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Abstract

Functional data analysis is a branch of statistics that deals with observations X1, . . . , Xn

which are curves. We are interested in particular in time series of dependent curves and,

specifically, consider the functional autoregressive process of order one (FAR(1)), which

is defined as Xn+1 = Ψ(Xn) + εn+1 with independent innovations εt. Estimates Ψ̂ for the

autoregressive operator Ψ have been investigated a lot during the last two decades, and

their asymptotic properties are well understood. Particularly difficult and different from

scalar- or vector-valued autoregressions are the weak convergence properties which also

form the basis of the bootstrap theory.

Although the asymptotics for Ψ̂(Xn) are still tractable, they are only useful for large

enough samples. In applications, however, frequently only small samples of data are

available such that an alternative method for approximating the distribution of Ψ̂(Xn)

is welcome. As a motivation, we discuss a real-data example where we investigate a

changepoint detection problem for a stimulus response dataset obtained form the animal

physiology group at the Technical University of Kaiserslautern.

To get an alternative for asymptotic approximations, we employ the naive or residual-

based bootstrap procedure. In this thesis, we prove theoretically and show via simulations

that the bootstrap provides asymptotically valid and practically useful approximations of

the distributions of certain functions of the data. Such results may be used to calculate

approximate confidence bands or critical bounds for tests.
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Zusammenfassung

Die Funktionaldatenanalyse ist ein vergleichsweise neues Gebiet der Statistik, das sich

mit Daten X1, . . . , Xn befasst, die Funkktionen sind, zum Beispiel Kurven über einem

Intervall der reellen Achse. Wir interessieren uns insbesondere für Zeitreihen abhängiger

Kurven und betrachten ein einfaches Modell, den funktionalen autoregressiven Prozess der

Ordnung 1 oder FAR(1)-Prozess, der folgendermaßen definiert ist: Xn+1 = Ψ(Xn) + εn+1

mit unabhängigen Innovationen εt. Schätzer Ψ̂ des autoregressiven Operators Ψ sind in

den vergangenen zwei Jahrzehnten ausgiebig untersucht worden, und ihre asymptotischen

Eigenschaften sind gut bekannt. Besonders schwierig ist dabei die Verteilungskonvergenz,

die die Grundlage für Bootstrapverfahren ist. Sie unterscheidet sich deutlich von den

skalaren oder vektorwertigen Autoregressionen.

Obwohl die asymptotische Theorie für Ψ̂(Xn) noch handhabbar ist, nützt sie in der Praxis

nur bei Stichproben, die groß genug sind. In Anwendungen ist das gerade bei Funktional-

daten oft nicht der Fall, so dass alternative Methoden zur Approximation der Verteilung

von Ψ̂(Xn) wünschenswert sind. Als Motivation betrachten wir ein Changepoint- Detek-

tionsproblem für einen funktionalen Realdatensatz aus dem Bereich der kognitiven Wis-

senschaften, den die Arbeitsgruppe Tierphysiologie der TU Kaiserslautern zur Verfügung

gestellt hat.

Um eine Alternative zu asymptotischen Approximationen zu entwickeln, setzen wir das

naive oder residuenbasierte Bootstrapverfahren ein. In dieser Arbeit beweisen wir the-

oretisch, dass das Bootstrap asymptotisch valide und praktisch nützliche Verteilungsap-

proximationen für gewisse Funktionen der Daten liefert. Die Theorie wird durch Simula-

tionen unterstützt. Derartige Ergebnisse können dazu benutzt werden, um approximative

Konfidenzbänder oder kritische Bereiche für Tests zu berechnen.
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Chapter 1

Functional Data

1.1 Introduction

Functional Data Analysis (FDA) is a field of research concerned with observations which

are curves. The data are of the form Xn(t), where t ∈ [a, b] and Xn, n = 1, ..., N denotes

the different observations (curves), see [28]. Considering a random function Z, a reali-

sation z(t) can be the height at time t, intensity at location t implying that the set T

over which the functions are defined may be but is not necessarily limited to time. A

random variable X is called a functional variable if it takes values in a functional space,

for instance a Hilbert space or Banach space, and a functional dataset is the observation

of N functional variables X1, X2, ..., XN which may be identically distributed as X.

Functional data are usually sampled in a discrete manner from continuous time processes

and are represented as Xn(ti), n = 1, 2, ..., N, i = 1, 2, ...,m, where n represents the index

of observations or curves and i denotes the sampling points for each curve which may or

may not be equidistant. An example is weather data which is recorded once each day

for ten years. In this case taking each year as a curve, we have N = 10 and m = 365,

it is easily noted that the sampling points m are equi-distant. On the other hand, if

we consider the Berkeley Growth Study data, see Ramsay and Silverman, [49] then the

sampling points are not equidistant. In the study the height of 10 girls was recorded in

31 instances, with the aim of studying their growth. According to how the measurements

were recorded, it is clear that the data is not equidistant. Another example of irregularly

spaced data is that of transactions at the point of sale (POS) which differ for different
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days and times. It should be noted that most standard statistical techniques are based

on equidistant data. However, aggregation of irregularly spaced data to conform to

the standard models leads to a loss of information when the intervals of averaging are

too big. On the other hand, for very small intervals, complexity may be introduced

unnecessarily since each interval may not necessarily contain useful information. Once

the discrete data has been sampled, to convert it to functional form we assume that there

exists an underlying function X which generates it. Conversion to functional form may

involve some smoothing which essentially means that we assume some relationship exists

between two adjacent observations Xn(ti) and Xn(tj). Smoothing further implies that the

underlying function possesses a given number of regularity conditions which are useful

for describing the data or making inferences about it.

When the data is recorded during observation, some noise may be present so that what

is recorded is of the form Y = X+ ε. In this case, as in standard regression, Y represents

the response variable, X the explanatory variable (regressor) and ε is the noise also called

disturbance which adds roughness to the observed data. This noise may be filtered during

smoothing of data to functional form or later after the desired computations have been

done on the data in functional form. It should be quickly noted that when dealing with

functional linear models, three cases can be distinguished. In the first case we have the

fully functional model where both the response and regressor are curves, the second and

third cases consider a scalar response and functional regressors and vice versa. Details of

these models can be found in Horváth and Kokoszka, [28]. In the event that there is no

observational noise, then the conversion process from discrete to functional form is called

interpolation. As already noted above, for different values of n, the argument values ti

may be different and the interval of observation may also vary. This non-uniformity of

data collected therefore implies that a functional approach would be better suited for

the representation and later analysis of the data since it is able to deal well with such

cases as opposed to existing methods such as multivariate methods which require that

observations be equidistant.

The resolution of the data is also of importance when dealing with functional data as

it dictates, to some extent, what is achievable or not with the data. Resolution can

2



be described as the density of the argument values ti relative to the curvature of the

data, i.e it is a question of whether the number of observations recorded are enough

to describe the data well including the minute details, see for instance Ramsay and

Silverman, [52]. Higher curvature (data that includes a lot of detail) requires more data

points for estimation so as to ensure satisfactory description and vice versa. An example of

this is the data considered by Laukaitis and Račkauskas [38] which involves cash flow and

transactions intensities at POS (Point of Sale) and ATMs (Automatic Teller Machines).

In this case the curvature is high since there is a need to capture all the patterns for

instance when the POS and ATMs are busiest among other things. They employ the

limit of the measure precision in that they consider all the recorded transactions and

therefore they are in a position to make reasonable inferences. In the event that all

points are not considered, then there needs to be a way of ensuring that the collected

data represents the high curvature observed.

Smoothing can be achieved by use of different methods. The most optimal method

to be used depends on the underlying characteristics of the sampled data. Smoothing

methods available include basis function methods, local weighting and roughness penalty

approach. Basis function methods involve representing the observations as a weighted

linear combination. Local weighting emphasizes on the local dependence of observations

such that those closest to the argument values get the highest weights. Roughness penalty

on the other hand defines smoothing at the level of the criterion being optimised. See

[52].

Basis functions are most commonly employed for smoothing (estimating functions from

discrete observations). A functional observation Xi smoothed by an appropriate basis is

expressed as a weighted linear combination,

Xi(t) ≈
K∑
k=1

cikφk(t)

where φk(t) are known functions which are orthogonal of each other and cik are weighting

coefficients. The number K of basis functions used depends on the amount of smoothing

that is required. In the case of interpolation, K = m, where m is the number of sampling

points per curve. Choice of basis functions depends on the underlying characteristics of

3



the data. Some of the most commonly used basis functions include,

1. Fourier basis: This can be represented for a given function x as x̂(t) = c0+c1 sin ωt+

c2 cos ωt+c3 sin 2ωt+... where the basis is defined as φ0(t) = 1, φ2k−1(t) = sin kωt,

and φ2k(t) = cos k ωt. This basis is periodic with period 2π/ω. Its coefficients can

be efficiently computed by use of the Fast Fourier Transform when N is a power of

2. This basis is very useful for data that displays some periodicity, which may be

distorted by noise, without local fluctuations and with uniform curvature. However,

in the event of discontinuities in the function or its lower derivatives, the basis may

perform poorly to some extent, see for instance [48] or [52] for more details.

2. Spline basis: This is employed for non-periodic data. A spline is composed of a

combination of polynomials of a given order defined over specified sub-intervals of

the function to be estimated with each polynomial being connnected to the next at

a point called the breakpoint or knot. To define a spline one requires the order of

the polynomial and the sequence of break points or knots. When the curvature of

the function does not exhibit a lot of variation, the breakpoints can be set at equally

spaced intervals. However flexibility can be enhanced by increasing the number of

breakpoints for instance where the variation or curvature is high and vice versa.

It should be noted though that increasing the value of K (the number of basis

functions), does not necessarily lead to a better fit because the best fit depends

on among others the knot sequence and the number of knots, see [?] for a detailed

exposition of the same. The B-spline basis system is the most popular among

spline systems because of its efficient computation. Like other splines, it consists of

polynomial pieces that are joined at knots. A B-spline of degree z consists of z + 1

polynomial pieces, each of degree z. At the knots, there exists derivatives of order

z − 1. As mentioned above, the problem of overfitting or underfitting plays a role

here and to correct it penalties are employed. This involves penalising a feature of

interest for instance the second derivative of the fitted curve. We apply this basis

here.

3. Wavelets: These combine properties of the Fourier and Spline basis systems. This

4



implies that they are well adapted to coping with functions with discontinuities

unlike in the case of the Fourier basis. In the case of Wavelet basis a mother

wavelet is constructed which has the property of compact support and is built in

such a way as to ensure orthogonality of the basis functions. As is the case in the

Fourier transform there exists a Discrete Wavelet Transform which ensures speeds

of O(n) in computation as long as n = 2m, which is even faster than the Fast Fourier

Transform, see for instance [1] and [38].

4. Other basis systems include; the constant basis which can be used to view constant

scalar observations as functions, polynomial basis which has good approximations

in the center and is very poor at the boundaries, the step function basis among

others.

It should be stressed that no particular basis can be uniformly applied but, depending

on the underlying characteristics of the data a suitable basis can be chosen.

Another method of converting discrete observations to functional form is by use of least

squares. In this case the observations are assumed to follow the model yj = x(t) + εj

where yj are the discrete observations, x(tj) is a suitable basis function expansion (chosen

according to the underlying characteristics of the data) and εj is the error or exogeneous

variable. It should be noted that at times more than one basis function can be used

to approximate the function x. In this case the first set of basis functions takes into

consideration large features in the data while the other set considers local features and

a combination of these two is then used. The method of least squares is applied as in

the multivariate or scalar situation in that we choose the fit that minimizes the sum of

squared errors, i.e

m∑
j=1

(
yj −

K∑
k=1

cjkφk

)2

(1.1)

As in the multivariate and scalar cases, fitting can be done using ordinary, weighted or

localised least squares. Localised least squares for instance is preferred as compared to

weighted or ordinary least squares as it considers local features near a given point of

interest and will therefore provide a fit that better represents the data.
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The roughness penalty approach is also useful for smoothing. This method smoothes by

penalising a feature of interest in order to get the best fit, for instance the curvature can

be the feature that we are interested in controlling. In this case the penalty is simply the

squared norm of the second derivative, which is zero for a straight line. It is practical

since it allows for control of features of interest.

Once the smoothing method and the proper basis have been selected, the number of basis

functions K required to provide a good fit should be considered. K large implies that

we have minimal bias but large variance and vice versa. This is the common problem of

bias-variance or mean squared error trade-off and therefore K should be chosen such that

there is a balance between the two. A thorough exposition of the above methods can be

obtained from Ramsay and Silverman [49] for the functional case while several books on

regression contain detailed information on the method of least squares.

1.2 Dependent functional data

Functional data can either be dependent or independent in nature. An example of in-

dependent functional data is the Berkeley growth study where the height of one girl is

independent from the height of another. Dependent functional data arises for instance

when an almost continuous time record is separated into consecutive intervals, for in-

stance days, minutes or seconds among others. This implies and is mostly the case that

some temporal dependence will exist. An example is Electro Encophalography (EEG)

data recorded before during and after a given task which the subject is given. It is

obvious that the recorded observations have some dependence as they represent three

consecutive states of a subject. Data of such nature can be represented by the equation

Xn(t) = ξnh+t, 0 ≤ t ≤ h, n ∈ Z, n = 1, ..., N . Here a function Xn is an interval whose

length is h. This dependence can be approximated with a known model for instance

the Functional Autoregressive Model (FAR) also referred to as Autoregressive Hilbertian

Model (ARH) and in cases where the exact model is unknown the effect of the dependence

on the procedure under investigation should be checked.

Although consecutive observations may have some level of dependence, in some cases, as

6



the distance between the observations increases, then we have asymptotic independence

of observations. Two observations A and B are asymptotically independent if they satisfy

certain mixing conditions for instance strong mixing i.e

α(k) = sup{|P(A ∩B)− P (A)P (B)|: −∞ < t < +∞, A ∈ X t
−∞, B ∈ X+∞

t+k } → 0

as k → ∞. Asymptotic independence of observations implies that procedures and the-

orems for independent data for instance the Central Limit Theorem can be applied to

these data. In some cases however, the approximation quality of asymptotic results is

limited to rather large samples. An alternative is the bootstrap which allows us to ob-

tain approximative distributions of an estimate of a parameter with frequently minimal

assumptions if any. Once we have these approximative distributions we can then obtain

confidence intervals, test hypotheses and so on. We quickly note that although the boot-

strap is very useful in the event that we do not know the underlying distribution of the

data, care must be taken when applying it so that the underlying characteristics of the

original sample are replicated in the bootstrap pseudosamples. The bootstrap technique

will be discussed in more detail in the last two chapters.

1.3 Selected applications

Functional data analysis has been employed in different fields of research to solve different

problems. Castro et. al. [12] employ functional methods to predict sulfur dioxide levels

emmited by a power plant. This is required in order to control air quality. The aim

of their study was to predict the amount of sulfer dioxide that would be emmited, so

that the staff in the plant could be in a position to take contol action in the event

that the amount exceeded a certain set limit. In particular they use the functional

autoregressive model and manage to show that its predictions are better and more reliable

than other semiparametric and neural methods which have been employed before. They

also apply bootstrap techniques in the functional context to deal with the confidence of

their predictions a technique which we employ later on in this study.

Besse et. al. [5] compare different methods for forecasting functional data. They propose

a hybrid method which is a local adaptation of the FAR(1) by introducing a weighted
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kernel estimator of the covariance operator. The FAR forecasts were seen to outperform

the scalor methods like SARIMA and ARIMA. This could be attributed to the fact that

for real data and longer forecast horizons, the assumptions of linearity and stationarity

are more likely to be violated thus making the scalar methods less powerful.

Antoniadis and Sapatinas [1] propose three linear wavelet methods to address the problem

of continuous time prediction. They employ the wavelet basis for smoothing from dis-

crete to continuous functional data, and to solve the ill-posed inverse problem they turn

to regularization methods, in particular the Tikhonov-Phillips regularization method.

They also prove the consistency of their estimators under certain assumptions, for in-

stance, second order differentiability is not required for the smoothed curves inorder to

obtain asymptotic rates, a condition that is required in the classical case. They apply

their methods for prediction of the El Niño Southern Oscillation (ENSO) together with

other methods that have been applied in literature for comparison. They compared their

method with the smoothing spline interpolation estimator from Besse et. al. [5] and a

SARIMA model with 12 months seasonality. One of their proposed methods was the

same as that of Besse et. al. [5] save for the fact that they use wavelet basis as opposed

to splines. In terms of perfomance the two methods were the same which implies that

the proposed wavelet method should be chosen considering that its computation time is

20 times faster. In general the functional methods were better and the SARIMA model

had the worst perfomance both graphically and in terms of prediction error.

Damon and Guillas [14] use functional methods and in particular the Autoregressive

Hilbertian model (ARH) to estimate the concentration of ozone in the atmosphere. Ozone

is an atmospheric pollutant and therefore the study aims at predicting the amount that

will be in the air at a particular point in time in order to take control or corrective

measures when a certain limit is exceeded. The main enhancement in their work is that

apart from employing the ARH model, they also consider the influence of exogeneous

variables temperature, wind speed and wind direction, which they incorporate into this

model. They compare the predictions from this model with those from the ARH model

without exogeneous variables, a functional kernel model and generalised additive models.

In this case the ARH with exogeneous variables gave the best results followed by the
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ARH without exogeneous variables and Generalised additive models. This implies that

although the functional methods seem optimal because they consider the continuity of the

process which inturn implies a bulk of information as compared to multivariate methods,

their predictions in some instances can be improved by taking into consideration external

influences as in this case.

Laukaitis and Račkauskas [38] employ functional methods in particular the Hilbert-valued

autoregresssive process to study cash flow and transactions intensity in ATM (Automatic

Teller Machine) and POS (Point of Sale) networks. Their work extends to econometrics

the powerful functional data analysis methods which allow irregularly spaced data to be

analysed, a feature not supported by standard econometric methods. They use wavelet-

vaguelette estimators proposed in Antoniadis and Sapatinas, [1] and the projection type

method introduced and extensively studied in Bosq [7]. Both methods were found to

perform well (in terms of prediction). To be noted is that linear wavelet methods have a

much faster implementation than B spline bases and are therefore suitable for large scale

problems.

1.4 Motivation

We see that the functional data approach can be used in several different contexts with

very good results. Among the reasons this approach is powerful is the fact that it con-

siders the data as curves (functions), which implies that we assume there exists infinite

dimensional data points which translates to a bulk of information. In this case no infor-

mation is lost due to averaging as is the case when we consider scalar or vector methods.

Another point in favour of this approach is the fact that it can be applied even in the

case where the data is irregularly spaced. As the data are functions, we are not limited

to the functions themselves only but we could also consider their derivatives for instance

the acceleration of growth which is the second derivative, a feature not available for data

that is not functional. The fact that the curvature of the data can also be captured in

detail goes a long way in recommending the use of this approach as we are able to ob-

tain better predictions if we have a good representation of the data. Also with increased
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computation capacity this means that having the data as functions although bulky is

still feasible in terms of computation time. The above are only some of the reasons for

applying the functional approach and they all suggest that whenever possible it should

be considered as its performance is superior to that of existing scalar and vector valued

methods.

