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Abstract 

A robust time-varying regime-switching model for price dynamics of hourly 
spot price of electricity on the electricity market is developed. We propose a 
two-state Markov Regime Switching (MRS) model that gives weight to the ex-
istence of different variance for each regime. Our model is tractable as it inte-
grates the main features exhibited in the hourly spot price dynamics on the 
electricity market. The parameters of our hourly spot price of electricity mar-
ket model are estimated using the Expectation Maximization algorithm. Based 
on this model, an efficient and tractable pricing technique can be developed to 
price the dynamics of the hourly spot price of electricity. 
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1. Introduction 

Electricity, among other commodities, is one of the most important blessings 
science has given to the world. It is an essential commodity for social and 
economic development of developing countries. Most small household and 
manufacturing industries depend on electricity for their activities. According to 
the World Banks Global Tracking Framework (GTF), released in April 2017, 
1.06 billion people live without electricity—a negligible improvement since 2012 
(http://www.worldbank.org/en/topic/energy/overview, accessed on 02/09/2017) 
and this impedes the growth of countries economy due to the over-reliance of 
most activities on electricity. Crousillat, Hamilton, and Antmann (2010) stated 
that “eventhough electricity alone is not sufficient to spur economic growth, it is 
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certainly necessary for human development” [1]. 
The electricity market facilitates the purchase of electricity through bids to 

buy; sales, through offers to sell; and short-term trades. In the early 1990s, the 
deregulation of the energy market (electricity market in our case) started in 
some countries (among others were the United Kingdom, Australia, and Norway) 
and gradually spread out to the European Union and the United States. This has 
created competitive markets that boost wholesale trading in most countries. This 
deregulation instigated substantial elements of risk such as uncertain demand, 
price risk, and volumetric risk; the principal of them being electricity price 
volatility. In result of this, there is the need to understand and model the spot 
price dynamics of the electricity market accurately to aid in an efficient pricing 
of electricity spots. 

2. Electricity Spot Prices: Markets and Models 

The spot price dynamics of electricity show signs of strong seasonality, high 
volatility, and generally unexpected extreme changes known as “spike” or 
“jumps” [2] [3]. Electricity spot prices (the underlying) show forms of nonlinear 
dynamics. Among the nonlinearities of the series of the price dynamics are the 
clustering of large shocks, and non-constant variance. These distinctive 
characteristics make it difficult for practitioners and researchers to model 
accurately the spot price of electricity on the electricity market. Most researchers 
have modelled electricity spot price dynamics using single regime stochastic 
models where it is assumed that there is no changes in state of the underlying 
spot price dynamics. But a single stochastic model may not be able to 
incorporate the dynamics of these electricity spot price dynamics accurately [4] 
[5] [6]. In reality, the underlying can go through different unobservable (latent) 
states in a particular period of interval. The underlying exhibits switching 
mechanism that needs different stochastic model for each switching state. Hence, 
the need to formulate appropriate models that can capture efficiently the 
electricity price dynamics to help in the proper pricing of spot and futures 
contract. From Figure 1, it is clear that mean-reversion is the optimal choice for 
electricity spot price dynamics. To build up the efficiency of Markov Regime 
Switching (MRS) models to electricity spot price dynamics, we proposed a 
model that gives weight to the existence of different variance for two Markov 
Regime Switching (MRS) models. The dynamics of electricity are more complex 
than normal spot price models allow and it can be noted that in the deregulated 
market, the dynamics of electricity prices are characterized with a combination 
of low price behavior and sharp price spikes as illustrated in Figure 1. 

Ethier and Mount (1998) presented MRS models to electricty prices [7]. 
Huisman and Mahieu (2003) presented a three regime-switching model that 
separates price spikes from normal price [8]. They indicated that power spikes 
are short-lived and that stochastic jumps process cannot adequately model the 
electricity price behaviour. To substantiate their proposed model, they stated  
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Figure 1. Hourly spot price of the NordPool Electricity market from 01/01/2017- 
31/04/2017. 
 
that the mean-reverting rate of the long-run price level and the normal periods 
are not the same. Weron, Bierbrauer, and Trück (2004) modelled spot electricity 
prices by reviewing different electricity spot models [3]. Bierbrauer, Trück, and 
Weron (2010) addressed the problem of modeling spot electricity prices from 
the Nordic power exchange with a regime switching model [9]. The performance 
of the regime switching model was evaluated by comparing simulated and 
market prices. De Jong (2006) presented a two-regime MRS model by 
considering an autoregressive, spike regime dynamics driven by a Poisson 
distribution [10]. Weron (2008) also presented a model that decreases the 
computational time induced by independent regimes [11]. 

