on b,Q and
the arbitrary γ from Definition 3.3. But it is shown in [BR10] that for finite
horizon problems γ can always be chosen large enough to satisfy αb < 1.

For the sake of brevity we fix k for the remainder of this subsection and we
suppress the dependence of V on k.

The generator of (Ct, X
θ
t ) is

Aθ(v)(c, x) = q(θ)λE(v(c+ Y, x− Y )− v(c, x))

+ (M − q(θ))λE(v(c+ Y, x)− v(c, x)) ,

for v : [0,∞)×R −→ R bounded and measurable. With this, the HJB equation
for our problem is

(6) 0 = sup
θ

(
Vt(c, x, t) + Vx(c, x, t)a(1 + θt)q(θt) +AV (c, x, t)

)
We introduce the shorthand notations

V̂ (c, x, s) := λE
(
V (c+ Y, x, s)− V (c, x, s)

)
V̄ (c, x, s) := λE

(
V (c+ Y, x− Y, s)− V (c+ Y, x, s)

)
Reordering of terms gives the compact form

(7)
Vt +MV̂ + supα∈[0,m][q(α)(a(1 + α)Vx + V̄ )] = 0

V (c, x, T ) = u(x+ kψ(c)) .

We note that if V ∈ C0,1,1([0,∞) × R × [0, T ]) ∩ Bb, then Vx > 0 since u is
strictly increasing and concave, so that the HJB equation can be written as

(8)
Vt +MV̂ + Vx supα∈[0,m][q(α)(a(1 + α) + V̄

Vx
)] = 0

V (c, x, T ) = u(x+ kψ(c)) .

For all z ∈ R the function α 7→ q(α)(a(1 +α) + b) is continuous on [0,m] and
therefore attains its maximum. Define the function

(9) µ(z) := max {q(α)(a(1 + α) + z) : α ∈ [0,m]} .
With this we can write down the following backward equation in V ,

(10)
Vt(c, x, t) +MV̂ (c, x, t) + Vx(c, x, t)µ

(
V̄ (c,x,t)
Vx(c,x,t)

)
= 0

V (c, x, T ) = u(x+ kψ(c)) .

Assumption 3.6. From now on, we restrict our considerations to exponential
utility, u(x) = −e−ηx.

We make the usual ansatz V (c, x, t) = u(x)e−ηW (c,t), such that

Vt(c, x, t) = −ηWt(c, t)V (c, x, t)

Vx(c, x, t) = −ηV (c, x, t)

V̂ (c, x, t) = V (c, x, t)λE(e−η(W (c+Y,t)−W (c,t)) − 1)

V̄ (c, x, t) = V (c, x, t)λE((eηY − 1)e−η(W (c+Y,t)−W (c,t))) .
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We introduce similar short-hand notations as before:

Ŵ (c, t) := −1

η
λE(e−η(W (c+Y,t)−W (c,t)) − 1)

W̄ (c, t) := −1

η
λE((eηY − 1)e−η(W (c+Y,t)−W (c,t))) .

Substituting into the backward equation (10) for V and dividing by −ηV
gives us a backward equation for W :

(11)
Wt(c, t) +MŴ (c, t) + µ(W̄ (c, t)) = 0

W (c, T ) = kψ(c)

Note that since Y ≥ 0 we have eηY − 1 ≥ 0 so that W̄ (c, t) ≤ 0 always, with
strict inequality if P(Y > 0) > 0. As a consequence, the argument of µ will
always be negative.

Note further that in order to have finite-valued W̄ we need to make the
following assumption.

Assumption 3.7. We assume E(eηY ) <∞ .

If we can show that the backward equation (11) has a bounded and continuous
solution which is differentiable with respect to the time component, and if we
can present a maximizer for this solution, then we are done. We defer those
proofs to Section 3.6.

For the time being we assume the existence of W and V , and see what we
can do with it.

3.2. Utility indifference price. We can now – provided we can solve the
corresponding backward equation (11) – compute the utility indifference price
of a derivative with continuous and bounded payoff ψ. At time t the maximum
expected terminal utility of terminal wealth if the derivative is bought at price
p is given by

V (x− p, c, t, k) = u(x− p) exp(−ηW (c, t, k))

= u(x) exp(ηp) exp(−ηW (c, t, k)) ,

where W (., ., k) is the solution to the backward equation (11). With no deriva-
tive bought, the maximum expected terminal utility of terminal wealth at time
t is given by

V (c, x, t) = u(x) exp(−ηW (c, t, 0)) .