Although we see that when we consider functional data we have availability of a bulk

of information per observation in the sample, the sample size in general may be small.

This poses a problem as it introduces a bias in the estimation of parameter estimates.

To overcome this problem we consider the naive bootstrap and seek to show that the

asymptotics obtained from it are close to those obtained empirically. In our work we focus

on the Functional Autoregressive model of order one (FAR(1)). We study existing results

on weak convergence properties of the predicton obtained from the model. We seek to

show theoretically and numerically that results obtained by employing the naive bootstrap

method mimic the weak convergence behaviour of the empirical estimates obtained from

the model, thereby solving the bias problem created by having a small sample size and

obtaining accurate estimates.

Apart from parameter estimation, the bootstrap can be used to estimate the asymptotic

distribution of the parameter estimates, which is useful when we want to investigate

properties of these estimates, for instance their confidence bands, or when we would

like to carry out tests of hypotheses as the critical values could be obtained using the

bootstrap.

1.5 Structure of the thesis

This thesis is organised as follows:

In Chapter 2 we give some introductory notions and theory of the functional autoregres-

sive model of order 1 (FAR(1)) and its properties. These are required to understand the

rest of the chapters and are therefore given here as preliminaries.

In Chapter 3 we explore the weak convergence of the estimates obtained from the model.
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We report some existing results and extend them slightly.

Chapter 4 looks at a practical change point problem involving functional data. We

apply existing theoretical results to functional stimulus response data from the animal

physiology group at the University of Kaiserslautern. Here, we use critical values of

changepoint tests derived from asymptotics, but the example provides also a motivation

for the bootstrap which promises better approximate critical values for small samples.

In Chapter 5 we have a first look at the bootstrap for FAR(1) models. We introduce the

naive or residual-based bootstrap which is the focus of this thesis, and for comparison

the block bootstrap. To illustrate the basic ideas and results we first study a simple toy

model where we can circumvent some of the major technical difficulties of the general

case.

In the central Chapter 6, we first prove that the basis for residual-based bootstrap meth-

ods holds, i.e. the distribution of the innovations may be approximated by the distribu-

tion of the bootstrap residuals which is the empirical distribution of the centered sample

residuals. Then we prove that the bootstrap principle asymptotically holds for the crucial

covariance operator estimate. Moreover, we also prove that the bootstrap may be applied

to the estimate of the autoregressive operator under an artificial condition which is likely

to hold. To show the latter conjecture, perturbation theory for linear operators like in

the deep proof of weak convergence given by Mas [44] has to be extended to the world of

the bootstrap data which would go beyond the scope of this thesis.

Finally, in Chapter 7 we present some simulations.
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Chapter 2

The Functional Autoregressive
Model (FAR(1)) and its Properties

This chapter concentrates on the theoretical properties of the FAR(1) (Functional Au-

toregressive Model of order one) also denoted as ARH (Autoregressive Hilbertian Model).

The two terms will be used interchangeably thoughout this work. In the first section we

define some terms that appear in this chapter. In Section 2 the model is introduced and

its composition, together with conditions required for it to exist and be stationary are

described. The next section deals with dimension reduction which is a prerequisite for

the ill posed inverse problem that arises when estimating the models operator.

2.1 Definitions

This subsection contains definitions which are useful in understanding the material in

the following chapters. These definitions are from Brockwell and Davis, [8] and Gohberg

et.al., [23] and Bosq, [7] which are useful references in case the reader would like a deeper

understanding of the Hilbert space or to check for the proofs of the theorems stated

below.

Definition 2.1.1. Strict stationarity: A real process ξ = (ξt, t ∈ T ) is said to be strictly
stationary if and only if P(ξt1+h,...,ξtk+h) = P(ξt1 ,...,ξtk), k ≥ 1 and t1, ..., tk, h ∈ T . See [7].

Definition 2.1.2. Weak stationarity: A second order process is said to be weakly sta-
tionary if its mean m(t) = m is constant and independent of t and its covariance is given
by c(s+ h, t+ h) = c(s, t), for s, t, h ∈ T . See [7].
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Definition 2.1.3. Lp−m−approximability: A sequence {Xn} ∈ LpH is called Lp−m−
approximable if each Xn admits the representation

Xn = f(εn, εn−1,...)

where εi are i.i.d elements taking values in a measurable space S, and f is a measurable
function f : S∞ → H. Moreover if {ε′i} is an independent copy of εi defined on the same
probability space, then letting

X(m)
n = f(εn, εn−1, ..., εn−m+1, ε

′

n−m, ε
′

n−m−1, ....)

we have

∞∑
m=1

νp
(
Xn −X(m)

n

)
<∞

In this case νp is a distance measure.

Definition 2.1.4. A Hilbert space H is an inner product space which is complete, i.e
an inner product space in which every Cauchy sequence Xn converges in norm to some
element x ∈ H.

Definition 2.1.5. Closure: Given a set S ⊂ H, the closure of S, written as S̄ is the set
of those vectors in H which are limits of sequences of vectors in S, i.e x ∈ S̄ if xn → x
for some sequence xn ∈ S. If S̄ = S, then S is a closed set.

Definition 2.1.6. Separability: The Hilbert space H is separable if H = s̄p {νt, t ∈ T},
i.e. the closure of the span, with νt, t ∈ T , a finite or countably infinite orthonormal
set. We include Theorem 2.4.2 of [8] without proof to further explain the concept of
separability.

Theorem 2.1.1. If H is the separable Hilbert space defined above with νi, i = 1, 2, ... an
orthonormal set, then

1. The set of all finite linear combinations of ν1, ν2, ... is dense in H, i.e for each x ∈ H
and ε > 0, there exists a positive integer k and constants c1, c2, ..., ck such that
‖x−

∑k
i=1 ciνi‖< ε

2. x =
∑∞

i=1 〈x, νi〉 νi, for each x ∈ H i.e ‖x−
∑n

i=1 〈x, νi〉 νi‖→ 0 as n→∞.

3. ‖x‖2=
∑∞

i=1|〈x, νi〉 |2 for each x ∈ H.

4. Parsevals identity: 〈x, y〉 =
∑∞

i=1 〈x, νi〉 〈νi, y〉 for each x, y ∈ H.

5. x = 0 if and only if 〈x, νi〉 = 0, for all i = 1, 2, ....

For later reference, we state without proof Theorems 2.3.1 and 2.4.1 of [8] in order to

illustrate the projection from a given space (for instance the Hilbert space) to a closed

subspace of this space.

Theorem 2.1.2. If M is a closed subspace of the Hilbert space H and x ∈ H, then
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1. there is a unique element x ∈M such that
‖x− x̂‖ = infy∈M ‖x− y‖

2. x̂ ∈ M and ‖x− x̂‖ = infy∈M ‖x− y‖ if and only if (x− x̂) ∈ M⊥, i.e x̂ is the
(orthogonal) projection PMx of x onto M.

Theorem 2.1.3. If ν1, ..., νk is an orthonormal subset of the Hilbert space H and M =
s̄p{ν1, ..., νk}, then PMx =

∑k
i=1 〈x, νi〉 νi for all x ∈ H.

2.2 Functional Autoregressive Model

We consider the Functional Autoregressive model of order one, FAR(1). This is an

example of a model based on dependent observations. The model is defined in a separable

Hilbert space H with inner product 〈·, ·〉 and generating norm ‖·‖. To have a specific

situation, we consider the Hilbert space L2[0, 1] but our considerations can be easily

transfered to other L2-spaces. The inner product for the L2 space is defined as

〈x, y〉 =

∫
x(t)y(t)dt, x, y ∈ H

A sequence Xn, n ∈ Z, of H-random variables is called an autoregressive Hilbertian

process of order 1 (ARH(1)) if it is strictly stationary and such that

Xn+1 − µ = Ψ(Xn − µ) + εn+1, n ∈ Z (2.1)

where Xn are functions in L2 [0, 1], Eεn = 0, Ψ is a bounded linear operator and (Ω, A) =

(L2 [0, 1] ,B), B Borel σ-algebra, as in Bosq [7] or Horváth et al., [28]. When the εn are

such that E(εn|Xn−1) = 0, then Xn is called a Markov process. µ is assumed without

loss of generality to be zero, although in applications this is generally not the case. The

main attraction of this model lies in its ability to predict Xn+1 using Ψ(Xn), which is a

very useful property in various fields where the occurence of an event depends to some

extent on its past and an innovation or shock, ε. These fields include medicine, finance,

meteorology among others.

The autoregressive operator Ψ : L2[0, 1] → L2[0, 1] is assumed to be a bounded linear

operator. In the next section, we collect some definitions related to such operators on the

Hilbert space H.
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2.2.1 Operators in the Hilbert Space (L2[0, 1])

The norm generated by the inner product ofH for the space L of bounded linear operators

is given by

‖Ψ‖L= sup
‖x‖≤1

‖Ψ(x)‖

An operator Ψ is said to be compact if for orthonormal bases νj and fj of H and a

sequence λj of real numbers tending to zero the following relation holds

Ψ(x) =
∞∑
j=1

λj 〈x, νj〉 fj, x ∈ H

which can also be represented as

Ψ =
∞∑
j=1

λjνj ⊗ fj

Here, the Kronecker product of x, y ∈ H is a linear operator given by x ⊗ y(z) =

〈x, z〉 y, z ∈ H. It is also possible to replace fj with −fj therefore the λj can be as-

sumed positive. For further reference, we state a few properties of the Kronecker product

here, where x, y ∈ H, A is a linear operator and AT denotes the corresponding adjoint

operator. They follow immediately from the definition.

x⊗ y = (y ⊗ x)T

x⊗ (Ay) = Ax⊗ y

(Ax)⊗ y = x⊗ yAT

(2.2)

A compact operator is said to be Hilbert-Schmidt if
∑∞

j=1 λ
2
j <∞. The space of Hilbert-

Schmidt operators S is separable and admits the inner product

〈Ψ1,Ψ2〉S =
∑

1≤i,j≤∞

〈Ψ1(gi), hj〉 〈Ψ2(gi), hj〉

where (gi), (hj) are orthonormal bases in H. The associated norm is

‖Ψ‖S=

(∑
j

λ2
j

)1/2

=

(∑
j

|Ψ(gj)|2
)1/2
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An operator Ψ ∈ L is symmetric if 〈Ψ(x), y〉 = 〈x,Ψ(y)〉, x, y ∈ H and positive if

〈Ψ(x), x〉 ≥ 0. A symmetric positive Hilbert-Schmidt operator admits the decomposition

Ψ(x) =
∞∑
j=1

λj 〈x, νj〉 νj, x ∈ H (2.3)

thus Ψ(νj) = λjνj, j ≥ 1, and λj, νj are the eigenvalues and eigenvectors of Ψ. A

compact operator is called nuclear if
∑

j|λj|<∞ with norm

‖Ψ‖N=
∞∑
j=1

|λj|

The relationship between the different norms can be summarised as

‖.‖N≥ ‖.‖S≥ ‖.‖L. For a detailed exposition the references Bosq, [7], Horváth and

Kokoszka, [28] and Gohberg et. al., [23] are among the vast literature on the topic.

Assume, e.g., that the operator Ψ in our model 2.1 belongs to the class of integral

operators in L2 defined by

Ψ (x) (t) =

∫
ψ (t, s)x (s) ds, x ∈ L2

where ψ (., .) is a real kernel, see Horváth et al [28]. Then it is a Hilbert-Schmidt operator

if and only if∫ ∫
ψ2(t, s)dtds <∞

which is evident from Section 2.2.1. The kernel in this case represents the covariance of

the functions which is normally symmetric and therefore the operator is Hilbert-Schmidt

symmetric positive definite and admits the decomposition 2.3, where νj is an orthonormal

basis. The model is nonparametric since Ψ is an infinite dimensional parameter.

2.3 Estimation of the Operator Ψ

The operator Ψ which is normally unknown, can be estimated by say Ψ̂n from the sample.

As in the scalar case, we require a condition on the operator Ψ in 2.1 in order to obtain

a stationary solution to the process. To achieve this we consider one of the following

assumptions
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Assumption 2.1. There exists an integer j0 ≥ 1 such that ‖Ψj0‖L< 1

Assumption 2.2. There exist a > 0 and 0 < b < 1 such that ‖Ψj‖L≤ abj, j ≥ 0

If the assumption 3.1 above holds, then we have a unique strictly stationary solution, see

for instance Theorem 3.1 of Bosq, [7] or Theorem 13.1 of Horváth and Kokoszka, [28].

Moreover, Lemma 3.1 of [7] states that the two assumptions above are equivalent. The

proof of the Lemma can be found in the above mentioned references for the interested

reader.

It should be noted that an estimate of Ψ cannot be based on likelihood since the Lebesgue

measure does not exist on non-locally compact spaces and the notion of density is not

yet available for functional data. Having this in mind and from the classical method of

moments, the operator Ψ, can be represented as Ψ = CΓ−1, where,

Γ = E(Xn ⊗Xn) and C = E(Xn ⊗Xn+1) (2.4)

are the covariance and cross covariance operators of the process and ⊗ is the Kronecker

product. We denote the sample versions by Γ̂n, Ĉn. To simplify an already involved

notation, we follow Horváth and Kokoszka, [28] and assume that EXt = 0 is known

throughout the thesis, i.e. we consider

Γ̂n =
1

n

n−1∑
t=0

Xt ⊗Xt and Ĉn =
1

n

n−1∑
t=0

Xt ⊗Xt+1 (2.5)

In the general case, we would have to subtract the sample mean X̄n, e.g.

Γ̂n =
1

n

n−1∑
t=0

(
Xt − X̄n

)
⊗
(
Xt − X̄n

)
=

1

n

n−1∑
t=0

Xt ⊗Xt − X̄n ⊗ X̄n

From Bosq, [7], however, we know that the first term on the right-hand side is of or-

der Op
(

1√
n

)
, whereas the second term is of order Op

(
1

n

)
such that our simplifying

assumption has no influence on asymptotic results.

Γ is a symmetric, positive definite and compact operator which admits the spectral de-

composition

Γ(x) =
∞∑
j=1

λj 〈x, νj〉 νj (2.6)
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However, Γ−1 is not a bounded operator. Indeed, Γ−1 admits the representation

Γ−1(x) =
∞∑
j=1

λ−1
j 〈x, νj〉 νj

which does not have a bounded inverse, considering ‖Γ−1(νj)‖ = λ−1
j →∞ as j →∞.

A practical solution to this problem is to consider the first p most important Functional

Principal Components, and since in practice the population principal components are un-

known, these are replaced by the EFPC’s (Empirical Functional Principal Components),

ν̂j. Γ̂−1
n (also referred to as Γ̂†n) is then given by

Γ̂−1
n (x) =

p∑
j=1

λ̂−1
j 〈x, ν̂j〉 ν̂j = Γ̂†n(x) (2.7)

which is defined in the whole of L2 and is bounded if λ̂j > 0, j ≤ p and the estimate

thus obtained is unique. λ̂j are the empirical eigenvalues.

From Equation 2.1, and as in the scalar autoregressive case multiplying through by Xn

we have

Xn ⊗Xn+1 = Xn ⊗ (ΨXn) +Xn ⊗ εn+1 = ΨXn ⊗Xn +Xn ⊗ εn+1

Considering the definitions of the covariance and cross covariance operators 2.4, and the

fact that the ε term vanishes, if we consider expectation, we have

C = ΨΓ (2.8)

and Ψ = CΓ−1. We therefore have a representation of the form

Ψ̂n(x) = ĈnΓ̂†n(x) =
1

n− 1

n−1∑
k=1

〈
Xk,

p∑
j=1

λ̂−1
j 〈x, ν̂j〉 ν̂j

〉
Xk+1

The estimate of Ψ is therefore given by

Ψ̂n(x) =
1

n− 1

n−1∑
k=1

p∑
j=1

p∑
i=1

λ̂−1
j 〈x, ν̂j〉 〈Xk, ν̂j〉 〈Xk+1, ν̂i〉 ν̂i (2.9)

where the last term is obtained by an additional smoothing step on Xn+1 and ν̂j. The

empirical eigenfunctions, are known to converge to the population eigenfunctions asymp-

totically. See Bosq [7], or Kokoszka et. al. [28] for more details.
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Having obtained the estimator of the population parameter Ψ, it is important that we

gauge its optimality, i.e how good the estimator can estimate the true parameter. In the

case of the FAR parameter Ψ, Didericksen et. al. [16] show that the above predictor is

the most optimal in the Mean Squared Error and Mean Absolute error sense, since its

prediction error is comparable to that of the infeasible predictor Ψ(x) for appropriately

chosen p.

2.4 Predictor Estimation and Dimension reduction

As noted above, the model exists in an infinite dimensional space but we need to work

with it in a finite dimensional space. To do this we need to reduce the dimensionality

of the data from infinite to finite while at the same time retaining as much information

as possible. Two different methods have been proposed in the functional case for this

purpose as discussed in the following subsections.

2.4.1 Functional Principal Component Analysis

Functional Principal Component Analysis is a dimension reduction technique that trans-

forms the data from infinite dimensional space to finite dimensional space. This is done

with the aim of representing the data in such a way that as much information as possible

of the original data is retained. The data are represented using the first say p principal

components which are normally arranged in descending order of magnitude. The princi-

pal components are chosen in such a way that they represent the highest variability in

the data and that they are orthogonal to each other. Orthogonality is required to ensure

that the variability represented by each component is unique. The number of functional

principal components to be computed can be chosen using several criteria. These include

cross-validation, cumulative percentage of variance (CPV), Akaikes Information Criterion

(AIC), graphical methods (Scree plot), among others.

Given the covariance operator Γ defined above, see Equation 2.4 and additionally as-

suming that Γ is symmetric, positive definite and compact, it admits representation 2.6,

where λj and νj are the eigenvalues and eigenfunctions respectively. Now these are pop-
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ulation Functional Principal Components which are not normally available in practice,

therefore they have to be estimated by their empirical counterparts λ̂j and ν̂j. It should

be noted that the estimated eigenvalues and eigenfunctions are not necessarily unique.

This is due to the fact that the estimate of the operator obtained with ν̂j is the same

as that obtained with −ν̂j. For the eigenvalues, their multiplicity may be greater than

one. To solve these problems, the eigenvalues identifiability can be obtained by assuming

λ1 > λ2 > .... > λp > 0. As for the eigenfunctions we introduce ĉj = sign (〈ν̂j, νj〉) such

that ĉj ν̂j is close to νj, see Bosq, [7].

In order that the empirical counterparts are employed satisfactorily, their consistency

should be proven. The empirical estimator of Γ, Γ̂n is given by

Γ̂n(x) =
1

n

n−1∑
i=0

〈Xi, x〉Xi (2.10)

The expectation of Γ̂n is therefore given by

EΓ̂n =
1

n

n−1∑
i=0

E 〈Xi, x〉Xi →
n→∞

Γ

Thus Γ̂n is an asymptotically unbiased estimator of Γ. This result can be found for in-

stance in Bosq, [7]. Looking at the empirical eigenvalues and eigenfunctions, we have

a collection of results that are used to prove consistency. The notation used is that of

subsection 2.2.1. Lemma 4.2 of [7] proves the following result,

Lemma 1. Suppose A,B ∈ L are two compact operators with singular value decomposi-
tion A(x) =

∑∞
j=1 λj 〈x, νj〉 fj and B(x) =

∑∞
j=1 γj 〈x, uj〉 gj. Then, for j ≥ 1,

|λj − γj|≤ ‖A−B‖L

On the other hand, from Lemma 2.3 of Horváth and Kokoszka, [28], (compare also Lemma

4.3 of Bosq, [7]) we have

Lemma 2. λ1 > λ2 > .... > λp > 0, ν
′
j = cjνj with cj = sign(〈uj, νj〉), A symmetric, i.e.