In this paper, we develop a robust two state regime-switching model with 
time-varying volatility for the price dynamics of the electricity spot price on the 
electricity market. The model is mathematically tractable to represent well the 
characteristics of the spot price dynamics of the electricity market. 

3. Regime-Switching Brownian-“Jump” Model 

Suppose in a two independent state regime switching, each state undergoes 
discrete shifts between states tS  of the process. Then tS  follows a first order 
Markov chain with the transition matrix: 

( ) ( )
( ) ( )

1 1

1 1

1 | 1 1| 2
2 | 1 2 | 2

t t t t

t t t t

S S S S
S S S S

− −

− −

 = = = =
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P
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The transition matrix P  contains the probabilities  
( ) { }1, 0,1 | 1ij t tP i j P S j S −= = = = , 0 1ijP≤ ≤ , 1ijP =∑  and satisfying  

0 1 1, 0,1i iP P i+ = ∀ =  
Keeping the stylized features of the spot price dynamics of electricity in mind, 

we propose a two-state Markov regime-Switching model with base regime 
driven by a mean-reverting process and a shifted regime driven by a Brownian- 
“Jump” process. In both regimes, we assume that the volatility of the current 
spot price is dependent on the current spot price level tX . The “jump” 
behaviour is as a result of an “extreme” Brownian motion with a greater extreme 
drift and volatility than the standard mean-reverting regime. The “jump” regime 
is modelled with a simple Itô process. Given a time interval [ ]0,T  at a finite 
time horizon [ ]T < ∞ , assume there is trading activities in the electricty market. 
Suppose, given a probability space ( ), ,Ω   

( )
( ) ( )

( )
,1 ,1 1 ,1 1

,2 ,2 2 2

: d d d , if is in regime1

: d d d , if is in regime 2

M
t t t t t

J
t t t t

X X X t X W X t
X t

X X t X W X t

γ

γ

α λ σ

µ σ

 = − += 
= +

   (1) 

where λ  is the mean-reversion rate of the base regime, 1α
λ

 is the long-term  

mean for the spot price reverting to, 1 tX γσ  and 2σ  are the daily price 
volatility of the base and shifted regimes respectively, M

tW  and J
tW  are the 

standard Brownian motion and a Brownian-”Jump” process respectively, tT  is 
the temperature at time t. Let 1p  and 11 p−  be the probabilities that the 
process is in regime 1 and 2, respectively. The base regime model is based on the 
mean-reverting constant elasticity variance developed by [12]. There is a strong 
positive correlation between the price level and the price change for a psoitive 
γ . Assume 1γ = , then model (1) can be reformulated as 

( )
( ) ( )

( )
,1 ,1 1 ,1 1 ,1

,2 ,2 2 2 ,2

: d d , if is in regime 1

: d d d , if is in regime 2

M
t t t t t

J
t t t t

X X X dt X W X t
X t

X X t X W X t

α λ σ

α σ

 = − += 
= +

   (2) 

By the application of Itô’s lemma to model (2), the integral form to the base 
regime and shifted regime is explicitly given in integral form as 

( )01 1
,1 0,1 1 ,1e e dt st M

t s st
X X X Wλλα α

σ
λ λ

− −−  = + − +   ∫             (3) 

,2 0,2 2 20
d

t J
t sX X t Wµ σ= + + ∫                      (4) 

4. Parameter Estimation 

The EM algorithm was first introduced by Dempster, Laird, and Rubin (1977) 
[13]. Estimating the parameters in a MRS models is not trivial since the regime 
is not directly observable(latent). Hamilton (1990) was the first to apply 
Expectation-Maximization (EM)-algorithm [14]. The EM-algorithm is a 
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comprehensive procedure for finding the maximum-likelihood estimate of the 
parameters of a distribution from a specified data given that the data is either 
incomplete or have missing (or hidden) values. The optimal set of unknown 
parameters to be estimated in the base and shifted regime are { }1 1 1 1, , , Pθ α λ σ=  
and { }2 2 2 2, , Pθ α σ=  respectively. The optimal set of the unknown parameters 
in the model to estimate is { }1 2,θ θΘ = . 