Therefore equation (4) takes on the following simple form:

(12) p = p(c, t, k) = W (c, t, k)−W (c, t, 0) .

It should be noted that, since W (c, T, 0) ≡ 0, the expression W (c, T, 0) does
not depend on c. It follows from the equation (11) for W that also W (c, t, 0)
for t < T does not depend on c. W (., ., 0) therefore may be computed as the
solution of a one-dimensional ordinary differential equation: Let W 0 denote the
solution to

(13)
W 0
t (t) +MŴ 0(t) + µ(W̄ 0(t)) = 0

W 0(T ) = 0 .
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Then W (c, t, 0) = W 0(t) for all c, t.

Lemma 3.8. W 0(t) = µ(− 1
ηλE(eηY − 1))(T − t).

Proof. Indeed, we see that if W 0(t) = κ(T − t) for some constant κ, we have

Ŵ 0(t) = 0 and W̄ 0(t) = 1
ηλE(eηY − 1) for all t ≤ T . Therefore, W 0(t) solves

W 0
t (t) +MŴ 0(t) + µ(W̄ 0(t)) = 0

W 0(T ) = 0

iff κ = µ(− 1
ηλE(eηY − 1)).

The uniqueness of this solution follows from the general existence and unique-
ness theorem in Section 3.6, Theorem 3.12. �

Using this lemma we can write down a backward equation for p: Since from
equation (12) and Lemma 3.8

(14) p = p(c, t, k) = W (c, t, k)− κ(T − t)

with κ = µ(− 1
ηλE(eηY − 1)), we get from (11)

(15)
pt(c, t, k)− κ+Mp̂(c, t, k) + µ(p̄(c, t, k)) = 0

p(c, T, k) = kψ(c) ,

where

(16)
p̂(c, t, k) := − 1

ηλE(e−η(p(t,c+Y,k)−p(c,t,k)) − 1)

p̄ := − 1
ηλE((eηY − 1)e−η(p(t,c+Y,k)−p(c,t,k))) .

We now look at another aspect of the backward equation in the special case
where the payoff is such that for some positive L we have ψ(c) = A for all c > L.
This is certainly satisfied for the aforementioned examples of spread option and
CAT-bond and indeed for most reasonable bounded payoff functions.

Under this assumption we have for c ≥ L that p̂(c, t) = 0 and p̄(c, t) =
− 1
ηλE(eηY − 1) for c > L. Therefore we get from (15) and the definition of κ

pt(c, t) = 0

for c ≥ L, and since p(c, T ) = A,

p(c, t) = A

for c ≥ L. This means that if ψ is constant above a cutoff level L, then we have
to compute W for c ∈ [0, L] only. This obviously simplifies the numerics. We
want to stress however, that all the theoretical results hold without the above
assumption and the numerics can deal with this case quite analog to many other
pricing models where the solution on an unbounded interval is approximated
by a function on a compact interval.
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3.3. Linear demand. We now consider the particularly simple case where q
is linear on the interval [0,m], i.e.

q(θ) = M min(1,max(1− θ

m
, 0)) .

Here µ and can simply be calculated:

µ(z) =


0 z ≤ −a(m+ 1)

M(a+ z) z ≥ a(m− 1)
M

4am(a(1 +m) + z)2 else

and the maximum is attained in

γ(z) :=


m z ≤ −a(m+ 1)
0 z ≥ a(m− 1)

a(m−1)−z
2a else .

The simple proof is left to the reader.

3.4. Demand functions with unique optimal risk loading. In our general
derivation the only requirements on the demand function q were that it be
continuous, non-increasing with

(17) q(θ) =

{
M if θ ≤ 0
0 if θ ≥ m.

In general such a function q will lead to more than one optimal strategy. Though
the value function does not depend on the particular choice of the optimal
strategy, multiple optimal strategies generate practical difficulties, for example
for numerical computation of the optimal strategy/value functions.