νj = fj, then

‖uj − ν
′

j‖≤ aj‖A−B‖L, 1 ≤ j ≤ p

where aj = 2
√

2 max[(λj−1 − λj)−1, (λj − λj+1)−1] if j ≥ 2 and a1 = 2
√

2(λ1 − λ2)−1
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Having the above results in mind and from the fact that it has been proven that asymp-

totic results of operators can be transferred successfully to the eigenelements, see Mas

and Menneteau, [43], it is then possible to use the empirical estimators of the popu-

lation eigenelements when carrying out functional principal component analysis. This

works when we have strict stationarity as this will ensure that the covariance operator

is bounded. Further, Hörmann and Kokoszka [25] prove that for {Xn} that is L4-m-

approximable, and for some constant UX < ∞ then nE‖Γ̂n − Γ‖2
S≤ UX . From this

result they further prove in their Theorem 3.2 that principal components are consis-

tent in the case of weak dependence in particular that consistency holds in the case of

L4-m-approximability.

This method has been used extensively and successfully for dimension reduction, and we

employ it in this study. It should be noted though that due to the fact that only the

first few FPC’s are incorporated, the estimated curves will be smoother than the original

curves.

2.4.2 Predictive Factor Decomposition

This method was introduced by Kargin and Onatski [31], in which they proposed a

reduced rank approximation of the autoregression operator that minimizes the prediction

error, that is

min
Ψk∈Rk

E‖Xn+1 −ΨkXn‖2= min
Ψk∈Rk

E‖(Ψ−Ψk)Xn‖2 (2.11)

where Rk represents the set of all finite operators acting on H. Unlike the case of Func-

tional Principal Component analysis (FPCA) they focus on obtaining a reduced rank

approximation, which is a linear combination of factors that contribute most to predic-

tion as opposed to the variability in the data, arguing that directions based on FPCA

are not necessarily justified by efficiency in the problem of prediction. Their estimator is

given as

Ψ̂α,k =
k∑
i=1

∣∣∣〈Xn, b̂α,i

〉∣∣∣Cb̂α,i (2.12)
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where b̂α,i = Γ̂
−1/2
α x̂α,i, x̂α,i are the eigenfunctions of the operator Φ defined by the polar

decomposition ΨΓ1/2 = UΦ1/2 and U is a unitary operator. They argue that to get a

consistent estimator of Ψ, Γ̂ should be defined as Γ̂α = Γ̂ + αI, α a positive real number

since the eigenfunctions of Φ̂ do not converge to those of Φ. In their work they showed that

the Predictive Factor method perfomed better than the Functional Principal Component

analysis method when it came to predicting Euro dollar future contracts. On the contrary,

Didericksen et. al. [16] argue that this method never dominates the Functional Principal

Component (FPC) method although with good tuning of the parameters α and k good

results may be obtained.

2.4.3 Principal Component Analysis through Conditional Ex-
pectation (PACE)

This method extends functional principal component analysis (FPCA) to situations in-

volving functional longitudinal data with few repetitions which are irregularly spaced

but with sufficiently dense pooled time points. FPCA as described above is widely ap-

plied for dimension reduction in the functional case but in the case of very few data per

subject it encounters difficulties. Few data in this case may imply one or two observa-

tions/measurements for some subjects. This method was suggested by Yao et. al., [58]

and it was found to give the best prediction under Gaussian assumptions and the best

linear prediction for the non-Gaussian case of the function principal scores.

In their work, [58] consider sparse and irregular longitudinal data, where presence of

measurement error is also accounted for. Because of the sparseness of the data, the

classical FPCA would give biased approximations, due to sparseness of time points and

presence of measurement error. The PACE method suggested on the other hand gives the

functional principal score of a given subject as the conditional expectation of the score on

the observation of that subject at a given time, i.e for an observation Yij = Xi(Tij) + εj

where Yij is the jth observation of the random function X with measurement error εj,

and the PACE score is given by ξik = E
[
ξik|Ỹi

]
where Ỹi denotes measurement on the ith

subject. Their method was applied to simulated data and in the real case to longitudinal

CD4 counts. In both cases it was found to give substantial gain over the classical FPCA
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for sparse data. It was also noted from simulations that the method performed well with

regular dense data. Asymptotics for the parameters involved were also established.

2.5 Weak Dependence

Owing to the fact that functional data arise from almost continuous data partitioned into

intervals, for instance daily weather records, existance of some temporal dependence is

inevitable. Hörmann and Kokoszka [25] quantify this notion of weak dependence using

a moment based measure. They use the idea of m-dependence which is to approximate

Xn, n ∈ Z by m-dependent processes X
(m)
n ,m ≥ 1. Now for a sequence Xn taking values

in a given measurable space, the σ-algebras generated by the observations up to and from

time l, that is F−l = σ{..., Xl−2, Xl−1, Xl} and F+
l = σ{Xl, Xl+1, Xl+2, ...} are said to be

m-dependent if for any l the σ-algebras F−l and F+
l+m are independent. Their theory is

based on Lp −m− approximability.

Their definition is an extension of the scalar and vector Lp − approximability with a

few differences, for instance independence of the innovations in their case. It can also

be noted that since m dependence implies the CLT, so does Lp −m− approximability.

Although not directly comparable with classical mixing coefficients such as α-mixing or

β-mixing, it can be shown that this form of dependence holds for time series models, for

example the FAR model as illustrated in [25].
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Chapter 3

Weak Convergence in the Functional
Autoregressive Model (FAR(1))

In this chapter we explore the results on the weak convergence of the predictor in the

FAR(1). In the first section some definitions required within the chapter are given. In

section 2 we give existing results on the weak convergence of the autoregressive operator

and predictor together with assumptions required. In the next section we extend the

existing results on the prediction from 1-step ahead to n-steps ahead and in the last

section we give conditions under which the random projector (from section 1) can be

replaced by a non-random one. The weak convergence results in this chapter motivate

the bootstrap chapter which follows as we are interested in carrying out predictions and

obtaining confidence bands in practice even in the event of small sample size.

3.1 Definition

Definition 3.1.1. (Martingale differences): For a filtration F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn ⊂
.... of sub-σ-algebras of F and a sequence (Xi, i ≥ 1) of integrable Banach space random
variables, (Xi) is a martingale difference with respect to (Fi) if it is adapted to (Fi) and
E (Xi‖Fi−1) = 0. See Bosq, [7].

3.2 Known Results

Here we introduce the results by Mas, [44] which we use extensively in this chapter and

the next. Mas studies weak convergence of the functional autoregressive model which
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elaborates on the rate of convergence and gives an exact asymptotic distribution. The

fact that the exact asymptotic distribution is known ensures that confidence set bounds

for Ψ(Xn) can be obtained. The model is studied in a separable Hilbert space H = Wm,2,

with smoothness index m = 0 belonging to N (W 0,2 = L2). The linear operator Ψ is

supposed to be a compact operator, which is advantageous since the class of compact

operators is a larger class than the normally used class of Hilbert-Schmidt operators.

Although the operator Ψn and the predictor Ψn(Xn) have been shown to converge almost

surely by Bosq [7] and hence, in probability, by Mas [41], from Theorem 3.2.1 below

(Theorem 3.2 of Mas, [44]) it is shown that it is impossible for the operator to converge

in distribution as it is. This convergence is impossible as from the proof of Theorem 3.2.1,

in specific equation 3.5, it can be deduced that weak convergence i.e. Ψn − Ψ depends

only on the second term of 3.5 i.e SnΓ† where Sn is defined as,

Sn =
n∑
k=1

Xk−1 ⊗ εk (3.1)

and Γ† is given by Equation 2.7. Due to the ill posed inverse problem involving Γ−1, in the

event that convergence is considered for x ∈ H, if x belongs to the dense subset where Γ−1

is defined, then convergence will be achieved, otherwise the sum will diverge implying

that there won’t be a uniform limiting distribution. Because of the above mentioned

reasons therefore, convergence in distribution cannot be achieved. A thorough exposition

of the same fact can be found in Mas, [44] (proof of Theorem 3.2.2). It should also be

noted that the problem of non-convergence weakly is not limited to the dependent case,

as it is also observed in the i.i.d case, see Cardot et. al.[10].

Since convergence in distribution is very desirable in the sense that it allows for inference

concerning point estimators and their asymptotic confidence bands, asymptotic mean

and variances e.t.c, Theorem 3.2.1 (Theorem 3.1 of Mas, [44]) seeks to correct the above

mentioned convergence problem. They prove a modified version of the result, i.e. the

unknown operator Ψ is replaced by ΨΠ̂kn and with this random operator as the cen-

ter convergence in distribution is proved. They employ a sample consisting of n + 1

observations where the first n are used to estimate the parameter after which the esti-

mated parameter and Xn+1 are used to predict Xn+2. For completeness, we include their
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assumptions A0 − A3 and state the Theorems below.

Assumption 3.1. ker Γ = 0, E‖ε‖2<∞, ‖Ψ‖L< 1

Assumption 1 focuses on the existence of an inverse of the symmetric operator Γ, without

which boundedness of Ψ cannot be achieved. The norm of Ψ < 1 is required so as to

ensure that a unique, strictly stationary causal solution to the FAR(1) process exists i.e

Xn =
∑∞

j=0 Ψj (εn−j), and E‖ε‖2< ∞ ensures finite variance. The proof for stationarity

and causality can be found in Bosq, [7].

Assumption 3.2. ‖Γ−1/2Ψ‖L< +∞

Assumption 2 can be considered as a smoothness constraint of the unknown operator Ψ.

If Ψ is a diagonal operator in a complete orthonormal system such that Ψ = diag [(µi)i≥1]

with µi ≥ µi+1, then the degree of smoothness of Ψ will be strictly determined by the rate

of decrease to zero of (|µi|)i≥1. If we consider that Ψ is symmetric and has the same basis

of eigenvectors as Γ, the assumption reduces to µi/
√
λi < ∞, i ∈ N. We are looking at

the rate at which the eigenvalues of Ψ decay to zero. When this rate is high, then Ψ can

be estimated well by a finite dimensional approximation based on the first p eigenvalues

and vice versa.

The Karhunen-Loéve expansion of X is given by

X =
d

+∞∑
l=1

√
λlξlνl (3.2)

where the ξl’s are centered real random variables such that Eξlξl′ = 1 if l = l
′

and 0

otherwise.
Assumption 3.3. supk Eξ4

k < M

This assumption is required since the definition of Ψ already contains second order mo-

ments and therefore in case of estimating for instance its variance the fourth moments

will be required.

Assumption 3.4. λj = Λ(j) for all j ≥ j0, where the function Λ is convex.

Convexity of the eigenvalues is required since in projecting Ψ to a finite dimensional

space, it is normally highly desirable that only a few eigenvalues explain a high cumulative
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percentage of variance. Additionally, as seen in Assumption three above, the smoothness

of Ψ is linked to its eigenvalues, which convexity would guarantee to some extent. Further

details and explanations on the assumptions can be obtained from Mas, [44].

Theorem 3.2.1. When assumptions 3.1-3.4 hold and kn = o

(
n1/4

log n

)
,

√
n

kn
(Ψ̂n(Xn+1)−ΨΠ̂kn(Xn+1))

w→ G (3.3)

where G is a H-valued Gaussian centered random variable with covariance operator Γε.
Π̂kn =

∑kn
j=1 π̂j is the random projector onto the space spanned by the first kn eigenvectors

of the covariance operator Γn, kn an increasing sequence tending to infinity.

The Theorem states that the projection of the operator onto a finite dimensional subspace

allows for the convergence in distribution of the operator. Now

Ψ̂n (Xn+1)−ΨΠ̂kn (Xn+1) = Ψ̂n (Xn+1)−Ψ (Xn+1) +Bn (3.4)

where Bn = Ψ
(
I − Π̂kn

)
(Xn+1) can be considered as a bias term which will vanish when

the sample size increases. For the sake of completeness, we now state Theorem 3.2 of

Mas, [44].

Theorem 3.2.2. It is impossible for Ψ̂n − Ψ to converge in distribution for the norm
topology on K, where K is the space of compact operators.

3.3 n-Step ahead Prediction of X

We show that Theorem 3.2.1 holds for Xn+2 and include some remarks for the case of

any given X. From the proof of Theorem 3.1 of Mas, [44] and from Equation 2.1 we have

Γ = ΨΓΨ∗ + Γε. Let Sn =
∑n

k=1Xk−1 ⊗ εk. From Lemma 10, we have

Ψ̂n −ΨΠ̂kn =
1

n
Sn(Γ̂†n − Γ†) +

1

n
SnΓ† (3.5)

It is shown in Mas, [44] for Xn+1 that
1

n
Sn(Γ̂†n − Γ†) is a vanishing term and that the

asymptotic distribution depends only on
1

n
SnΓ†. Note that Mas includes the factor

1

n
into Sn, but in the explicit definition, there, the factor is missing due to a misprint. We

show that the same holds for Xn+2 and in extension for n steps ahead.
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Using a combination of pertubation theory and functional calculus for bounded operators,

Mas [44] defines Γ† and the projector onto the space spanned by the first kn eigen values

of Γ as

Γ† =

∫
Cn
z−1 (zI − Γ)−1 dz =

kn∑
j=1

∫
Bj
z−1 (zI − Γ)−1 dz

and

Πkn =
1

2πi

∫
Cn

(zI − Γ)−1 dz

where Cn =
kn⋃
i=1

Bi, and Bi is the oriented circle on the complex plane with center λi and

radius δi/3 and δi = min (|λi − λi−1|, |λi − λi+1|) Their random counterparts are then

given by

Γ̂†n =

∫
Ĉn
z−1

(
zI − Γ̂n

)−1

dz =
kn∑
j=1

∫
B̂j
z−1

(
zI − Γ̂n

)−1

dz

and

Π̂kn =
1

2πi

∫
Ĉn

(
zI − Γ̂n

)−1

dz

respectively. From these we have

Sn

(
Γ̂†n − Γ†

)
(Xn+2)

=

∫
Ĉn
z−1Sn

(
zI − Γ̂n

)−1

(Xn+2)dz −
∫
Cn
z−1Sn (zI − Γ)−1 (Xn+2)dz (3.6)

For the residual term (3.6); Lemma 5.6 and Proposition 5.1 of [44] are unaffected by the

change from Xn+1 to Xn+2. This is because in the case of Lemma 5.6 what is proved is

that the random contour Ĉn can be replaced by the non random one Cn. In this case an

event An is introduced which allows the consideration of ordered eigenvalues of Γ̂n which

are very close to those of Γ. This effectively splits the set into two; sample eigenvalues

(the first kn) very close to their true counterparts such that they can be considered to be

in the non random contour Cn (An) and those that do not fulfill the requirements of the

event (Acn). It is then shown that the probability of the complement set of the event goes

to zero in probability when the conditions of the lemma hold thus the random contour can

be replaced by the non random one. In the proof of the lemma, we are majorly concerned
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with the covariance operator which is constructed from the observations without taking

into account the observation to be predicted. This therefore implies that whether we

consider Xn+1 or Xn+k where k ≥ 2 the outcome of this lemma will not be affected.

When we consider Proposition 5.1 on the other hand this involves splitting Xn+2 into εn+2

and Ψ(Xn+1) and bounding the respective terms separately. In this case too considering

Xn+k, k ≥ 2 does not alter the results since among the properties considered in order to

bound both terms is identical distribution, which we have as a result of the assumption

of strict stationarity.

Thus in our case we have, under the assumptions of Theorem 3.2.1√
n

kn
Sn(Γ̂†n − Γ†)(Xn+2)

p−→ 0

The weakly convergent term, SnΓ†(Xn+2), should fully determine the asymptotics of the

predictor. Now

SnΓ†(Xn+2) =
n∑
k=1

〈
Xk−1,Γ

†(Xn+2)
〉
εk

=
n∑
k=1

Zk,n

Note that Xn+2 = εn+2 + Ψ(εn+1) + ... + Ψn+2−k(εk) + Ψn+2−(k−1)(Xk−1). Decomposing

Zk,n into three terms we have,

Z+
k,n =

〈
Γ†Xk−1, εn+2 + Ψ(εn+1) + ...+ Ψn+2−(k+1)(εk+1)

〉
εk

Z0
k,n =

〈
Γ†Xk−1,Ψ

n+2−k(εk)
〉
εk

Z−k,n =
〈
Γ†Xk−1,Ψ

n+2−(k−1)(Xk−1)
〉
εk

The random sequences Z+
k,n and Z−k,n remain Hilbert-valued martingale difference ar-

rays according to lemma 5.7 of [44] even when we replace Xn+1 by Xn+2, noting that

in this case X#
k,n = εn+2 + Ψ(εn+1) + ... + Ψn+2−(k+1)(εk+1). Indeed, E(Z+

k,n|Fk−1) =

E
(〈

Γ†Xk−1, X
#
k,n

〉
εk|Fk−1

)
and since εk is independent from X#

k,n, we have;

E
(
Z+
k,n|Fk−1

)
=
(
E
〈

Γ†Xk−1, X
#
k,n

〉
E (εk|Fk−1)

)
, where the Fk−1 is a σ-algebra gener-

ated by (εl)l≤j.

Considering that both sequences are centered we then obtain E(Z+
k,n|Fk−1) = 0.

Next we show that weak convergence to the Gaussian limit depends only on the term
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Z+
k,n. Define

S+
n =

1√
nkn

n∑
k=1

Z+
k,n

w−→ G(0,Γε)

We prove that S+
n is a uniformly tight sequence and that finite distributions, when com-

puted on a sufficiently large set of functionals converge to Gaussian limits as in Proposi-

tion 5.2 of [44].

We first compute the covariance and cross covariance of Z+
k,n, where

Z+
k,n =

〈
Γ†Xk−1, εn+2 + Ψ(εn+1) + ...+ Ψn+2−(k+1)(εk+1)

〉
εk (3.7)

Lemma 3. If k < j, E
(
Z+
k,n ⊗ Z

+
j,n

)
= 0 and

E
(
Z+
k,n ⊗ Z

+
k,n

)
= Γε

(
kn − tr

(
Γ†Ψn−k+1Γ(Ψ∗)n−k+1

))
The lemma is analogous to Lemma 5.8 of [44], and the proof is as follows

Z+
k,n ⊗ Z

+
j,n =

〈
Γ†Xk−1, X

#
k,n

〉〈
Γ†Xj−1, X

#
j,n

〉
(εk ⊗ εj)

Xj−1 = Ψj−1−(k−1)(Xk−1) + εj−1 + Ψ(εj−2) + ...+ Ψj−1−k(εk)

Splitting Z+
k,n ⊗ Z

+
j,n into two terms, for j < k:

E
[〈

Γ†Xk−1, X
#
k,n

〉〈
Γ†
(
εj−1 + ...+ Ψj−1−k(εk)

)
, X#

j,n

〉
(εk ⊗ εj)

]
= 0

since Xk−1 is centered and independent from the other terms. The second term

E
[〈

Γ†Xk−1, X
#
k,n

〉〈
Γ†Ψj−k(Xk−1), X#

j,n

〉
(εk ⊗ εj)

]
= 0

since εk is independent from all other terms and its expectation is zero.