4.1. Discretization 

The discretized version of model 1 in the base and shifted regime is respectively 
given as 

( )1,1 1 ,1 1 ,1 1,11t t t tX X Xα λ σ+ += + − +                    (5) 

1,2 2 ,2 2 ,2 1,2t t t tX X Xα σ+ += + +                      (6) 

where ( )1 ~ 0,1t+  . Let 
k

X
t  be the vector of past 1k +  last values of (5) and 

(6), i.e. ( )0 1 2
, , , ,

k k

X
t t t t tX X X X=  . Also, let 1H +  be the size of the past data 

and Ψ  be the equivalent increasing pattern of time at which the data is 
recorded, i.e. { }0 1 2 1;0 .j H Ht t t t t t T−Ψ = = ≤ ≤ ≤ ≤ ≤ =  

4.2. E-Step 

As stated earlier, the regime switching model is latent, hence the inference of the 
regimes are given by the equations below: 

{ }1,2i∀ = , 1,2,3, ,k H=  , and n = number of iterations. 

( )( )
( )( )

( )( )
1
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,
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ˆ| ;

ˆ| ;
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k k k
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−
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



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
                      (7) 
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ˆ| | ; ;
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=
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=
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



 
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  (8) 

with 

( )( ) ( )( )1 1 1

2

1

ˆ ˆ| ; , | ;
k k k k k

n nX X
t t t t t

i
S i S i S j

− − −
=

= Θ = = = Θ∑                    (9) 

( )
( )( )1

2

1

ˆ| ;
k k

n
nX

t t
i ji

S j
−

=

= = Θ∑∏                       (10) 

( )( )1
ˆ| ; ;

k k k

nX
t t tf X S i

−
= Θ  is the density process at time kt , conditional on  

the process in regime i. From (2) and (5), the base regime has a conditional 
Gaussian distribution with mean ( )1 ,1 1

kt
Xα λ+ −  and standard deviation 

1 ,1kt
Xσ . The shifted regime has a conditional Gaussian distribution with mean 

2 ,2kt
Xα +  and standard deviation 2 ,2kt

Xσ . 
The probability density functions (pdf) of the base and shifted regimes are 

respectively given as 
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( )( )

( )

( )( ) ( )( )
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1

1

1 1

1

2

1

2 2
1 1
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2π 2

k k k

k k

k k

nX
t t t

n n
t t

n n
t t

f X S i

X X

X X

θ

λ α

σ σ

−

−

− −

=

 − − − 
= − 

 
 



        (11) 
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2 2
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X X
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−

−
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=

 − − = − 
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               (12) 

4.3. M-Step 

We compute the maximum likelihood estimates ( )1n+Θ  for the unknown 
parameters in (5) and (6). 

The transition probabilities 1 jP  and 2 jP  ( )1ijP =∑  are estimated based on 
the formula below 

( )

( )( )
( ) ( )( )

( )( )
( )( )

1 1

1

1

1

2
21

1

2

ˆ1| ;
ˆ1| ;

ˆ1| ;

ˆ1| ;
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k k

k k

k N

n nX
j t tN nX

t t Nk nX
t tkn

j N nX
t tk

P S
S

S
P

S

− −

−

−

=

=+

=

 = Θ
 = Θ
 = Θ =

 = Θ 

∑
∑

∑














       (13) 

2 11P j P j= −                             (14) 

From (11) and (12), the log-likelihood functions of the base and shifted 
regimes are given respectively as 

( )( )
( ) ( ) ( )( )1 1

1

1

2

1, 1 1 12 2
2 1

ˆlog ; ,

1log log 2π 1
2

k k

k k k k
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t t
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n
t j t t t

k t

L S
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θ
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 
 
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  
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 (15) 
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1log log 2π
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L S

A P X X X
X

θ

σ α
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 
 

 
= − − − − 

  
∑



      (16) 

From (15), each of the parameter in the base regime can be estimated by 
differentiating the log-likelihood with respect to that parameter. 