Linear demand is obviously not the only example that allows for exact and
unique computation of the optimal strategy. Let us consider the class of func-
tions q which satisfy (17), are twice continuously differentiable on (0,m), have
negative derivative on (0,m) and for which

fq(α, z) := q(α)(a(1 + α) + z)

has a unique maximum in (−∞,m] for all b.
From our assumptions on q we have q(α) ≥ 0 so that fq(α, z) < 0 iff a(1 +

α) + z < 0. Since fq(m, z) = 0, we therefore know that the optimal α, if it
exists, must satisfy a(1 + α) + z > 0, i.e. α > −1− z

a .
We are therefore interested in demand functions q for which fq(., z) has a

unique maximum in (−1− z
a ,m] if −1− z

a < m. (For −1− z
a ≥ m the function

fq(., z) attains its maximum in m.)
A sufficient condition for this is that α 7→ fq(α, z) is strictly concave on

[−1− z
a ,m].

Theorem 3.9. Let q be of the form

q(θ) =


M if θ ≤ 0
0 if θ ≥ m

M −
∫ α

0 e−
2ξ

1+mH(ξ)dξ else

for some function H : [0,m]→ R satisfying

(i) H is differentiable on (0,m);
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(ii) H ′ > 0 on (0,m);
(iii) H > 0 on (0,m);

(iv)
∫m

0 e−
2ξ

1+mH(ξ)dξ = M .

Then fq(., z) is strictly concave on [−1− z
a ,m].

Proof.
∂2

∂α2
fq(α, z) = q′′(α)(a(1 + α) + z) + 2q′(α)a ,

which is negative for α ∈ (−1− z
a ,m) iff

q′′(α)

q′(α)
> − 2a

a(1 + α) + z
.

Since z ≤ 0, the right hand side is always greater or equal to − 2a
a(1+α) =

− 2
(1+α) ≥ −

2
(1+m) .

We have therefore shown that if

(18)
q′′(α)

q′(α)
= − 2

1 +m
+ h1(α)

for some continuous function h1 : [0,m] → R which is positive on (0,m), then
f ′′q (α, z) < 0 for all α ∈ (−1− z

a ,m), z ≤ 0. But

q′′(α)
q′(α) = − 2

1+m + h1(α)

⇐⇒ d
dα log(|q′(α)|) = − 2

1+m + h1(α)

⇐⇒ log(|q′(α)|) = − 2α
1+m + h2(α)

⇐⇒ q′(α) = − exp
(
− 2α

1+m + h2(α)
)

⇐⇒ q′(α) = − exp
(
− 2α

1+m

)
H(α)

where h2 is a primitive function of h1, i.e. h′2 = h1 and H(α) = exp(h2(α)). H
is a positive, continuously differentiable function with H ′ > 0. So if with this
H we define

q(α) = M −
∫ α

0
exp

(
− 2ξ

1 +m

)
H(ξ)dξ

we have q(0) = M and if we further have∫ m

0
exp

(
− 2ξ

1 +m

)
H(ξ)dξ = M ,

then q(m) = 0. �

Note that we recover linear demand for H(ξ) = M
m e

2ξ
1+m . Other simple exam-

ples are arrived at by using a function H of the form H(ξ) = c P (ξ)e
2ξ

1+m , where
P is some polynomial which satisfies P (ξ) > 0 and P ′(ξ) > 0 for ξ ∈ (0,m) and

c = M

(∫ m

0
P (ξ)dξ

)−1

.

Other noteworthy examples are provided by q(α) = M(1− ( αm)ν) on [0,m] with
ν > 0.
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Figure 1. The buyer’s price pb(., t) for various values of t ∈
[0, T ]. Lighter shades of gray correspond to earlier times.

3.5. Numerical example. In this section we consider a numerical example
for the model proposed earlier. All further illustrations will refer to this setup.