Further,

E
(
Z+
k,n ⊗ Z

+
k,n

)
=

(
E
〈

Γ†Xk−1, X
#
k,n

〉2
)
E (εk ⊗ εk)

=

(
E
〈

Γ†Xk−1, X
#
k,n

〉2
)

Γε
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and

E
〈

Γ†Xk−1, X
#
k,n

〉2

= E
(
E
〈
Xk−1,Γ

†X#
k,n

〉2

|X#
k,n

)
= E

∥∥∥Γ1/2Γ†X#
k,n

∥∥∥2

= E
∥∥∥Γ†1/2X#

k,n

∥∥∥2

= tr
(

Γ†Γ#
k,n

)
where the second last step follows from the underlying idea that Γ† →

n→∞
Γ−1 thus Γ1/2Γ† ≈

Γ1/2Γ−1 ≈ Γ−1/2 ≈ Γ†1/2,

Γ#
k,n = E

(
X#
k,n ⊗X

#
k,n

)
= Γε + ΨΓεΨ

∗ + ...+ Ψn+1−kΓε(Ψ
∗)n+2−(k+1)

= Γ−Ψn−k+2Γ(Ψ∗)n−k+2

and

tr
(

Γ†Γ#
k,n

)
= tr

(
Γ†Γ
)
− tr

(
Γ†Ψn−k+2Γ(Ψ∗)n−k+2

)
= kn − tr

(
Γ†Ψn−k+2Γ(Ψ∗)n−k+2

)
which completes the proof of the lemma.

Lemma 4. With σ2
ε,x = E 〈εk, x〉2,

1√
nkn

n∑
k=1

〈
Z+
k,n, x

〉 w−→ N
(
0, σ2

ε,x

)

This lemma aims at proving convergence of the finite dimensional distributions to a

Gaussian limit. To prove the lemma, we consider Theorem 2.3 of McLeish, [39] which

deals with convergence to Gaussian limits for martingale difference arrays and apply

it to the real valued martingale difference array
〈
Z+
k,n, x

〉
. It is enough to show that∑n

k=1 tr
(

Γ†Γ#
k,n

)
∼ nkn i.e

∑n
k=1 tr

(
Γ†Γ#

k,n

)
− nkn

nkn
=
−
∑n

k=1 tr
(
Γ†Ψn−k+2Γ(Ψ∗)n−k+2

)
nkn

→ 0

When this holds we have that the limiting covariance will be σ2
ε,x as required in condition

(c) of the Theorem. From the cyclic property of the trace which implies that the trace
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is invariant under cyclic permutations, i.e. tr(ABCD) = tr(BCDA) = tr(DABC) for

A,B,C,D (square) matrices, we have

|tr
(
Γ†Ψn−k+2Γ(Ψ∗)n−k+2

)
| = |tr

(
(Ψ∗)n−k+2Γ†Ψn−k+2Γ

)
|

≤ ‖(Ψ∗)n−k+2Γ†Ψn−k+2‖L|trΓ|

= ‖(Ψ∗)n−k+1Ψ̃∗Γ1/2Γ†Γ1/2Ψ̃Ψn−k+1‖L|trΓ|

≤ ‖Ψn−k+1‖2‖Ψ̃∗‖L‖Ψ̃‖L|trΓ|

Now ‖Ψn−k+1‖< 1 which implies that its square is bounded as the next two terms. |trΓ| is

also finite dimensional since from the assumptions we have that Γ is a symmetric compact

operator which allows the decomposition given in Equation 2.6 so that trΓ =
∑

j λj <∞.

Therefore as nkn → ∞;
∑n

k=1

(
E
〈

Γ†Xk−1, X
#
k,n

〉2
)
∼ nkn which ends the proof of the

Lemma. In order to complete the proof of convergence to Gaussian limits of S+
n , we need

to show that S+
n is tight. Looking at Lemma 5.9 of [44], we have

lim sup
m→+∞

sup
n

P
(∥∥(I− Pm)S+

n

∥∥ > ε
)

= 0

where Pm denotes the projector associated to the m first eigenvectors of the covariance

operator Γε of ε1. The lemma proves that with a prescribed probability the sequence S+
n

is concentrated in the ε-neighbourhood of a finite dimensional space, (for some ε > 0).

The probability above is bounded using Chebyshevs inequality, so that we have

P
(∥∥(I− Pm)S+

n

∥∥ > ε
)
≤

E
(
‖(I− Pm)S+

n ‖
2
)

ε2

Expanding the right hand side of the equation and noting that Xk−1 and εk are not

correlated, it is possible to write the squared expectation as a product of two terms

which are non correlated and which can be shown to converge to zero. Now the results

of this lemma are not altered when Xn+k, k ≥ 2 is considered since it is still possible to

separate the terms as in the case of Xn+1. Thus the lemma holds in our case too and

since we have tightness and convergence in distribution to Gaussian limits we conclude

that the Theorem 3.2.1 holds for the case Xn+k, k ≥ 2.

For the extension to all other x in H, we quickly note that, as before the inverse of the

covariance operator is not bounded and therefore, as in the i.i.d case, see Cardot et. al.,
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[10], this will only hold for those x on the dense vector space given by D(Γ−1) = Im Γ ={
x ∈ H,

∑n
i=1

〈x, νp〉2

λ2
p

< +∞

}
, see Mas, [44].

We finally show that the sequences Z−k,n and Z0
k,n converge to zero in probability and thus

have no influence on the weak convergence in our case too. This follows from Lemma 5.10

of Mas. In their proof, they show that the squared expectations of the sequences which

serve as an upper bound converge to zero. The proof consists in bounding the terms

which involve ε and Xk separately, taking into account that due to strict stationarity the

Xk are identically distributed as are the ε. Finally the Karhunen-Loève extension of X

is pulled in to complete the bounding of the terms. Although in the case Xn+2 we have

some slight changes in the representation of the terms, this does not affect the results of

the lemma and thus we can also conclude that the lemma holds for the case Xn+2. The

proof of the Theorem is therefore complete. 1

3.4 Random Projector

We check whether Theorem 3.2.1 holds when the random projector Π̂kn is replaced by

the non-random projector Πkn . Although in the case of the i.i.d data the same holds,

see Cardot et.al., [10], in the case of dependence the same holds under an additional

condition. This is because unlike in the i.i.d case, the dependence of the data introduces a

cross covariance term which does not vanish asymptotically unless an additional condition

is introduced.

Proposition 3.4.1. If
1√
n
k

5/2
n (log kn)2 → 0 as n goes to infinity, then

√
n

kn
Ψ
(

Π̂kn − Πkn

)
(Xn+1)→

p
0 (3.8)

where Πkn is the projector onto the eigenspace associated to the kn first eigenvalues and

Π̂kn its empirical counterpart, i.e projector on the eigenspace associated to λ̂1, λ̂2, · · · , λ̂kn
Before we state the proof, we state without proof some lemmas from Cardot et. al.[10]

which will be required together with those at the beginning of this Chapter.

Below is Lemma 1 of [10]
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Lemma 5. Consider two large enough positive integers j and k such that k > j. Then

jλj ≥ kλk and λj − λk ≥
(

1− j

k

)
λj

Besides∑
j≥k

λj ≤ (k + 1)λk

Next we state Lemma 4 of the same paper
Lemma 6. Denoting

Ej(z) =

{∥∥∥(zI − Γ)−1/2
(

Γ̂n − Γ
)

(zI − Γ)−1/2
∥∥∥
L
<

1

2
, z ∈ Bj

}
,

the following holds∥∥∥∥(zI − Γ)1/2
(
zI − Γ̂n

)−1

(zI − Γ)1/2

∥∥∥∥
L
1Ej(z) ≤ C, a.s.

where C is some positive constant. Besides

P (Ej(z)) ≤ j log j√
n

Proof. This proof follows closely that of Cardot et. al. and seeks to extend it to the
dependent case. We consider another stationary process {X ′n} which is independent of
{Xn} and satisfies the same equation as {Xn} i.e.

X
′

n = ΨX
′

n−1 + εn εn i.i.d N
(
0, σ2

ε

)
(3.9)

We use the process {X ′n} to estimate Π̂knΨ, after which we apply the operator to our
original process in which case the operator is independent from Xn+1, see Shibata, [51].
Now

(
Π̂kn − Πkn

)
=

1

2πi

kn∑
j=1

∫
Bj

[(
zI − Γ̂n

)−1

− (zI − Γ)−1

]
dz

=
1

2πi

kn∑
j=1

∫
Bj

[(
zI − Γ̂n

)−1 (
Γ̂n − Γ

)
(zI − Γ)−1

]
dz (3.10)

= Sn +Rn

where

Sn =
1

2πi

kn∑
j=1

∫
Bj

[
(zI − Γ)−1

(
Γ̂n − Γ

)
(zI − Γ)−1

]
dz (3.11)
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and

Rn =
1

2πi

kn∑
j=1

∫
Bj

[
(zI − Γ)−1

(
Γ̂n − Γ

)
(zI − Γ)−1

(
Γ̂n − Γ

)(
zI − Γ̂n

)−1
]
dz (3.12)

The second step (3.10) can be verified as

[(
zI − Γ̂n

)−1 (
Γ̂n − Γ

)
(zI − Γ)−1

]
=

(
zI − Γ̂n

)−1 (
Γ̂n − zI + zI − Γ

)
(zI − Γ)−1

=
(
zI − Γ̂n

)−1 (
(zI − Γ)−

(
zI − Γ̂n

))
(zI − Γ)−1

=
(
zI − Γ̂n

)−1
(zI − Γ) (zI − Γ)−1

−
(
zI − Γ̂n

)−1 (
zI − Γ̂n

)
(zI − Γ)−1

=
(
zI − Γ̂n

)−1
− (zI − Γ)−1

From the relation Π̂kn − Πkn = Sn +Rn, we have that −Sn + Π̂kn − Πkn = Rn. Looking
at the term in Rn we have[

(zI − Γ)−1
(

Γ̂n − Γ
)

(zI − Γ)−1
(

Γ̂n − Γ
)(

zI − Γ̂n

)−1
]

= − (zI − Γ)−1
(

Γ̂n − Γ
)[

(zI − Γ)−1 −
(
zI − Γ̂n

)−1
]

= − (zI − Γ)−1
(

Γ̂n − Γ
)

(zI − Γ)−1 − (zI − Γ)−1
(

Γ− Γ̂n

)(
zI − Γ̂n

)−1

= − (zI − Γ)−1
(

Γ̂n − Γ
)

(zI − Γ)−1 +
(
zI − Γ̂n

)−1

− (zI − Γ)−1

Thus Π̂kn −Πkn = Sn +Rn. Since the operator is estimated from a different process, we
have that Sn and Rn are both independent from Xn+1, therefore

E ‖ΨSn (Xn+1)‖2 = E
+∞∑
l,l′=1

〈
ΨSn(el),ΨSn(el)

′
〉
〈Xn+1, el′ 〉 〈Xn+1, el〉 (3.13)

= E
+∞∑
l=1

‖ΨSn(el)‖2 〈Xn+1, el〉2 (3.14)

=
+∞∑
l=1

λlE ‖ΨSn(el)‖2 (3.15)

since E (〈Xn+1, el〉 〈Xn+1, el′ 〉) = 0 if l 6= l
′

by the definition of the el i.e orthonormality.
E 〈Xn+1, el〉2 = λl follows from the Karhunen-Loève expansion of X, i.e.

X =
∞∑
l=1

√
λlξlel (3.16)
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so that

E 〈Xn+1, el〉 〈Xn+1, el′ 〉 =

{
λl if l = l

′

0 if l 6= l
′

Next

E ‖ΨSn(el)‖2 = E

∥∥∥∥∥∥
+∞∑
l′=1

Ψ(el′ ) 〈Sn(el), el′ 〉

∥∥∥∥∥∥
2

(3.17)

This follows from the fact that Snel can be expressed as

Snel =
∞∑
j=1

〈Snel, ej〉 ej

From Cardot et. al. [10] the explicit computation of the operator Sn can be given by

1

2πi

∫
Bj

[
(zI − Γ)−1

(
Γ̂n − Γ

)
(zI − Γ)−1

]
dz = vj

(
Γ̂n − Γ

)
πj + πj

(
Γ̂n − Γ

)
vj

with vj =
∑

j′ 6=j
1

λj′ − λj
πj′ where πj is the projector on the eigenspace associated to

the jth eigenfunction of Γ. We note that Γ, Γ̂n, vj, πj are self-adjoint operators and
that a linear combination of self adjoint transformations will result in a self adjoint
transformation. We can therefore write

〈Snel, el′ 〉 =
kn∑
j=1

[〈(
Γ̂n − Γ

)
πjel, vjel′

〉
+
(

Γ̂n − Γ
)
vjel, πjel′

]
(3.18)

This gives rise to four different possibilities which we list below

1. l
′
> kn and l > kn

In this case πjel = 0 and πjel′ = 0 since 1 ≤ j ≤ kn and because of orthonormality
the terms will be zero.

2. l
′ ≤ kn and l ≤ kn

Here, for some 1 ≤ l, l
′ ≤ kn and keeping in mind that el are orthonormal, the sum

3.18 reduces to

=
〈(

Γ̂n − Γ
)
πlel, vlel′

〉
+
(

Γ̂n − Γ
)
vl′el, πl′el′

=
〈(

Γ̂n − Γ
)
el, vlel′

〉
+
(

Γ̂n − Γ
)
vl′el, el′

If l = l
′
then vlel′ = vl′el = 0 from the definition of vj. If l 6= l

′
then

〈(
Γ̂n − Γ

)
el, vlel′

〉
+(

Γ̂n − Γ
)
vl′el, el′ reduces to

=

〈(
Γ̂n − Γ

)
el,

1

λl′ − λl
πl′el′

〉
+

〈(
Γ̂n − Γ

) 1

λl − λl′
πlel, el′

〉
=

1

λl′ − λl

〈(
Γ̂n − Γ

)
el, el′

〉
+

1

λl − λl′

〈(
Γ̂n − Γ

)
el, el′

〉
=

1

λl′ − λl

〈(
Γ̂n − Γ

)
el, el′

〉
− 1

λl′ − λl

〈(
Γ̂n − Γ

)
el, el′

〉
= 0
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3. l
′
> kn and l ≤ kn

In this case 3.18 reduces to〈(
Γ̂n − Γ

)
πlel, vlel′

〉
=

〈(
Γ̂n − Γ

)
el, vlel′

〉
=

〈(
Γ̂n − Γ

)
el,

1

λl′ − λl
πl′el′

〉

=

〈(
Γ̂n − Γ

)
el, el′

〉
λl′ − λl

4. l
′ ≤ kn and l > kn 3.18 reduces to〈(

Γ̂n − Γ
)
vl′el, πl′el′

〉
=

〈(
Γ̂n − Γ

) 1

λl − λl′
πlel, el′

〉

=

〈(
Γ̂n − Γ

)
el, el′

〉
λl − λl′

Collecting all the cases together we then have that

〈Snel, el′ 〉 =



0 if
(
l
′ ≤ kn and l ≤ kn

)
or if

(
l
′
> kn and l > kn

)〈(
Γ̂n − Γ

)
el, el′

〉
λl′ − λl

if
(
l
′
> kn and l ≤ kn

)〈(
Γ̂n − Γ

)
el, el′

〉
λl − λl′

if
(
l
′ ≤ kn and l > kn

)

Considering the instance when l > kn and l
′ ≤ kn,

E ‖ΨSn(el)‖2 = E

∥∥∥∥∥∥
kn∑
l
′
=1

Ψ(el′)

〈(
Γ̂n − Γ

)
el, el′

〉
λl − λl′

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

n

n∑
j=1

kn∑
l′=1

Ψ(el′ )

〈(
X
′
j ⊗X

′
j − Γ

)
el, el′

〉
λl − λl′

∥∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
j=1

R∗j,l,n

∥∥∥∥∥
2

where

R∗j,l,n =
kn∑
l′=1

Ψ(el′ )

〈(
X
′
j ⊗X

′
j − Γ

)
el, el′

〉
λl − λl′

38



and R∗j,l,n are centered and correlated random vectors, i.e.,

E

∥∥∥∥∥ 1

n

n∑
j=1

R∗j,l,n

∥∥∥∥∥
2

=
1

n
E

∥∥∥∥∥∥
kn∑
l′=1

Ψ(el′ )

〈
X
′
1, el
〉 〈
X
′
1, el′

〉
λl − λl′

∥∥∥∥∥∥
2

+
2

n2
E

∥∥∥∥∥∥
n∑
k=2

∑
j<k

kn∑
l′ ,m=1

〈Ψ(el′ ),Ψ(em)〉
〈
X
′
j, el
〉 〈
X
′
j, el′

〉
λl − λl′

〈
X
′

k, el
〉 〈
X
′

k, el′
〉

λl − λm

∥∥∥∥∥∥
Looking at the first term on the right hand side, and considering that our process is
strictly stationary, we have

1

n
E

∥∥∥∥∥∥
kn∑
l′=1

Ψ(el′)

〈(
X
′
1 ⊗X

′
1

)
el, el′

〉
λl′ − λl

∥∥∥∥∥∥
2

=
1

n
E

∥∥∥∥∥∥
kn∑
l′=1

Ψ(el′)

〈
X
′
1, el

〉〈
X
′
1, el′

〉
λl′ − λl

∥∥∥∥∥∥
2

=
1

n
E

kn∑
m,l′=1

〈Ψ(el′),Ψ(em)〉

〈
X
′
1, el

〉〈
X
′
1, el′

〉〈
X
′
1, el

〉〈
X
′
1, em

〉
(
λl′ − λl

)
(λm − λl)

By the Karhunen-Loève expansion of X, this reduces to

1

n

kn∑
m,l
′
=1

〈Ψ(el′),Ψ(em)〉
λl
√
λl′λmE (ξ2

l ξl′ξm)

(λl′ − λl) (λm − λl)

Applying Cauchy-Schwarz twice to ξk’s yields

E
(
ξ2
l ξl′ξm

)
≤

√
E (ξ4

l )

√
E
(
ξ2
l′
ξ2
m

)
≤
√
M
√
M

Thus the first term on the right hand side is bounded by

E

∥∥∥∥∥ 1

n

n∑
j=1

R∗1,l,n

∥∥∥∥∥
2

≤ M

n

∥∥∥∥∥∥
kn∑
l′=1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

by using the Karhunen-Loève expansion of X, assumption 3.3 and Lemma 5.1 of [44].
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Considering the second term on the right hand side, we have

2

n2
E

n∑
k=2

∑
j<k

kn∑
l′ ,m=1

〈Ψ(el′),Ψ(em)〉
〈
X
′
j, el
〉 〈
X
′
j, el′

〉
λl − λl′

〈
X
′

k, el
〉 〈
X
′

k, em
〉

λl − λm

using the same arguments employed above of stationarity and Karhunen-Loève expansion,

=
2

n2

n∑
k=2

∑
j<k

kn∑
l′ ,m=1

〈Ψ(el′),Ψ(em)〉 λl
√
λl′λmE (ξ2

l ξl′ξm)

(λl − λl′) (λl − λm)

The expectation term can be bounded as above so that

=
2

n2

n∑
k=2

∑
j<k

M

kn∑
l′ ,m=1

〈Ψ(el′),Ψ(em)〉 λl
√
λl′λmE (ξ2

l ξl′ξm)

(λl − λl′) (λl − λm)

≤ 2

n2

n∑
k=2

∑
j<k

M
kn∑
l′=1

∥∥∥∥∥Ψ(el′)

√
λlλl′

λl − λl′

∥∥∥∥∥
2

where the summand is independent of j and k.