( )( )
( ) ( ) ( )( )
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1 1

212 1
2 1, 121

1
1,2

1
k k k k
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H n
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+− +
=+

=
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where 
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−
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From (16), each of the parameter in the shifted regime can be estimated by 
differentiating the log-likelihood with respect to that parameter. 

( )( )
( )( )1

21
2 2, 221

2
2,2

k k k

k

H n
t t tkn

H
tk

A X X

A

α
σ −

+
=+

=

− −
=
∑

∑
           (20) 

( ) ( )12,1 2
2

2,2

k k k

k

H
t t tn k

H
tk

A X X

A
α −+ =

=

−
=
∑

∑
                (21) 

5. Data Description, Results, and Discussion 

Historical electricity hourly spot price on the NordPool market is used, 
specifically we took an hourly data of Oslo. The data set consist of 764 hours 
spanning from 01/03/2017-31/03/2017. From Table 1, the kurtosis of the data 
was found to be 24.6572 which is by far greater than the kurtosis of a gaussian 
distributed data, hence the existence of extreme data points in hourly spot price 
of the NordPool Electricity. These extreme data points can be described as 
“jumps”. The presence of extreme data points in the hourly electricity data are 
clearly illustrated in Figure 2, as the normal curve was not able to fit well on the 
histograph. This shows that the consumption of electricity depends largely on 
the peak hours and normal hours in a day, hence the need to model electricity 
spot price dynamics hourly. Also from Table 1, with a skewness of 3.9056, the 
data is skewed to the right. This also shows that the hourly spot price of the 
NordPool Electricity is not normally distributed. The parameter estimates for 
both regimes depends on the hourly spot price of the NordPool Electricity 
market from 01/03/2017-31/03/2017. 

The estimated results of the model is found in Table 2. The probability of 
hourly price remaining in the base regime is very high, 0.8471. With a lower but 
 

 
Figure 2. The distribution fit of the hourly spot price of the NordPool Electricity market 
from 01/03/2017-31/03/2017. 
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significant probability of 0.1529, the hourly price will remain in the shifted 
regime. 

6. Conclusion 

In this paper, a two-state Markov Regime switching model for the dynamics of 
the hourly spot price of electricity is developed. It is clear from the illustrated 
Figure 3 and Figure 1 that electricity hourly spot price exhibits mean reversion, 
heteroscedastic volatility in both regimes, price spikes and jumps. Our model is 
tractable as it integrates the main features exhibited in the hourly spot price on 
the electricity market. The parameters of our hourly spot price electricity market 
model are estimated using the EM algorithm. Based on this model, an efficient 
and tractable pricing technique can be developed to price the dynamics of the 
hourly spot price of electricity. To the best of our knowledge, our proposed 
model is the first to consider hourly spot price of electricity. From Figure 2, it is 
evident that the distribution of hourly spot price of the NordPool Electricity is 
not normal; hence it will be appropriate to use other distributions like the 
Normal Inverse Gaussian (NIG) or the Gamma distribution to capture this effect. 

 
Table 1. The distribution (skewness and kurtosis) of hourly spot price of the NordPool 
Electricity market from 01/03/2017-31/03/2017. 

Skewness Kurtosis 

3.9056 24.6572 

 
Table 2. Parameter estimates for the two state MRS model. The parameters are estimated 
using the EM algorithm based on the hourly spot price of the NordPool Electricity market 
for 01/03/2017-31/03/2017. 

Parameter 1σ  λ  1α  1P  2P  2σ  2α  

Estimate 10.9876 1.7671 6.8814 0.8471 0.1529 7.0913 4.0936 

 

 
Figure 3. Calibration of two state MRS model with independent regimes fitted to 
deseasonalized hourly electricity spot price from the NordPool Electricity market.  
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NIG and Gamma distributions can capture the extreme and skewed features of 
the hourly spot price of the NordPool Electricity data.  
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