We concentrate on the special case of linear demand from Section 3.3 and
take the following values for the problem: T = 1

4 , λ = 0.01, M = 104, m =

2. The claim sizes Yi are distributed on {δ, 2δ, 3δ, 4δ, 5δ} with δ = 105 and
corresponding probabilities 1

8 ,
3
8 ,

2
8 ,

1
8 ,

1
8 . The risk aversion coefficient is η =

10−6.
We consider the payoff ψ(c) = max(0,min(c −K,L −K)), where K = 107,

L = 3 · 107. We therefore have ψ(c) = A for c > L with A = 2 · 107. Note that
in our setup the PIDEs (11) and (20) become ordinary differential equations
in Rn, where n = A

δ + 1. This has the consequence that this example can be
computed rather efficiently.

Figure 1 shows the price pb(., t) of the derivative as a function of Ct. The
darkest line shows the price at expiry, which is equal to the payoff, the lightest
line shows the price at time t = 0. Both axes are million units of currency.

As is to be expected, the price of the derivative is a smoothed version of the
payoff shifted to the left. This shift is due to the fact that the claims process is
non-decreasing with time.

Figure 2 shows the risk loading θt as a function of Ct. The darkest line
shows the risk-loading close to expiry, the lightest line shows the risk-loading
at time t = 0. The x-axis is in million units of currency. We see that for some
parameters (e.g. t = 0, Ct = 15 · 106), due to the presence of the derivative
the risk loading is pushed down roughly from 1.09 to 0.93. That means that
the derivative makes the insurance more than 10 percent cheaper. Obviously
this effect vanishes for Ct > L, in which case the derivative corresponds to a
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Figure 2. Here we plot the risk loading θ(c, t) as a function of
c. Lighter shades of gray correspond to earlier times.

deterministic payment, such that the risk loading reverts to the one without a
derivative present.

For Ct far below the “strike” K the risk loading is also higher, which can
be explained by the relatively high probability for the derivative to have zero
payoff, such that the risk loading is close to that without a derivative present.

3.6. Verification. Now we want to convince ourselves that there exists a so-
lution to (11), with a corresponding maximizer and that the conditions of The-
orem 3.4 are satisfied.

Lemma 3.10. b(c, x) := exp(ηx) is a bounding function for our piecewise de-
terministic Markov decision model with bounded payoff function ψ.

Proof. (i) u(c, x) = − exp(−η(x+ψ(c)) such that |u(c, x)| = exp(−η(x+ψ(c)) ≤
exp(η‖ψ‖∞)b(c, x).
(ii)∫
b(c, x)Q(dc× dx|c, x, θ) =

∫
exp(ηx)Q(dc× dx|c, x, θ)

= q(θ)λE(exp(η(x− Y ))) + (M − q(θ))λE(exp(ηx)))

≤ b(c, x) sup
θ

(q(θ)λE(exp(−ηY )) + (M − q(θ))λ)

≤ λMb(c, x) .

(iii) Let ζ := supy∈[0,m] aq(y)(1 + y). Then

b(c, x+

∫ T

0

∫ m

0
aq(y)(1 + y)αs(dy)ds) = exp

(
ηx+ η

∫ T

0

∫ m

0
aq(y)(1 + y)αs(dy)ds

)
≤ exp(ηTζ)b(c, x) .
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�

Recall the function

µ(z) := max {q(α)(a(1 + α) + z) : α ∈ [0,m]}

and define the multivalued correspondence

Γ(z) := {α ∈ [0,m] : q(α)(a(1 + α) + z) = µ(z)} .

Lemma 3.11. (1) µ is a convex function on R.
(2) µ is Lipschitz-continuous on compact sub-intervals of R.

Proof. From our assumptions on q it follows that there exists a continuous
inverse q−1 to q on [0,M ]. First note that

µ(z) = max {q(α)(a(1 + α) + z) : α ∈ [0,m]}
= amax {q(α)α+ q(α)(z/a+ 1) : α ∈ [0,m]}
= amax {βq−1(β) + β(z/a+ 1) : β ∈ [0,M ]}
= amax {−f(β) + β(z/a+ 1) : β ∈ [0,M ]}
= af∗(z/a+ 1) ,

where

f(β) :=

{
−βq−1(β) β ∈ [0,M ]
∞ β ∈ R\[0,M ]

and f∗ denotes the convex conjugate of f , cf. 12 in [Roc70]. f∗ is a convex
function on all of R, see Theorem 12.2 in [Roc70]. f∗ is real-valued on all of R
since

ββ∗ − f(β) =

{
ββ∗ + βq−1(β) β ∈ [0,M ]

−∞ β ∈ R\[0,M ]

such that

sup
β∈R

(ββ∗ − f(β)) = max
β∈[0,M ]

(ββ∗ + βq−1(β)) ∈ R .