Now

n∑
k=2

k−1∑
j=1

1 =
n∑
k=2

(k − 1) =
n−1∑
k=1

k =
n(n− 1)

2

Finally we have

E

∥∥∥∥∥ 1

n

n∑
j=1

R∗j,l,n

∥∥∥∥∥
2

≤ M

n

∥∥∥∥∥∥
kn∑
l′=1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

(3.19)

+
2M

n2

(
1− 1

n

)∥∥∥∥∥
kn∑
l′=1

Ψ(el′)

√
λlλl′

λl − λl′

∥∥∥∥∥
2

(3.20)

≤ M

∥∥∥∥∥
kn∑
l′=1

Ψ(el′)

√
λlλl′

λl − λl′

∥∥∥∥∥
2

(3.21)

Similar calculations for the case l′ > kn and l ≤ kn lead to

E

∥∥∥∥∥ 1

n

n∑
j=1

R∗j,l,n

∥∥∥∥∥
2

≤M

∥∥∥∥∥∥
+∞∑

l′≥kn+1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

(3.22)

We see that Cardot et. al.’s, [10] method does not follow through for the case of depen-
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dence since the covariance term leads to

1

kn
E ‖ΨSn(Xn+1)‖2 ≤ M

kn

kn∑
l=1

λl

∥∥∥∥∥∥
+∞∑

l′≥kn+1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

(3.23)

+
M

kn

∑
l>kn

λl

∥∥∥∥∥∥
kn∑
l′≥1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

(3.24)

whereas we are interested in
n

kn
E ‖ΨSn(Xn+1)‖2. To overcome this problem, we introduce

a slightly stronger assumption on the λi’s. Cardot et. al. [10] have the condition that
for a sufficiently large i, λii log i < C. We on the other hand consider the conditions

n(1 + kn log kn)
∑

j>kn+
√
kn/log kn

λj → 0, n→∞ and nk2
n

√
kn

log kn
λkn → 0, n→∞.

If, e.g., λj = baj for some b > 0, 0 < a < 1, then both conditions are satisfied if

lim sup
log n

kn
< log

1

a
. Having this in mind we can then write the above equation as

n

kn
E ‖ΨSn(Xn+1)‖2 ≤ n

kn
M

kn∑
l=1

λl

∥∥∥∥∥∥
+∞∑

l′≥kn+1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

︸ ︷︷ ︸
I

(3.25)

+
n

kn
M
∑
l>kn

λl

∥∥∥∥∥∥
kn∑
l′≥1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

︸ ︷︷ ︸
II

(3.26)

We need a minimal condition to bound I and II. Looking at I (3.25), we have by Lemma
5 and from ‖Ψ‖L < 1,∥∥∥∥∥∥

+∞∑
l′≥kn+1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥Ψ

 +∞∑
l′≥kn+1

√
λlλl′

λl − λl′
el′

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
+∞∑

l′≥kn+1

√
λlλl′

λl − λl′
el′

∥∥∥∥∥∥
2

=
+∞∑

l′≥kn+1

λlλl′

(λl − λl′ )
2

≤
+∞∑

l′≥kn+1

λl′

λl (1− (l/l′))2

as el′ are an orthonormal basis. We therefore have for I:

n

kn
M

kn∑
l=1

λl

∥∥∥∥∥∥
+∞∑

l′≥kn+1

Ψ(el′ )

√
λlλl′

λl − λl′

∥∥∥∥∥∥
2

≤ nM

+∞∑
l′≥kn+1

λl′(
1− l

l′

)2 (3.27)
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Setting hn =

[√
kn

log kn

]
where [x] denotes the largest integer smaller than [x]. We can

split the right-hand side into summation from kn+hn+1 to∞ and from kn+1 to kn+hn,
and we use that for l

′ ≥ kn + hn and l < kn , l′kn > l (kn + hn), thus

1− l

l′
≥ 1− kn

kn + hn
=

hn
kn + hn

hence,

nM
∞∑

l′>kn+hn

λ
′

l(
1− l

l′

)2 ≤ nM

∞∑
l′>kn+hn

λl′

(
1 +

kn
hn

)2

≤ nM
∑

l′>kn+hn

λl′ (1 + kn log kn)→ 0

by our assumption on n, kn, λj, j > kn + hn.

Analogously, we get for 1 ≤ l ≤ kn

nM
kn+hn∑
l′=kn+1

λl′(
1− l

l′

)2 ≤ nM(kn + 1)2λkn+1hn

≤ nM(kn + 1)2

√
kn

log kn
λkn → 0

Hence, the term II (3.26) also goes to zero using similar arguments as n → ∞, and we
get

n

kn
E ‖ΨSn(Xn+1)‖2 → 0 (3.28)

The second part of the proof, i.e showing that√
n

kn

∥∥∥ΨRn(X
′

n+1)
∥∥∥2

= Op
(

1√
n
k5/2
n (log kn)2

)
when

k2
n log kn√

n
→ 0

is quite similar to the first one and uses again the same kind of arguments as in Cardot
et. al., [10], so we do not give the details here.
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Chapter 4

Change Point Detection for
Functional Observations

In this chapter we consider the change point problem for functional observations and

an application to cognitive science data. We look at the possibility of a change point

in the mean first studied by Berkes et. al. [4] for independent identically distributed

(i.i.d) observations. In [4], they applied the test to temperature data and made the

observation that apart from a change in level, change of shape of the curve can be

informative, for instance the summers may be warmer and winters colder. This serves

to show that functional methods incorporate a lot of data from which finer and more

accurate observations and inferences can be made. Horváth et. al. [26] consider a

change in mean for dependent observations, noting that the test for i.i.d. data fails to

account for the long run covariance and therefore may give false results. Aston and

Kirch [2] evaluate stationarity via change point with an application to resting state fMRI

(functional Magnetic Resonance Imaging) data. In this case too we have change point

detection for data with dependence. Horváth et. al. [26] develop a test for the stability

of the FAR(1) model. In all the situations considered, we see that failure to account for

a change when one exists will lead to erroneous results and inferences. In [4], [26] and

[25], the tests developed are based on the CUSUM method, and as rightly noted in Aue

et. al., [3], a lot of open questions still remain, for instance applicability of MOSUM test

in the functional case, sequential change points for functional data among others.

The chapter is divided into two sections considering a change in mean and stability of
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the functional autoregressive process. In each case we give a brief introduction, overview

of the test procedure and application of the procedure on a real data set consisting of

stimulus response data of cells from the animal physiology group at the University of

Kaiserslautern and the results obtained under asymptotic considerations. This chapter

is an application of the methods developed in Berkes et. al. [4], Horváth et. al. [26] and

Hörmann and Kokoszka, [25]. For completeness we include the technical assumptions

used for developing the test statistics.

4.1 Change Point in the Mean

When considering observations, although for theoretical purposes it is easier to consider

observations with mean zero, in reality, this is not the case. A suitable assumption would

be Xi = µ + Yi where EYi = 0. When working with data, various procedures con-

sider mean adjusted variables for instance the dimension reduction Functional Principal

Components νk are those of X − µ, with the following L2 expansion,

Xi(t) = µ(t) +
∞∑
k=1

ξkiνk(t), 1 ≤ i ≤ N (4.1)

This simply means that if there is a change in the mean function at some point, then the

results of the (Functional Principal Component Analysis) FPCA will no longer be valid.

As noted in Berkes et. al. [4], detecting a change point of the mean does not necessarily

mean an abrupt change from one curve to the next but that the assumption of a constant

mean for the whole series is not acceptable. We consider possibility of a change in the

mean while assuming that the data are independent and identically distributed (i.i.d.) in

one case and dependent in the other. This is to ensure that the possibility of spurious

dependence is ruled out.

4.1.1 Assumptions and Detection Procedure for i.i.d. Observa-
tions

In the case of independent observations, we test the null hypothesis

H0 : EX1 = EX2 = · · ·EXN (4.2)
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against the alternative of a single or more change points.

Under the null hypothesis each functional observation is represented as

Xi(t) = µ(t) + Yi(t), EYi(t) = 0 (4.3)

where Xi ∈ L2.

Assumptions

Assumption 4.1. The mean µ(.) is in L2. The errors Yi(.) are i.i.d. mean zero random
elements of L2 which satisfy

E‖Yi‖2=

∫
EY 2

i (t)dt <∞ (4.4)

The assumption above implies that the covariance function

c(t, s) = E [Yi(t)Yi(s)] t, s ∈ [0, 1] (4.5)

is square integrable, and consequently the expansions

c(t, s) =
∑

1≤k<∞

λkνk(t)νk(s) (4.6)

and

Yi(t) =
∑

1≤l<∞

ξl,iνl(t) (4.7)

where ξl,i = 〈Yi, νl〉 are implied.

The estimated eigenelements are defined by∫
ĉ(t, s)ν̂l(s)ds = λ̂lν̂l(t), l = 1, 2, · · · (4.8)

where

ĉ(t, s) =
1

N

∑
1≤i≤N

(
Xi(t)− X̄N(t)

) (
Xi(s)− X̄N(s)

)
and X̄N(t) =

1

N

∑
1≤i≤N Xi(t)

The next two assumptions together with Lemmas 1 and 2 in chapter 2 control the distance

between the population and estimated (empirical) eigenelements.
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Assumption 4.2. The eigenvalues λl satisfy, for some d > 0

λ1 > λ2 > · · · > λd > λd+1

Assumption 4.3. The Yi in Assumption 4.1 satisfy

E‖Yi‖4=

∫
EY 4

i (t)dt <∞. (4.9)

Considering a single change point alternative:

Assumption 4.4. The observations follow the model

Xi(t) =

{
µ1(t) + Yi(t), 1 ≤ i ≤ k∗
µ2(t) + Yi(t), k∗ < i ≤ N

where Yi satisfy 4.1, µ1, µ2 are in L2(T ) and k∗ = [nθ] for some 0 < θ < 1.

Detection Procedure

Under the specified technical assumptions, we denote

µ̂k(t) =
1

k

∑
1≤i≤k

Xi(t), µ̃k(t) =
1

N − k
∑
k<i≤N

Xi(t) (4.10)

If the mean is constant, the difference ∆k(t) = µ̂k(t) − µ̃k(t) is small for all 1 ≤ k < N

and all t ∈ [0, 1]. To account for effects of chance variability when k is close to 1 or N,

we consider the weighted differences

Pk(t) =
∑

1≤i≤k

Xi(t)−
k

N

∑
1≤i≤N

Xi(t) =
k(N − k)

N
[µ̂k(t)− µ̃k(t)] (4.11)

in which the variability at the end points is attenuated by a parabolic weight function.

Since the functions are infinite dimensional, we project them onto the first say p principal

components which explain most of the variability. The population eigenelements are also

replaced by those from the sample so that we have∫ { ∑
1≤i≤Nx

Xi(t)−
[Nx]

N

∑
1≤i≤N

Xi(t)

}
ν̂l(t)dt =

∑
1≤i≤Nx

ξ̂l,i −
[Nx]

N

∑
1≤i≤N

ξ̂l,i (4.12)

To derive the test, consider the statistic

TN(x) =
1

N

p∑
l=1

λ̂−1
l

( ∑
1≤i≤Nx

ξ̂l,i − x
∑

1≤i≤N

ξ̂l,i

)2

(4.13)
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where λ̂i estimates the eigen values of the covariance operator of the observations (see

for instance (4.6)) and B1(.), · · · , Bd(.) denote independent standard Brownian bridges.
Theorem 4.1.1. Suppose Assumptions 4.1, 4.2, 4.3 hold. Then, under H0

TN(x)
d→
∑

1≤l≤p

B2
l (x), 0 ≤ x ≤ 1 (4.14)

in the Skorokhod topology of D[0, 1].

The proof of Theorem 4.1.1 can be found in [28].

By Theorem 4.1.1, U(TN)
d→ U

(∑
1≤l≤pB

2
l (.)
)

for any continuous functional U : D[0, 1]→

R. Considering the Cramér -von-Mises functional, we look at the convergence∫ 1

0

TN(x)dx
d→
∫ 1

0

∑
1≤l≤p

B2
l (x)dx

which can be rewritten as

SN,p :=
1

N2

p∑
l=1

λ̂−1
l

N∑
k=1

(∑
1≤i≤k

ξ̂l,i −
k

N

∑
1≤i≤N

ξ̂l,i

)2

d→
∫ 1

0

∑
1≤l≤p

B2
l (x)dx. (4.15)

The distribution of the random variable

Kp =

∫ 1

0

∑
1≤l≤p

B2
l (x)dx (4.16)

was derived by Kiefer [27]. The test rejects the null hypothesis if SN,p > cp(α), where

cp(α) is the (1− α)th quantile of Kp.

Results on the consistency of the test and the behaviour of the test statistic under the

alternative can be found in [28].

To estimate the change point, provided the test detects one, the estimator

θ̂N = inf

{
x : TN(x) = sup

0≤y≤1
TN(y)

}
(4.17)

is employed, the weak consistency of which can be found in Proposition 6.1 of [28].

4.1.2 Assumptions and Detection Procedure for Dependent Ob-
servations

In this subsection we consider the test to be employed when the observations are depen-

dent. The null hypothesis is the same as that in (4.2). Under the null hypothesis, each

functional observation can be represented as (4.3).
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To establish convergence of the test statistic under H0, some assumptions are required,

which we include here for completeness.
Assumption 4.5. The mean µ is in H. The error functions Yi ∈ L4

H are L4 − m −
approximable mean zero random elements such that the eigenvalues of their covariance
operator satisfy Assumption 4.2 above.

L4 −m − approximability is a technical condition which implies that the Yi are weakly

dependent with ν4(Yi) <∞ (finite fourth moment). A detailed definition of the condition

can be obtained from Hörmann and Kokoszka, [25]. In this case, the covariance function

(4.5) is square integrable, i.e is in L2 ([0, 1]× [0, 1]).

In the case of a single change point;

Assumption 4.6. The observations follow the model

Xi(t) =

{
µ1(t) + Yi(t), 1 ≤ i ≤ k∗
µ2(t) + Yi(t), k∗ < i ≤ N

where Yi satisfy 4.5, µ1, µ2 are in L2 and k∗ = [Nθ] for some 0 < θ < 1.

The testing procedure follows from that of the i.i.d. observations with the challenge of

how to accommodate the dependence. The main difference lies in the fact that when

the data has dependence we consider the long run variance which accommodates the

dependence between observations as opposed to the sample variance.

To obtain the new test statistic, we first define the partial sums

SN(x, ξ) =

bNxc∑
n=1

ξn, x ∈ [0, 1]

and the bridge process

LN(x, ξ) = SN(x, ξ)− xSN(1, ξ) (4.18)

where ξ = (ξn, n ≥ 1) is a generic Rd-valued stochastic process. We denote by Σ(ξ) the

long run variance of the sequence ξ, and by Σ̂(ξ) its kernel estimator, where

Σ =
∞∑

h=−∞

E
[
(ξ0 − Eξ) (ξh − Eξ)T

]
and

Σ̂ =
∞∑

h=−∞

γ̂h(N), γ̂h(N) =
1

N

∑
1≤i≤N−h

(
ξ̂i −

1

N

∑
ξ̂i

)(
ξ̂i+h −

1

N

∑
ξ̂i

)T
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The test statistic is then given by

TN(d) =
1

N

∫ 1

0

LN(x, η̂)T Σ̂(η̂)−1LN(x, η̂)dx (4.19)

with the scores η̂li given by

η̂li =

∫ (
Xi(t)− X̄N(t)

)
ν̂l(t)dt, 1 ≤ l ≤ d (4.20)

Theorem 4.1.2. Suppose H0 and Assumption 4.5 hold. If the estimator Σ̂ (η̂) is con-
sistent, then

TN(p)
d→

p∑
l=1

∫ 1

0

B2
l (x)dx, (4.21)

where Bl(x), x ∈ [0, 1], 1 ≤ l ≤ p, are independent Brownian bridges.

We quickly note that the asymptotic distribution of the test statistic under the null

hypothesis is the same as that for the independent case since the long-run variance soaks

up the dependence.

Results to prove the consistency of the test statistic under a single change point alter-

native and consistency of the kernel estimator for the long run covariance can be found

in Horváth and Kokoszka [28]. Hörmann and Kokoszka [25] give more details on the

notions of Lp − approximability and results for dealing with dependence in functional

observations.

4.1.3 Application to Stimulus Response Data

In this section we report the results of analysing stimulus response data of cells from

the animal physiology group at the University of Kaiserslautern. The data is obtained

from experiments in which a stimulus is repeatedly given to a cell at a certain speed

(1,2,5,10,50Hz) and the reaction of the cell is recorded.

In order to attain stationarity and constant mean, the data is differenced as a first step

to some of the analyses. Figure 4.1 shows a subsection of the data (original and its

differenced counterpart) series for the frequency 10Hz. The subsection is taken from the

first part of the data, curves (responses) 10-24.
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Figure 4.1: Original stimulus data
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It is clear that the differenced series in Figure 4.1 (lower panel) looks more like a stationary

time series as compared to the original series in the top panel of the same figure. At the

beginning of each response there is a noticeable sharp spike (circled in red) in Figure 4.2.

This is an artifact which represents the direct effect of the stimulus onto the measuring

device, but not the response of the cell. The cell reacts to the stimulus after a short delay

and therefore it is safe to remove a few data points after the stimulus is given as these

are not part of the cells reaction. We therefore cut the data points in the circle and form

a vector consisting of the first and last part of the observations. Once the adjustment

has been made, the local random noise in the differenced data can be seen more clearly

as in Figure 4.4 bottom panel. We also include the adjusted and differenced plots of

subsections of the 1,2,5 and 50Hz frequencies in Figures 4.3, 4.4 and 4.5 respectively.

Once the truncation has been done, we have 68, 73, 78, 73, 73 points per curve in the

case of 1, 2, 5, 10 and 50Hz frequencies respectively, which are then smoothed to form

curves.

Since all the tests include projection of the curves from an infinite dimensional space

to the finite dimensional space of the first p principal components, we include a figure

of the scree plot which is used in selecting the number of principal components p to be
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Figure 4.2: Artifact

 

Table 4.1: Test for change in the mean function (i.i.d. Test)
α = 0.05, p=4, Asymptotic crit. value=1.239675

1Hz 2Hz 5Hz 10Hz 50Hz
N 60 120 300 600 3000
Test statistic 2.0872 3.8249 8.5994 54.7244 212.0775

employed. The idea of the scree plot is that we visually select the number of principal

components at which the curve dies off. Another method that can be used for this purpose

is the cumulative percentage of variance in which we consider the number of principal

components for which the cumulative percentage of variance explained is greater than

say 85%. In this case the number of principal components selected was p = 4 which has a

cumulative percentage of variance of approximately 96%. Figure 4.6 gives the scree plot.

Assuming the data is independent and identically distributed, Table 4.1 reports the results

obtained. The data used is adjusted to remove the artificial artifact but not differenced.

Against the asymptotic critical value, in all cases we reject the null hypothesis of constant

mean. In Table 4.2 we list the change points in order of significance for the 1,2,5 and 10Hz

frequencies. These will be used for comparison with the change points in the dependent

case. A test for change in mean was then carried out but in this case the data was first

differenced. Once the data was differenced, under all frequencies no change point was

observed which implies that the data did not have a trend. Note that the change points
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Figure 4.3: Adjusted Responses (left) and their Differenced Counterparts 1,2 Hz
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Table 4.2: Change points in order of significance (i.i.d. Test)

Frequency Change Points
1Hz 20
2Hz 70 100
5Hz 155 85
10Hz 361 164 62 10 472 396 547

refer to the number of stimulus-response and not to time, i.e. the units on the horizontal

axes of the fugures. The figures only show a small part of the total sample of curves.

Since the iid test for the change in mean is known to give wrong results when the data has

some dependency, we carried out a Portmanteau test of independence, see Gabrys et. al.

[21] for details of the test. The main assumptions required are that the fourth moment

of the observations exists and that the eigenvalues are in decreasing order. When these

assumptions hold then the test statistic converges to a chi-square distribution under the

null hypothesis.

The results of the test are given in Table 4.3. The main idea of the Portmanteau test is

to test the null hypothesis of independent identical distributions against an open ended

alternative of lack of independence or identicality. We test the null hypothesis

H0: the Xn(.) are independent and identically distributed (i.i.d)
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Figure 4.4: Adjusted responses (left) and their differenced counterparts 5, 10 Hz
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Table 4.3: Portmanteau Test
α = 0.05, p=4, Asymptotic crit. value=67.5050

1Hz 2Hz 5Hz 10Hz 50Hz
N 59 119 299 599
Test statistic 176.3522 313.8736 334.5219 552.3081 2574.5181

versus

HA: H0 does not hold.

The data was differenced as a first step to the analysis. In all cases the assumption of

independence is rejected.

Next we investigated whether there was a change in mean while dropping the assumption

of independence of the data. In this case we consider that the data are dependent and

follow the work of Hörmann and Kokoszka. The results of the test are reported in Table

4.4, where we have a change point in the mean in all cases. As in the iid case, when the

Table 4.4: Test for change in the mean function (Dependent Test)
α = 0.05, p=4, Asymptotic crit. value=1.239675

1Hz 2Hz 5Hz 10Hz 50Hz
N 60 120 300 600 3000 6000
Test statistic 1.5847 2.0715 3.6859 8.6769 32.6208
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Figure 4.5: Adjusted responses (top) and their differenced counterparts 50 Hz
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Table 4.5: Change points in order of significance (Dependent Test)

Frequency Change Points
1hz 20
2Hz 74
5Hz 155
10Hz 359 163 62 472 389
50Hz 2067 1213 679 288 182 542 358 987 1081

1787 1632 1924 2459 2330 2748 2591 2830

data is differenced then there is no change in mean observed.

In Table 4.5, we give the change points in their order of significance for the dependent

test. Comparing the two test we see that the iid test gives many false change points as a

result of failure to account for the long run variance. Also, it is noticeable as expected,

that with increasing frequency of the stimulus there are more change points. This can

be attributed to the fact that at high frequency the cell does not have enough time to

go back to its resting state before the next stimulus is given and this is what is observed

through the many changes in mean.
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Figure 4.6: Scree Plot
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4.2 Change Point Detection in the Functional Au-

toregressive Model (FAR(1))

Our aim is to test (through the linear operator Ψ) whether the stochastic structure of the

model changes, so that we need a different model (operator) to represent the data. The

first subsection gives a brief introduction of the change point problem for FAR(1) model

which is based on the paper by Horváth et. al. [26]. Subsection 2 gives an overview of

the test procedure while the third subsection deals with the application of the test to the

Stimulus response data.

Given the observations Xn(t), t ∈ [0, 1], n = 1, ..., N , we are concerned with testing the

hypothesis

H0 : Ψ1 = Ψ2 = · · · = ΨN = Ψ

versus

HA : there is 1 ≤ k∗ < N : Ψ1 = · · · = Ψk∗ 6= Ψk∗+1 = · · · = ΨN

The structure of the observations under the null hypothesis can be formalised by As-

sumption 2.1 of Horváth et. al. [26], which we include here for completion.
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Assumption 4.7. The functional observations Xn ∈ L2 satisfy

Xn+1 = ΨXn + εn+1, n = 0, 1, · · · , N − 1 (4.22)

where Ψ is an integral operator with the kernel ψ(t, s) satisfying∫ ∫
ψ2(t, s)dsdt < 1 (4.23)

and the iid mean zero innovations εn ∈ L2 satisfy

E ‖εn‖4 = E
[∫

ε2n(t)dt

]2

<∞ (4.24)

4.2.1 Test Procedure

Here we include an overview of the test but complete details can be obtained from Horváth

et al. [26].

Since the observations are infinite dimensional, they are first projected onto a finite

dimensional space before the test is carried out. The test is applied to check whether the

action of Ψ on the span of the p most important principal components of the observations

changes at some unknown time point i.

Under H0, 〈Ψνj, νl〉 = λ−1
j 〈Cνj, νl〉 where Cx = E [〈Xn, x〉Xn+1] is the lag-1 autocovari-

ance operator. From this representation it is obvious that a change in the operator Ψ

can be reflected by a change in 〈Cνj, νl〉 , 1 ≤ j, l ≤ p. Looking at the representation

〈Cνj, νl〉 = λj 〈Ψνj, νl〉, we note that a change in 〈Ψνj, νl〉 may be obscured by a change

in λj, thus potentially reducing power, but the test developed is nevertheless effective in

practice.

A test against the alternative of a change point involves estimating the above scalar

products from observations X1, X2, · · · , Xk and Xk+1, Xk+2, · · · , XN and comparing the

estimates. Moreover, defining the p× p lag-1 autocovariance matrices:

Rk =
1

k

∑
2≤i≤k

Xi−1X
T
i , R∗N−k =

1

N − k
∑
k≤i≤N

Xi−1X
T
i

where Xi = (〈Xi, ν1〉 , · · · , 〈Xi, νp〉)T . By the ergodic theorem, as k →∞,

Rk(j, l) =
1

k

∑
2≤i≤k

〈Xi−1, νj〉 〈Xi, νl〉
a.s→ E 〈Xn−1, νj〉 〈Xn, νl〉 = 〈Cνj, νl〉
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Since the matrices Rk and R∗N−k approximate the matrix [〈Cνj, νl〉 j, l = 1, 2, · · · , p]

based on observations before and after time k, basing the test on their difference is a

good choice.

Test Statistic

Define Yi(j, l) = 〈Xi−1, νj〉 〈Xi, νl〉 and Ŷi(j, l) = 〈Xi−1, ν̂j〉 〈Xi, ν̂l〉 and consider the col-

umn vectors of length p2:

Yi = [Yi(1, 1), · · · , Yi(1, p), Yi(2, 1), · · · , Yi(2, p), · · · , Yi(p, 1), · · · , Yi(p, p)]T ;

Ŷi =
[
Ŷi(1, 1), · · · , Ŷi(1, p), Ŷi(2, 1), · · · , Ŷi(2, p), · · · , Ŷ(p, 1), · · · , Ŷi(p, p)

]T
Since Xi follow a functional AR(1) model, vectors Yi form a weakly dependent stationary

sequence, and as k →∞,

√
k

[
1

k

∑
2≤i≤k

Yi − EYk

]
d→ N (0,D) (4.25)

where D is the p2 × p2 long run covariance matrix defined by

D = E
[
(Y0 − EY0) (Y0 − EY0)T

]
+ 2

∑
1≤h<∞

E
[
(Y0 − EY0) (Yh − EYh)

T
]

(4.26)

A quick introduction for the central limit theorem for weakly dependent stationary se-

quences can be found for instance in Yao et. al., [58], Ibragimov and Linnik, [29]. Define

further Zk =
∑

2≤i≤k Yi and Z∗N−k =
∑

k<i≤N Yi and their sample counterparts with

Ẑk =
∑

2≤i≤k Ŷi and Ẑ
∗
N−k =

∑
k<i≤N Ŷi.

Now if the autoregressive operator Ψ is constant, then the difference

1

k
Zk −

1

N − k
Z∗N−k

should be small for all 2 ≤ k < N . However this difference may be large due to chance

variability if k is close to 2 or N . To circumvent this, a parabolic weight function is

employed instead so that the difference is large only when there is a change point. The

new representation is as in equation 4.27.
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Denoting by {WD(t), t ≥ 0} a p2-dimensional Brownian motion with covariance matrix

D and from equation 4.25 we have that

Zk − kEYN ≈ N (0, kD) ≈WD(k),

Z∗N−k − (N − k)EYN ≈ N (0, (N − k)D) ≈WD(N)−WD(k)

Under H0 we have,

1

k
Zk −

1

N − k
Z∗N−k ≈

N

k(N − k)

[
WD(k)− k

N
WD(N)

]
Denoting

UN(k) =
k(N − k)

N

(
1

k
Zk −

1

N − k
Z∗N−k

)
(4.27)

and comparing covariances, we have

1

N

[
WD(k)− k

N
WD(N)

]T
D−1 1

N

[
WD(k)− k

N
WD(N)

]
, 1 ≤ k ≤ N

has the same distribution as

∑
1≤m≤p2

B2
m(k/N), 1 ≤ k ≤ N (4.28)

where theBm(.) are independent standard Brownian bridges on [0, 1]. Thus any functional

of

GN(k) =
1

N
UN(k)TD−1UN(k), 1 ≤ k ≤ N (4.29)

can be approximated in distribution by 4.28.

To implement the test, the long run covariance matrix D is estimated by the Bartlett

estimator. The lag h p2 × p2 autocovariance matrix for the first k observations is given

by

γ̂h(k) =
1

k

∑
1≤i≤k−h

(
Ŷi −

1

k

∑
1≤i≤k

Ŷi

)(
Ŷi+h −

1

k

∑
1≤i≤k

Ŷi

)T

and its corresponding Bartlett estimator is

D̂k =
∑
|h|≤q

(
1− h

q + 1

)
γ̂h(k) (4.30)
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The same steps are employed to obtain the Bartlett estimator for the last N − k obser-

vations. The sequence GN(k) is approximated by its sample counterpart

1

N
ÛN(k)T

[
k

N
D̂k +

(
1− k

N

)
D̂
∗
N−k

]
ÛN(k), 1 ≤ k ≤ N (4.31)

For the test statistic, a Cramér-von-Mises type functionalKp2 :=
∫ 1

0

∑
1≤m≤p2 B

2
m(u)du, u ∈

[0, 1] is employed, although asymptotic theory exists for maximal selected statistics and

weighted sums. Defining the critical value c (α, p2) by P (Kp2 > c (α, p2)) = α, and

ÎN =
1

N

N∑
k=1

ĜN(k), (4.32)

the test rejects if ÎN > c (α, p2).

We quickly note that the constancy or lack thereof of 〈Ψνj, νl〉 is investigated for the

first p principal components after which any change that may occur is assumed to be

negligible since the amount of variability explained by the first p principal components is

assumed to be sufficiently large.

4.2.2 Application to Stimulus Response Data

In order to attain stationarity and constant mean, the data is differenced as a first step

to the analysis. Once we have evidence that the data are not i.i.d (Portmanteau test

above), we test for the nullity of the operator Ψ, (goodness of fit test). In this case

we acknowledge that although the data are dependent, the FAR(1) model (or a linear

representation) may not be a good way to represent the data. This is an extension of the

work of Kokoszka et. al., [32] and a brief overview together with the test statistic can be

obtained from Section 4.2 of this thesis. We quickly note that for change point detection,

although the FAR(1) model may not be the best to represent the functional time series,

this does not matter since a change in a FAR(1) model fitted to the data still signifies

a change in the dependence structure of the functional time series even if it is not well

approximated by a FAR(1) scheme.

We test the hypothesis

H0 : Ψ = 0 versus HA : Ψ 6= 0.

59



Table 4.6: Goodness of Fit
α = 0.05, p=4, Asymptotic crit. value=26.296

1Hz 2Hz 5Hz 10Hz 50Hz
N 59 119 299 599 2999
Test statistic 76.0413 147.4256 255.1255 509.0306 2520.8195

Table 4.7: Change Point
α = 0.05, p=4, d=pˆ2=16, Asymptotic crit. value=3.740248

1Hz 2Hz 5Hz 10Hz 50Hz
N 59 119 299 599 2999
Test statistic -12.5624 -9.6 -30.6264 2.8461 11.7638

In this case we check whether the relationship between the curves is linear, and once we

have a confirmation that Ψ 6= 0 we fit a functional autoregressive model of order one

(FAR(1)) to the data and proceed to investigate whether there is a change point. For

each stimulus frequency we have a different data set. The results of the goodness of fit

test are given in Table 4.6. Note that the value of the test statistic grows with N as in

the Portmanteau test of independence.

Once we establish that a linear relationship exists between the observations, we test for

a change in the linear operator Ψ. The results are recorded in Table 4.7. From Table 4.7,

we see that for the 50Hz frequency a change point exists. This implies that modelling the

data with the same linear operator Ψ, will give erroneous results. In this case the change

point can be estimated and the data modelled in segments with a uniform parameter

within and different parameters between.

In all cases here we used the asymptotic critical values which are justified since the samples

are quite large. However, in practice, frequently, there are small samples, in which case

asymptotic values are not quite representative. In such cases then the bootstrap would be

useful as it would provide better approximations of the distribution of the test statistics.

We use this as a motivation for studying bootstrap techniques for functional data in the

rest of the thesis.
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Chapter 5

Bootstrap for FAR - Preliminaries

In this chapter the bootstrap methodology is introduced. A general description is given

in the first two sections. Then, we consider a simple toy example of a FAR(1) process

which allows to prove that the residual-based or naive bootstrap holds for the estimate

of the autoregressive operator.

5.1 The bootstrap procedure

The bootstrap is a computer intensive resampling method which can be employed as a

cheaper alternative to obtain the asymptotics of a given estimator especially when there

exists no theoretical formula or when the theoretical formula exists but is highly complex

or in the event that the sample available is too small and therefore it is impossible

to obtain reasonable approximations of asymptotics. Among its advantages is that it

can be employed even in the case of small or moderate sample size as is frequently

the case in practice, with reasonable results. Highly desirable also is its ability to give

satisfactory results under minimum assumptions, if any, as opposed to normal asymptotic

approximations which require that certain assumptions be specified and fulfilled, failure

of which results in wrong or suboptimal conclusions.

The idea of the bootstrap revolves around generating a pseudosample from the existing

sample in such a way that the pseudosample shares the characteristics or features of the

original sample. That is necessary in order to lead to a consistent bootstrap estimator
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of some distributional characteristics of some functions of the data, for example of an

estimate θ̂ of a parameter θ. Given a sample X1, ..., Xn with joint distribution Fn, we

construct an estimate F ∗n which should be as close as possible to Fn and from it generate

a bootstrap sample X∗1 , ..., X
∗
n. Once we have the bootstrap sample, we compute a boot-

strap estimate θ̂∗ in the same way we compute the original estimator θ̂, only this time

we use the bootstrap sample. We resample from the original sample a large number of

times, each time computing the bootstrap estimator. From the resulting Monte Carlo

sample of realizations of θ̂∗, we may approximate distributional characteristics of θ̂∗ by

averaging. If the bootstrap is valid, they provide approximations of the corresponding

characteristics of the distribution of θ̂.

It should quickly be noted that not only the data generation process is at stake here

but also the statistic or parameter of interest. This means that if in order to estimate

the statistic of interest we need only the first two moments which completely define

the asymptotic distribution, then it is sufficient to generate a bootstrap pseudosample

that is similar to the underlying process up to the second moment. An example of this

is if we are interested in proving the Central Limit Theorem for means, in this case,

asymptotically we need the mean and covariance of the process to fully describe the

asymptotic normal distribution. This is advantageous since in the dependent data case

the relationships between the variables of the underlying process can be very complex and

therefore almost impossible or very expensive to mimic [33]. The disadvantage obviously

is that if the underlying process is not fully mimicked the results may not be as good as

in the case when it is fully mimicked, unless the estimator being estimated is robust to

this situation.

The bootstrap can be implemented in different ways. The unknown distribution func-

tion can be estimated using the parametric bootstrap or the empirical (nonparametric)

bootstrap depending on how much information we have about the underlying sample.

When the distribution of the underlying sample is known, the parametric bootstrap is

appropriate as it is best suited to give the most fitting results. Employing the nonpara-

metric bootstrap in the case of a known parametric model that generates the underlying

data can only work in the event that the asymptotics of the (parametric) model are
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not sensitive to a change in model which is rare. On the other hand, if the underlying

parametric model is not known, then the nonparametric bootstrap is highly advisable.

Paparoditis and Sapatinas [46] propose a novel bootstrap-based functional testing proce-

dure which is applicable for different testing problems, different test statistics and more

than two populations. The main idea behind their method is that the pseudo sampling

is done in such a way as to satisfy the null hypothesis of interest. They applied their

method to test statistics proposed in literature for comparison of means and covariance

functions. It is evident from their simulations that the bootstrap is robust as compared

to asymptotic approximations to departures from Gaussianity. Also since no theoretical

approximations are required for the bootstrap, Berkes et. al. [4] employ it to assess the

empirical size and power of their test for changes in means of functional observations.

This is especially advantageous since in practical settings the distribution of the random

variables is normally unknown.

Depending on the nature of the underlying data, several bootstrap procedures exist. We

have bootstrap procedures for i.i.d data and those for data with dependence. In all

cases it is highly important to mimic the stochastic properties of the underlying data

set. Since we are dealing with time series data, we focus mainly on those methods that

maintain the dependence structure. These include the nonparametric naive or residual-

based bootstrap (algorithm below), the block bootstrap which has several variations,

see for instance Lahiri, [36], who gives the description of several bootstrap resampling

methods including the different forms of the block bootstrap for scalar observations,

Künsch, [35], who extended the bootstrap method of estimating standard errors to the

case of stationary observations in the scalar case, the autoregressive (AR)-sieve bootstrap,

the Markovian bootstrap, the wild bootstrap among others. These majorly are found in

the time domain but it should be noted that bootstrap methods for the frequency domain

such as the local and hybrid bootstrap procedures exist. We focus on bootstrap methods

in the time domain.