Therefore f∗ is Lipschitz on compact intervals, cf. Theorem 10.4 in [Roc70],
and so is µ. �

Theorem 3.12. Let ψ be a continuous and bounded function on R and let
E(eηY ) <∞. Then the backward equation (11) for W has a unique solution.

Moreover, the solution is bounded.

Proof. Consider the Banach space Cb(R) of bounded continuous functions on R.
The backward equation (11) is just an initial value problem for a Cb(R)-valued
function,

w′(t) = G(t, w(t))

w(T ) = ψ ,

where G(t, w)(c) = −Mŵ(c, t) − µ(w̄(c, t)). Using Lemma 3.11 it is readily
shown that G satisfies a local Lipschitz condition in the second variable with
respect to the sup-norm. Therefore the classical Picard-Lindelöf theorem on
existence and uniqueness of solutions of ODEs gives us the unique solution w
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to the initial value problem. Since each w(.) is bounded and w is continuous,
we have that the function

[0, T ]× R −→ R
(c, t) 7−→ w(t)(c)

is bounded. �

Lemma 3.13. There is a measurable function γ : R −→ [0,m] such that

q(γ(z))(a(1 + γ(z)) + z) = µ(z)

for all z ∈ R.

Proof. Recall the correspondence Γ which maps z ∈ R to the compact set of
all α ∈ [0,m] which maximize q(α)(a(1 + α) + z). Berge’s Theorem of the
Maximum ([Ber97] p.116), states that Γ is upper hemi-continuous, such that
its graph is closed. The graph GΓ is therefore a closed subset of R×[0,m] and the
projection of GΓ to R is R. From von Neumann’s Measurable Choice Theorem
(see [Dx08] Appendix V) it therefore follows that there exists a measurable
function γ : R −→ [0,m] such that q(γ(z))(a(1 + γ(z)) + z) = µ(z) for all
z ∈ R. �

Theorem 3.12 and Lemma 3.13 together show that the assumptions of the
Verification Theorem 3.4 are satisfied.

4. Certainty equivalence price and limit prices

In the preceding section we computed the utility indifference price. Having
done this we might ask whether there can actually be a trade, that is whether
it may occur that p(c, t, k) = pb(c, t, k) ≥ ps(c, t, k) = −p(c, t,−k). This does
not seem to be the case too often. All of our numerical examples show that
pb(k) < ps(k). This is in line with, e.g., the findings by Takino [Tak07], who
computes indifference prices of European claims in a stochastic volatility model
with partial information.

4.1. Certainty equivalence price. Another interesting question is what an
investor is willing to charge for the derivative if she cannot hedge the derivative.
The hedging strategy we proposed earlier can only be realized by an insurance
company. It is not unreasonable to assume that the counterpart in such a deal
is not an insurance company. In that case the utility indifference price of the
buyer coincides with the certainty equivalence price.

It is also reasonably to assume that on the seller’s side the derivative is split
up in the way mentioned above, i.e. each seller sells only the N -th part of the
whole derivative. The example we have in mind is that of a CAT-bond which
is denominated into N units.

Let us denote the certainty equivalence price for the seller by πs(c, t, k), i.e.
the solution to

E
(
− exp(−βy0)|Ct = c

)
= E

(
− exp

(
− β(y0 + πs(c, t, k)− kψ(CT ))

)
|Ct = c

)
,



PRICING OF DERIVATIVES WRITTEN ON INDUSTRIAL LOSS INDEXES 19

where we have assumed exponential utility with coefficient of risk aversion β.
That is

πs(c, t, k) =
1

β
log
(
E(exp(βkψ(CT ))|Ct = c)

)
.

πs may be computed either directly using the distribution of CT or using a
backward equation which can be derived similarly to the backward equation for
W :

(19)
πst (c, t, k) +M λ

βE
(
eβπ

s(c+Y,t,k) − eβπs(c,t,k)
)

= 0

πs(c, T, k) = kψ(c) .