Considering the functional case, Politis and Romano, [47] were the first to develop weak

convergence results for approximate sums of weakly dependent variables in the Hilbert

space and in a triangular array setting. They applied their results to estimators obtained
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under the stationary bootstrap resampling method and in particular prove a bootstrap

central limit theorem for the stationary bootstrap. We discuss their approach a bit

more in detail in section 2. Dehling et. al., [15], develop weak convergence results for

Hilbert space valued random variables. The random variables are assumed to be weakly

dependent in the sense of near epoch dependence. They also show that the nonoverlapping

block bootstrap is consistent. In terms of application of the bootstrap in the functional

case, we have for instance De Castro et. al. [12] who employ the bootstrap for predicting

Sulfur Dioxide levels, Aston and Kirch [2] in checking for stationarity in resting state

fMRI data, Besse et. al. among others.

Since its introduction by Efron [17], the bootstrap methodology has been documented

extensively. [54], [56], [40] give introductory notions on the bootstrap methodology and

some applications. Several papers have also been devoted to the topic with some giving

reviews of the topic for instance the introductory paper by [17], reviews by [9] and [33],

[34] among others.

As summarised in Cuevas et. al., [13], the goal is to show that the distribution of

an(T (Fn) − T (F )) is close to that of its corresponding bootstrap version an(T (F ∗n) −

T (Fn)), where an is an increasing sequence tending to infinity, F is the unknown pop-

ulation distribution function, Fn is the sample distribution function computed from the

sample, F ∗n is based on the bootstrap pseudosample and therefore the distribution of the

centered and scaled bootstrap estimator consistently estimates the corresponding distri-

bution of the true estimator. The increasing sequence an of nonnegative real numbers

is chosen so that the sequence of distributions converges to a nondegenerate limit. This

can be done by showing that a suitable distance between the sampling distributions of

both sequences tends almost surely to zero or that both sequences converge weakly to the

same limit distribution asymptotically. The bootstrap technique, as used in the latter

context provides an approximate distribution of the unknown underlying distribution.

This approximate distribution is required when checking the accuracy of the empirical

estimator as compared to the true parameter, through for instance, confidence intervals

and also for constructing tests of hypotheses.
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5.1.1 Nonparametric residual (Naive) bootstrap

As mentioned in the previous section, the bootstrap was originally developed for i.i.d

observations. However, Singh, [53] in his seminal paper showed that in the event that

the data had some dependence then the i.i.d. bootstrap would fail. He proved this

for the case where the parameter of interest was the sample mean and showed that

even though both the bootstrap and empirical distributions converge asymptotically to a

normal distibution, they do so with different asymptotic variances. This led to a need for

developing methods that could take into account the dependence structure in the data.

This method of resampling tries to retain the original bootstrap idea of resampling from

i.i.d. random variables. Since the data has some dependence, in this method resampling

is done of the residuals obtained from an optimal predictor of the observations. For

a given sample (X0, X1, ..., XN), the standard residual bootstrap algorithm is given by

Algorithm 1 where resampling is done for the centered residuals. We quickly note that

lack of centering of residuals may introduce a bias which is random, in which case the

bootstrap would fail. An example of the same problem for the regression scenario can be

found for instance in Freedman, [19].

For the algorithm, we need an estimate Ψ̂ of the operator Ψ, which, of course has to satisfy

some assumptions for the bootstrap to work. Here, as usual, pr∗ denotes the conditional

probability given the original data X0, X1, ..., XN . The naive bootstrap works quite well

if the model assumptions hold true for the data. If the model is only an approximation,

or if no good model is known in advance at all, model-free resampling is advisable as

discussed in the following section.

Algorithm 1 Naive Bootstrap Algorithm

1. ε̂n+1 = Xn+1 − Ψ̂(Xn), n = 0, ...., N − 1, ε̃n = ε̂n − 1
N

∑N
s=1 ε̂s.

2. Draw randomly from {ε̃1, ..., ε̃N} new bootstrap residuals ε∗1, ..., ε
∗
N with probability

pr∗ (ε∗n = ε̃k) = 1
N

,k = 1, ..., N .

3. Generate bootstrap data X∗n+1 = Ψ̂ (X∗n) + ε∗n+1, X∗0 = X0.

4. Calculate Ψ̂∗ from X∗0 , ..., X
∗
N in the same manner as Ψ̂ from X0, ..., XN .
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5.1.2 Block bootstrap

When Efron [17] introduced the bootstrap it was mainly focused on independent and

identically distributed observations. The bootstrap provides under relatively few con-

ditions approximations to distributions of statistics and confidence intervals which for

sample sizes available in practice are more accurate than those from first-order asymp-

totic theory, see [24]. In this case resampling is done randomly with replacement from

the empirical distribution or from a parametric model which includes the distribution of

the data.

In practice however, many data have some form of dependence which should be taken

into consideration when doing any form of estimation. The dependence structure of

the observations cannot be ignored without adverse effects in most cases. In order to

overcome this challenge, block bootstrap methods were introduced and they consider the

dependence structure between the observations when resampling, see for instance Künsch,

[35], Carlstein, [11] who were among the first to introduce block bootstrap methods

and the monograph by Lahiri, [36] who gives an insightful description of the different

bootstrapping methods, their advantages and disadvantages when applied to different

situations. Several other monographs exist together with review papers some of which

were already mentioned in the previous section. In the functional data situation, Politis

and Romano, [47] prove the asymptotic validity of the stationary resampling algorithm

while Dehling et. al. show the consistency of the non overlapping block bootstrap.

There are several types of block bootstrap methods which can mainly be differentiated on

whether the blocks are overlapping or not and also on whether the block length is fixed

or increasing. The overall idea however involves partitioning the sample into blocks and

then resampling independently from these blocks. The idea is that after a certain lag, the

observations are almost independent and therefore the observations in a block retain the

dependency while the different blocks are almost independent of each other. A slightly

different but almost similar idea is the block of blocks bootstrap. Here, the sample is

split into blocks first, which may overlap, and then subblocks of those blocks are drawn

randomly. From [24] we have that the finite sample performance of the block of blocks
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bootstrap is better (more accurate) as compared to that of the normal block bootstrap

in certain situations. Once the blocks have been resampled they are ordered from end to

end to form a new sample which should retain some if not all of the characteristics of the

underlying distribution.

It should also be noted from [24] that although there exist several methods to tackle

the problem of dependence of observations, the relative accuracy of the block bootstrap

as well as first-order approximations is poorer as compared to i.i.d data. Estimation

errors are also larger for the block bootstrap since partitioning the sample into blocks

before resampling the blocks independently distorts the dependence structure of the data.

Another reason is that partitioning into blocks has the effect of reducing the effective

sample size and therefore increasing sample variation, see [24]. As noted in [24], choice

of block length affects the accuracy of the bootstrap, therefore care should be taken in

order to ensure accurate results.

The algorithm for the non overlapping block bootstrap is given below. It should be noted

Algorithm 2 Block Bootstrap Algorithm

1. Given the sample X1, · · · , Xn, using a suitable rule choose the fixed block length(l)
and partition the sample into B blocks each of the given length l.

2. Draw randomly with replacement from the resulting blocks and order the drawn
blocks from end to end to form a new bootstrap sample X∗1 , · · · , X∗n.

3. Compute the statistic of interest in the same way as in the true case.

that although overlapping block bootstrap is preferred in practice, the numerical results

from overlapping and nonoverlapping block bootstrap are very close, provided the over-

lap is short compared to the block length, and theoretical arguments are simpler with

the nonoverlapping block bootstrap [33]. Since we assume that our data has the depen-

dence structure of a functional autoregressive model, we carry out further theoretical

investigation and simulation considering the naive bootstrap.
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5.2 Triangular arrays of Hilbert-space valued ran-

dom variables

Here we summarise results from the technical report by Politis and Romano [47] which

we use in the next chapter for studying the asymptotics of the error of estimating Ψ. The

authors develop convergence results for approximate sums of weakly dependent station-

ary Hilbert space valued random variables in a triangular array setting. They consider

random variables in a separable Hilbert space with inner product 〈., .〉 and norm ‖.‖. We

consider Theorems 2.1 and 4.2 of this technical report which are given below.

Theorem 5.2.1. Let Xn,1, ..., Xn,n be H-valued, stationary, mean zero random variables
such that E (‖Xn,i‖2) <∞. Assume, for any integer k ≥ 1, (Xn,1, ..., Xn,k), regarded as a
random element of Hk, converges in distribution to say (X1, ..., Xk). Moreover, assume,
E [〈Xn,1, Xn,k〉]→ E [〈X1, Xk〉] as n→∞ and

lim
n→∞

n∑
k=1

E (〈Xn,1, Xn,k〉)→
∞∑
k=1

E (〈X1, Xk〉) <∞. (5.1)

Let Zn = n−1/2
∑n

i=1 Xn,i. Then, Zn is weakly compact.

Theorem 4.2 of the same technical report shows that this kind of asymptotics may be

used to show that the bootstrap works for independent data.

Theorem 5.2.2. Suppose X1, X2, ... are independent and identically distributed H˙valued
random variables with common distribution µ such that E‖X1‖2< ∞. Conditional on
X1, ..., Xn, let X∗1 , ..., X

∗
n be independent and identically distributed according to µ̂n, where

µ̂n is the empirical measure: µ̂n(E) = n−1
∑n

i=1 1 (Xi ∈ E). Let

X̄n =
1

n

n∑
i=1

Xi/n and X̄∗n =
1

n

n∑
i=1

X∗i (5.2)

Then, along almost all sample sequences X1, X2, ..., given (X1, ..., Xn), the conditional
distribution of n1/2

(
X̄∗n − X̄n

)
converges weakly to the normal distribution on H having

mean 0 and covariance operator S, where S is the covariance operator of X −m when
X has distribution µ.

Unfortunately, the technique applied for proving this result may not be extended to de-

pendent data. We may show that the quantities of interest converge in distribution in

the real and in the bootstrap world, but it is not possible to prove that the asymptotic

68



distributions coincide. The main problem is that mixing properties of {Xt} which guar-

antee asymptotic normality in real world do not necessarily hold for {X∗t }.

5.3 A first look at the bootstrap theory

Our aim, as already stated, is to prove that the distribution of the bootstrap estimation

error provides a consistent estimator of the estimation error for the real data. The key

to that result is that the distribution of the innovations εt is well approximated by the

distribution of the bootstrap innovations. In the next section 5.4 we prove such a result

for a special case. In this section, however, we discuss a toy example where we unrealisti-

cally assume that the eigenfunctions of Γ (and C) are known. This reduces the functional

setting essentially to a scalar one (for the individual eigenvalues) and circumvents a fun-

damental difficulty of bootstrapping FAR data. On the other hand, some of the basic

features of the FAR bootstrap problem can already be studied at that simple example.

We start with describing the special case to be considered in the next section 5.4 as it is

the basis for the toy example, too. We study a FAR(1) process with covariance and lag

1 autocovariance operators Γ and C respectively. Let λj, νj denote the eigenvalues and

eigenvectors of the symmetric, positive definite operator Γ. We assume that C is also

symmetric, compact with the singular value decomposition

S: C(x) =
∞∑
j=1

γj 〈x, νj〉 νj (5.3)

i.e. it has the same eigenbasis as Γ!

In general, Γ, C may be estimated by the sample versions

Γ̂n(x) =
1

n

n−1∑
t=0

〈
Xt − X̄n, x

〉 (
Xt − X̄n

)
and

Ĉn(x) =
1

n

n∑
t=1

〈
Xt−1 − X̄n, x

〉 (
Xt − X̄n

)
(5.4)
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where X̄n =
1

n

∑n−1
t=0 Xt. We assume X0, · · · , Xn to be given, but we use Xn only in Ĉn(x)

to simplify notation.

Assuming EXt = 0, we have Γ = EXt ⊗Xt, C = EXt ⊗Xt+1,

λj = λj||νj||2=< λjνj, νj >=< Γ(νj), νj >

= < EXt ⊗Xt(νj), νj >= E〈 < Xt, νj > Xt, νj〉 = E < Xt, νj >
2

and analogously

γj = E(< Xt, νj >< Xt+1, νj >).

Under suitable assumptions,
√
n
(
Ĉn − C

)
and
√
n
(

Γ̂n − Γ
)

are asymptotically Gaus-

sian, see Theorem 3 of Mas and Pumo, [42]. Let λ̂j, γ̂j denote the eigenvalues of Γ̂n

respectively Ĉn. From the asymptotic normality of Γ̂n, Ĉn, we get a corresponding

asymptotic normality of the eigenvalue estimates from Theorem 2.2 of Mas and Men-

neteau, [43], provided that the multiplicity of the eigenvalues is 1. By their Remark 2.1,

the same rate of convergence also holds for eigenvalues with larger multiplicity.

5.3.1 A toy example

For a simpler presentation of the arguments, we make an additional restrictive assumption

like, e.g., in section 2 of Guillas, [22]:

T.1: The common eigenvectors νj of Γ respectively C are known.

Moreover, just to simplify notation, we also assume

T.2: EXt = 0 is known.

Then, we can estimate λj, γj by

λ̂j =
1

n

n∑
t=1

< Xt−1, νj >
2, γ̂j =

1

n

n∑
t=1

< Xt−1, νj >< Xt, νj >,

and, similar as in [22], we set in this subsection

Ĉn =
kn∑
j=1

γ̂jνj ⊗ νj, Γ̂n =
kn∑
j=1

λ̂jνj ⊗ νj.
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We denote as usual by Γ̂†n the inverse of Γ̂n on the linear hull Vkn of ν1, . . . , νkn , i.e.

Γ̂†n =
kn∑
j=1

1

λ̂j
νj ⊗ νj,

and, finally, we estimate Ψ by

Ψ̂n = ĈnΓ̂†n.

Let Πkn denote the projection onto Vkn , and

Γn =
kn∑
j=1

λjνj ⊗ νj, Γ†n =
kn∑
j=1

1

λj
νj ⊗ νj.

Lemma 7. Πkn = Γ̂nΓ̂†n = Γ̂†nΓ̂n, Ψ̂nΠkn = Ψ̂n

Proof.

Γ̂nΓ̂†n(x) =
kn∑
j=1

λ̂j < Γ̂†n(x), νj > νj =
kn∑
j=1

λ̂j < x, Γ̂†n(νj) > νj =
kn∑
j=1

λ̂j

λ̂j
< x, νj > νj = Πkn(x),

using the selfadjointness of Γ̂†n. Πkn = Γ̂†nΓ̂n follows analogously. Finally,

Ψ̂n = ĈnΓ̂†n(x) = Ĉn

(
kn∑
j=1

< x, νj >
1

λ̂j
νj

)
=

kn∑
j=1

γ̂j

λ̂j
< x, νj > νj

Ψ̂nΠkn = Ψ̂n

(
kn∑
j=1

< x, νj > νj

)
=

kn∑
j=1

< x, νj > Ψ̂n(νj) =
kn∑
j=1

< x, νj >
γ̂j

λ̂j
νj.

We consider the coefficients of the projections of the innovations εt and of their sample

analogues ε̂t = Xt − Ψ̂n(Xt−1) onto νm for some fixed m,

ηt = 〈εt, νm〉 , η̂t = 〈ε̂t, νm〉

Then,

Zt = 〈Xt, νm〉 = 〈Ψ (Xt−1) + εt, νm〉 = 〈Ψ (Xt−1) , νm〉+ ηt

Ẑt =
〈

Ψ̂n (Xt−1) + ε̂t, νm

〉
=
〈

Ψ̂n (Xt−1) , νm

〉
+ η̂t
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As C = ΨΓ, we have

γmνm = C (νm) = Ψ (Γ (νm)) = λmΨ (νm) (5.5)

Therefore, as λj > 0 for all j, setting αm = γm/λm,

〈Ψ (Xt−1) , νm〉 =

〈
Ψ

(
∞∑
j=1

〈Xt−1, νj〉 νj

)
, νm

〉

=
∞∑
j=1

〈Xt−1, νj〉 〈Ψ (νj) , νm〉

= αm 〈Xt−1, νm〉 (5.6)

Analogously, assuming kn ≥ m,

Ψ̂n (νm) = Ĉn

(
Γ̂†n (νm)

)
= Ĉn

(
1

λ̂m
νm

)
=

1

λ̂m
γ̂mνm = α̂mνm (5.7)

and 〈
Ψ̂n (Xt−1) , νm

〉
= α̂m 〈Xt−1, νm〉

Hence, we have

ηt = Zt − αmZt−1, η̂t = Zt − α̂mZt−1

where ηt are i.i.d. zero mean real random variables, and Zt corresponds to a stationary

AR(1) process as we have |αm| < 1, as otherwise, ‖Ψ (νm)‖ ≥ 1 in contradiction to our

general assumption ‖Ψ‖L < 1.

Let η̃t = η̂t −
1

n

∑n
k=1 η̂k be the centered sample residuals. Then we can apply the same

arguments as in Theorem 3.1 of Kreiss and Franke [20] to get that the distribution F of

ηt and the empirical distribution F̂n of η̂1, · · · , η̂n converge to each other in the Mallows

metric d2 (compare, e.g., Bickel and Freedman [6]).

Proposition 5.3.1. Let X0, · · · , Xn be a sample from a stationary FAR (1)-process sat-
isfying T.1 and T.2 and

i) E ‖εt‖4 <∞, Eεt = 0, εt i.i.d.

ii) ‖Ψ‖L < 1
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iii) C has the singular value decomposition S with the eigenfunctions νj of Γ.

Then, d2

(
F̂n, F

)
p→ 0 for n→∞.

Proof. First, we note that from i), ii) and Theorem 3 of Mas and Pumo, [42], the asymp-

totic normality of
√
n
(

Γ̂n − Γ
)

and
√
n
(
Ĉn − C

)
follows, as exhibited in Example 16.1

of Horváth and Kokoszka, [28], the FAR(1)-process satisfies the assumptions of said the-
orem. From Mas and Menneteau, [43], Theorem 2.2, we then get

√
n (γ̃m − γm) and

√
n
(
λ̃m − λm

)
are asymptotically normal, where here λ̃m, γ̃m denote the eigenvalues of

the usual nontruncated sample covariance and autocovariance operators Γ̂n, Ĉn. They
coincide with λ̂m, γ̂m from above as

λ̃m =< Γ̂n(νm), νm >=<
1

n

n∑
t=1

Xt−1 ⊗Xt−1(νm), νm >=
1

n

n∑
t=1

< Xt−1, νm >2= λ̂m

and analogously for γ̃m = γ̂m.