Therefore the derivative can only be sold in denomination N , between N
sellers without the opportunity to hedge and a buyer with the opportunity to
hedge, if

pb(c, t, 1) ≥ Nπs(c, t, 1/N) =
N

β
log(E(exp(

β

N
ψ(CT ))|Ct = c))

for some N . For bounded ψ and N →∞ we have exp( βNψ(CT )) ≈ 1 + β
Nψ(CT )

and therefore E(exp( βNψ(CT ))|Ct = c) ≈ 1 + β
NE(ψ(CT )|Ct = c) and further

N
β logE(exp( βNψ(CT ))|Ct = c) ≈ E(ψ(CT )|Ct = c). That is

lim
N→∞

Nπs(c, t, 1/N) = E(ψ(CT )|Ct = c) .

Define

π0(c, t) := E(ψ(CT )|Ct = c) ,

then v can be computed directly or via the backward equation

(20)
vt(c, t) +MλE(π0(c+ Y, t)− π0(c, t)) = 0

π0(c, T ) = ψ(c) ,

and gives the limit of the buyer’s price for N →∞.
In our numerical example we have

pb(c, t, 1) > lim
N→∞

Nπs(c, t,
1

N
) = π0(c, t) ,

that is a deal could be stricken for sufficiently large N , provided that the sellers
of the derivative are not able to hedge the derivative. The corresponding
difference between utility indifference buyer’s price and π0, the denomination
limit of πs, is shown in Figure 3.

4.2. Risk-neutral limit. Another interesting quantity is the risk-neutral limit
of the indifference price, that is

p0(c, t, k) := lim
η→0

pη(c, t, k) ,

where pη is the utility indifference price corresponding to risk aversion η. The
risk-neutral limit price has been considered, for example, in [RK00, DGR02,
Bec01, Bec03], and it is of some interest in that it gives a linear pricing rule
which nevertheless is related to the non-linear utility indifference pricing rule.
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Figure 3. Here we plot pb−π0 as a function of c. Lighter shades
of gray correspond to earlier times. Note that the difference
is always non-negative, which implies that the derivative can
actually be traded.

It is not hard to see that our optimization problem (5) is meaningful even for
η = 0, that is if one takes linear utility u(x) = x. It turns out that p0(c, t, k) =
kπ0(c, t) where π0 is the same as in the preceding subsection.

5. Conclusion and open questions

In our study, we have modeled the industrial loss index by a compound
Poisson process and showed that the insurer can control her wealth process by
adjusting her portfolio via choosing the risk loading. Our study contributes
to the insurance theory by showing that by issuing CAT bonds and offering
catastrophe coverage the net expected income of the insurance company remains
the same while the insurer can lower the premium charge.

The study has a greater significance to low-income countries where natural
disasters often exceeds the resources of internal and external sources of relief
funding: Using our strategy, the insurance company in the low-income country
can sell CAT bond to some (ethical) investors and offer affordable insurance
services against risk of low-probability, high-loss events to the needy/poor vul-
nerable customers.

We have discussed to role of the ability to hedge. We have found that in
the natural situation where the seller (or the sellers) of the derivative is not an
insurance company and therefore cannot hedge the derivative via her portfolio,
then the derivative can actually be bought.

For future research, the following extensions or generalizations of the problem
are of interest:
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• N could be a doubly stochastic process, such that its intensity varies
over time. This would allow for a more realistic modeling of catastrophic
events: One could have “normal” times, where claims arrive at a low rate
and “catastrophe” times, where claims arrive at a very high rate. One
would then probably restrict the policies of the insurance company in a
way that does not permit changing the risk loading during catastrophe
times.
• Alternatively, one could model catastrophes as events where several

claims happen at the same time and where the insurance get to pay a
random number of claims according to their fraction of the total port-
folio.
• It would be interesting to allow for some lag for the adjustment of the

demand to a changed risk loading.
• The Yk’s and Uk’s could be made dependent. More specifically, the

parameters of Yk could be a function of Uk. This is reasonable, since the
different clients are likely to have different claim distributions. In that
setup, the policies of the insurance company would be more complicated
objects, the risk loading would also depend on the parameters of the
claim distributions.
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