By Slutsky’s Lemma we also have,

√
n (α̂− α) =

√
n (γ̂m − γm)

λ̂m
−
γm
√
n
(
λ̂m − λm

)
λ̂mλm

is asymptotically normal too, and in particular

√
n (α̂n − α) = Op(1) (5.8)

Let Fn denote the empirical distribution function of η1, · · · , ηn. From Bickel and Freed-
man, [6], Lemma 8.4, we have

d2 (Fn, F )
a.s.→ 0 (5.9)

Next, let J be Laplace distributed on 1, · · · , n, i.e. pr (J = t) =
1

n
, 1 ≤ t ≤ n. We define

random variables

U0 = ηJ , V0 = η̂J −
1

n

n∑
k=1

η̂j

with distribution Fn respectively F̂n. By definition of the Mallows metric

d2
2

(
Fn, F̂n

)
= inf

U,V
E (U − V )2 ≤ E (U0 − V0)2 (5.10)

=
1

n

n∑
j=1

(
η̂j − ηj −

1

n

n∑
k=1

η̂k

)2

(5.11)

≤ 6

n

n∑
j=1

(η̂j − ηj)2 +
3

n2

(
n∑
k=1

ηk

)2

(5.12)
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As ηt = 〈εt, νm〉 are i.i.d. with finite variance and Eηt = 0, the second term on the

right hand side is of order
1

n
by the central limit theorem. Therefore, plugging in ηj =

Zj − αZj−1 and η̂j = Zj − α̂nZj−1, we have

d2
2

(
Fn, F̂n

)
≤ 6

n

n∑
j=1

(α̂n − α)2 Z2
j−1 +Op

(
1

n

)
= Op

(
1

n

)

as, by our assumption above, n (α̂n − α)2 = Op (1) and Q =
1

n

∑n
j=1 Z

2
j−1 = Op (1) too,

from EQ = EZ2
1 <∞ and Markov’s inequality.

5.3.2 Bootstrapping the eigenvalue estimates

We are mainly interested in the bootstrap for the estimation error of the autoregressive

operator Ψ, again projected to a one-dimensional subspace. First, let us remark, that we

do not consider Ψ̂n−Ψ but, analogously to Mas [44], we compare Ψ̂n to ΨΠkn where Πkn

is the orthogonal projection onto the linear hull of ν1, · · · , νkn . Note that Πkn replaces

Π̂kn from Mas [44], as in this subsection, we assume the eigenvectors νj to be known. As

a first step towards the bootstrap for Ψ̂n −ΨΠkn we first show that the bootstrap works

for an auxiliary operator Sn which dominates the asymptotics of Ψ̂n − ΨΠkn and, then,

that the bootstrap works for the error of eigenvalue estimates λ̂j − λj. We start with the

introduction of Sn.

Lemma 8. Ψ̂n −ΨΠkn =
1

n
SnΓ̂†n with

Sn =
n∑
t=1

kn∑
j=1

〈Xt−1, νj〉 〈εt, νj〉 (νj ⊗ νj) = n

(
Ĉn −ΨΓ̂n

)

Proof. Using Lemma 7, we have

Ψ̂n −ΨΠkn =
(
Ĉn −ΨΓ̂n

)
Γ̂†n

Note that

Ψ (νj ⊗ νj(x)) = Ψ (〈νj, x〉 νj) =
γj
λj
〈νj, x〉 νj
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as Ψ (νj) =
γj
λj
νj, i.e. we have Ψνj ⊗ νj =

γj
λj
νj ⊗ νj. Therefore,

Ĉn −ΨΓ̂n =
kn∑
j=1

(
γ̂j − λ̂jΨ

)
νj ⊗ νj

=
kn∑
j=1

(
γ̂j − γj

λ̂j
λj

)
νj ⊗ νj

Now, we plug in the definition of λ̂j, γ̂j and get

γ̂j − γj
λ̂j
λj

=
1

n

n∑
t=1

(
〈Xt−1, νj〉 〈Xt, νj〉 −

γj
λj
〈Xt−1, νj〉 〈Xt−1, νj〉

)
=

1

n

n∑
t=1

〈Xt−1, νj〉
〈
Xt −

γj
λj
Xt−1, νj

〉
=

1

n

n∑
t=1

〈Xt−1, νj〉 〈εt, νj〉

Hence, Ĉn −ΨΓ̂n =
1

n
Sn.

Corollary 5.3.1. With Zt = 〈Xt, νm〉 , ηt = 〈εt, νm〉, we have for m ≤ kn

a)
〈
Ĉn −ΨΓ̂n (y) , νm

〉
=

1

n

n∑
t=1

Zt−1ηt 〈y, νm〉

b)
〈

Ψ̂n −ΨΠkn (x) , νm

〉
=

1

n

n∑
t=1

Zt−1ηt
1

λ̂m
〈x, νm〉

Proof. a) Follows immediately from 〈νj ⊗ νj (y) , νm〉 = 〈νj, y〉 〈νj, νm〉 = δjm 〈y, νm〉
b) Follows from a) with y = Γ̂†n(x) and

〈
Γ̂†n (x) , νm

〉
=
〈
x, Γ̂†n (νm)

〉
=

1

λ̂m
〈x, νm〉.

Proposition 5.3.2. Under the assumptions of Proposition 5.3.1, we have for n→∞

n d2
2

(〈
Ĉn −ΨΓ̂n (W ) , νm

〉
,
〈
Ĉ∗n − Ψ̂nΓ̂∗n (W ) , νm

〉)
=

1

n
d2

2 (〈Sn(W ), νm〉 , 〈S∗n(W ), νm〉)→
p

0

where W is an arbitrary L2-valued random variable independent of {Xt}, {X∗t }.

Note that, due to the fact that the Mallows metric is a distance between distributions and

that the distribution of {X∗t } is conditional on X0, . . . , Xn, the independence assumption

on W has to be interpreted in the right manner: W is independent of the data in the

real world used to calculate Sn which may be X0, . . . , Xn or an independent realization

of it. Moreover, W has to be conditionally independent of S∗n given X0, . . . , Xn.
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Proof. We follow essentially the line of arguments of the proof of Theorem 4.1 of Franke
and Kreiss, [20]. Therefore, we consider a particular realisation of the two time series
{Xt} and {X∗t } with a specific kind of dependence. Let the pairs of innovations (ε′t, ε

∗
t )

be i.i.d. and that for η′t = 〈ε′t, νm〉 , η∗t = 〈ε∗t , νm〉 we have L (η′t) = F, L (η∗t ) = F̂n and

E (η′t − η∗t )
2 = d2

2

(
F, F̂n

)
→
p

0 for n→∞ by Proposition 5.3.1. Of course, we do all the

calculations conditional on X0, · · · , Xn such that F̂n is treated as given, but →
p

relates to

its randomness.

Let X ′0 be independent of (ε′t, ε
∗
t ), t ≥ 1, and L (X ′0) = L (X0), and set recursively with

X∗0 = X ′0

X ′t = Ψ
(
X ′t−1

)
+ ε′t, X

∗
t = Ψ

(
X∗t−1

)
+ ε∗t , t ≥ 1.

Writing again Z ′t = 〈X ′t, νm〉, we have as previously Z ′t = αmZ
′
t−1 + ηt and, with Z∗t =

〈X∗t , νm〉, we analogously have Z∗t = α̂mZ
∗
t−1 + η∗t as

〈
Ψ̂n

(
X∗t−1

)
, νm

〉
=

〈
ĈnΓ̂†n

(
∞∑
k=1

〈
X∗t−1, νk

〉
νk

)
, νm

〉

=
∞∑
k=1

〈
X∗t−1, νk

〉 γ̂k
λ̂k
〈νk, νm〉

= α̂m
〈
X∗t−1, νm

〉
= α̂mZ

∗
t−1

a) First, we show the following analogue relationship to (4.18) of Franke and Kreiss [20].
We have with probability converging to 1

E
{

(Z ′t − Z∗t )
2 | X0, · · · , Xn

}
≤ D

(
EZ2

0 + E∗ (η∗1)2) (αm − α̂m)2

+Dd2
2

(
F, F̂n

)
for some generic constant D. Using the autoregressive form of Z ′t, Z

∗
t respectively, we

get recursively

Z ′t = αmZ
′
t−1 + η′t = α2

mZ
′
t−2 + αmη

′
t−1 + η′t = · · ·

= αtmZ
′
0 +

t−1∑
k=0

αkmη
′
t−k

and, as X∗0 = X ′0,

Z∗t = α̂tmZ
′
0 +

t−1∑
k=0

α̂kmη
∗
t−k

Note that
∣∣αkm − α̂km∣∣ = |αm − α̂m|

∣∣∣∑k−1
j=0 α

j
mα̂

k−1−j
m

∣∣∣.
From Lemma 7 and the preceding remarks, we know that |αm| < 1. Moreover, from
the remarks in the first paragraph of the proof of Proposition 5.3.1, we have λ̂m =
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λm +Op
(

1√
n

)
and γ̂m = γm +Op

(
1√
n

)
, which implies α̂m →

p
αm. Therefore, we can

choose 1 > δ̂ > |αm| such that pr
(
|α̂m| ≤ δ̂

)
→ 1. If |α̂m| ≤ δ̂, we have∣∣∣∣∣

k−1∑
j=0

αjmα̂
k−1−j
m

∣∣∣∣∣ ≤ δ̂k−1

k−1∑
j=0

∣∣∣∣αmδ̂
∣∣∣∣j ≤ δ̂k−1

1−
∣∣∣∣αmδ̂

∣∣∣∣ =
δ̂k

δ̂ − |αm|

and with probability converging to 1:

∣∣αkm − α̂km∣∣ ≤ |αm − α̂m| δ̂k

δ̂ − |αm|

Hence, with probability converging to 1, writing short hand E for E {· | X0, · · · , Xn}

E (Z ′t − Z∗t )
2

= E

((
αtm − α̂tm

)
Z ′0 +

t−1∑
k=0

αkm
(
η′t−k − η∗t−k

)
+

t−1∑
k=0

(
αkm − α̂km

)
η∗t−k

)2

≤ 3E (Z ′0)
2 (
αtm − α̂tm

)2
+ 3

t−1∑
k=0

α2k
mE

(
η′t−k − η∗t−k

)2
+ 3

t−1∑
k=0

(
αkm − α̂km

)2 E
(
η∗t−k

)2

using that (η′k, η
∗
k) are i.i.d. with mean 0. Hence,

E (Z ′t − Z∗t )
2 ≤ 3

E (Z ′0)
2 δ̂2t(
δ̂ − |αm|

)2 + E∗ (η∗t )
2
t−1∑
k=0

δ̂2k(
δ̂ − |αm|

)2

 (αm − α̂m)2

+3
1

1− α2
m

d2
2

(
F, F̂n

)
≤ 3(

δ̂ − |αm|
)2

(
δ̂2tE (Z ′0)

2
+ E∗ (η∗t )

2
)

(αm − α̂m)2 +
3

1− α2
m

d2
2

(
F, F̂n

)

b) From Corollary 5.3.1 a), we have

nd2
2

(〈
Ĉn −ΨΓ̂n (W ) , νm

〉
,
〈
Ĉ∗n − Ψ̂nΓ̂∗n (W ) , νm

〉)
≤ 1

n
E 〈W, νm〉2 E

(
n∑
t=1

Z ′t−1η
′
t −

n∑
t=1

Z∗t−1η
∗
t

)2

≤ 2

n
E 〈W, νm〉2

E

(
n∑
t=1

(
Z ′t−1 − Z∗t−1

)
η′t

)2

+ E

(
n∑
t=1

Z∗t−1 (η′t − η∗t )

)2


=
2

n
E 〈W, νm〉2

{
n∑
t=1

E
(
Z ′t−1 − Z∗t−1

)2 Eη2
1 +

n∑
t=1

E∗
(
Z∗t−1

)2 E (η′t − η∗t )
2

}
≤ DE 〈W, νm〉2

{
(α̂m − αm)2 + d2

2

(
F, F̂n

)}
→
p

0
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where all the calculations are conditional w.r.t. X0, · · · , Xn, and D is some generic

constant. We use, e.g., E∗ (η∗t )
2 =

1

n

∑n
t=1 η̂

2
t ≤ 2Eη2

1 and

E∗ (Z∗t )2 = E (Z∗t − Z ′t + Z ′t)
2 ≤ 2E (Z∗t − Z ′t)

2
+ 2EZ ′21 ≤ 6EZ2

1

with probability converging to 1.

We mainly are interested in the autoregressive operator and its approximation by the

bootstrap, in particular, for predictions, in
〈

Ψ̂n −ΨΠkn (W ) , νm

〉
for some random vari-

able W . By Corollary 5.3.1, this is a ratio of the quantity studied in Proposition 5.3.2

and λ̂m. Therefore, we next show that the bootstrap works for λ̂m.

Proposition 5.3.3. Under the assumptions of Proposition 5.3.1, we have for n→∞

nd2
2

(
λ̂m − λm, λ̂∗m − λ̂m

)
→
p

0

Proof. Recall that EZ2
t = λm (compare with the remarks preceding Lemma 7) such that

λ̂m − λm =
1

n

n∑
t=1

(
Z2
t − EZ2

t

)
a) First we show that λ̂m coincides with E∗λ̂∗m up to asymptotically negligible terms. We
have from the representation of Z∗t in the proof of Proposition 5.3.2

E∗ (Z∗t )2 = E∗
(
α̂tmZ

′
0 +

t−1∑
k=0

α̂kmη
∗
t−k

)2

= α̂2t
mEZ

′2
0 +

t−1∑
k=0

α̂2k
mE∗

(
η∗t−k

)2

as Z ′0, η
∗
1, · · · , η∗t are i.i.d. in the bootstrap world. Moreover,

E∗
(
η∗t−k

)2
= E∗ (η∗1)2 =

1

n

n∑
t=1

η̃2
t =

1

n

n∑
t=1

(
η̂t −

1

n

n∑
k=1

η̂k

)2

=
1

n

n∑
t=1

(
Zt − α̂mZt−1 −

1

n

n∑
k=1

(Zk − α̂mZk−1)

)2

=
1

n

n∑
t=1

(Zt − α̂mZt−1)2 −

(
1

n

n∑
k=1

(Zk − α̂mZk−1)

)2

where

1

n

n∑
t=1

(Zt − α̂mZt−1)2 =
1

n

n∑
t=1

Z2
t − 2α̂m

1

n

n∑
t=1

Zt−1Zt + α̂2
m

1

n

n∑
t=1

Z2
t−1

= λ̂m +
1

n

(
Z2
n − Z2

0

)
− 2α̂mγ̂m + α̂2

mλ̂m

= λ̂m
(
1− α̂2

m

)
+

1

n

(
Z2
n − Z2

0

)
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as α̂mγ̂m = α̂2
mλ̂m. As {Zt} is a stationary AR(1) process, we have (compare, e.g.,

Brockwell and Davis, [8], p.219),

1

n

n∑
t=1

(Zt − α̂mZt−1) = (1− α̂m)Op
(

1√
n

)
as EZt = 0 and the sample mean is asymptotically normal. More precisely, the asymptotic
rate also holds in the L2-sense, not only in probability, as

E∗λ̂∗m =
1

n

n−1∑
t=0

E∗
(
Z∗t−1

)2
=

E (Z ′0)2

n

1− α̂2n
m

1− α̂2
m

+
E∗ (η∗1)2

n

n−1∑
t=0

t−1∑
k=0

α̂2k
m

=
E (Z ′0)2

n

1− α̂2n
m

1− α̂2
m

+
E∗ (η∗1)2

n

n−1∑
t=0

1− α̂2t
m

1− α̂2
m

=

(
λ̂m +

1

n

Z2
n − Z2

0

1− α̂2
m

)
1

n

(
n− 1− α̂2n

m

1− α̂2
m

)
+

E (Z ′0)2

n

1− α̂2n
m

1− α̂2
m

As with probability converging to 1, |αm| ≤ δ̂ < 1 for δ̂ > |α̂m|, we get

E∗λ∗m = λ̂m +
1

n
Rn

with ER2
n uniformly bounded for all large enough n. Note that here and in the following,

expectations are conditional on X0, · · · , Xn.

b) We now choose Z ′0, (η′t, η
∗
t ) as in the proof of Proposition 5.3.2. Then, from a),

d2
2

(
λ̂m − λm, λ̂∗m − λ̂m

)
≤ E

{
1

n

n∑
t=1

[
(Z ′t)

2 − E (Z ′t)
2
]
− 1

n

n∑
t=1

[
(Z∗t )2 − E (Z∗t )2]+

1

n
Rn

}2

≤ 2E

{
1

n

n∑
t=1

[
(Z ′t)

2 − E (Z ′t)
2
]
− 1

n

n∑
t=1

[
(Z∗t )2 − E (Z∗t )2]}2

+
2

n2
ER2

n

The remainder term is of order
1

n2
such that it remains to show that

1

n2
E

(
n∑
t=1

[
(Z ′t)

2 − E (Z ′t)
2 −

{
(Z∗t )2 − E (Z∗t )2}])2

=
1

n2

n∑
s,t=1

E
[
(Z ′t)

2 − E (Z ′t)
2 − (Z∗t )2 + E (Z∗t )2

] [
(Z ′s)

2 − E (Z ′s)
2 − (Z∗s )2 + E (Z∗s )2

]
=

1

n2

n∑
s,t=1

EAtAs = op

(
1

n

)
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Again, we use the representation of Z ′t, Z
∗
t in terms of Z ′0, η

′
k, η
∗
k from the proof of Propo-

sition 5.3.2 such that

Z
′2
t − E (Z ′t)

2
=

(
αtmZ

′
0 +

t−1∑
k=1

αkmη
′
t−k

)2

− E

(
αtmZ

′
0 +

t−1∑
k=1

αkmη
′
t−k

)2

= α2t
m

[
(Z ′0)

2 − E (Z ′0)
2
]

+ 2αtmZ
′
0

t−1∑
k=1

αkmη
′
t−k

+
t−1∑
k,l=1

αk+l
m

[
η′t−kη

′
t−l − E

(
η′t−kη

′
t−l
)]

= α2t
m

[
(Z ′0)

2 − E (Z ′0)
2
]

+ 2αtmZ
′
0

t−1∑
k=1

αt−km η′k +
t−1∑
k 6=l=1

α2t−k−l
m η′kη

′
l

+
t−1∑
k=1

α2(t−k)
m

[
(η′k)

2 − E (η′k)
2
]

using that Z ′0, η
′
1, · · · η′k i.i.d. with mean 0. With the same decomposition for (Z∗t )2 −

E∗ (Z∗t )2, we have

At = at + 2bt + ct + dt

with, using Z∗0 = Z ′0

at =
(
α2t
m − α̂2t

m

) [
(Z ′0)

2 − E (Z ′0)
2
]

bt = αtmZ
′
0

t−1∑
k=1

αt−km η′k − α̂tmZ ′0
t−1∑
k=1

α̂t−km η∗k

ct =
t−1∑
k 6=l=1

α2t−k−l
m η′kη

′
l −

t−1∑
k 6=l=1

α̂2t−k−l
m η∗kη

∗
l

dt =
t−1∑
k=1

α2(t−k)
m

[
(η′k)

2 − E (η′k)
2
]
−

t−1∑
k=1

α̂2(t−k)
m

[
(η∗k)

2 − E∗ (η∗k)
2]

So, we have to show

n∑
s,t=1

E (at + 2bt + ct + dt) (as + 2bs + cs + ds) = op(n)

with probability converging to 1 (w.r.t. the randomness of X0, · · · , Xn). We only consider
some of the 16 products where the others can be dealt with in exactly the same manner.
We repeatedly use∣∣αkm − α̂km∣∣ ≤ c |αm − α̂m| δ̂k (5.13)
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with probability converging to 1 with some |αm| < δ̂ < 1 and c > 0, (compare with the
proof of Proposition 5.3.2).

n∑
s,t=1

Eatas =
n∑

s,t=1

(
α2t
m − α̂2t

m

) (
α2s
m − α̂2s

m

)
E
[
(Z ′0)

2 − E (Z ′0)
2
]2

≤ c (αm − α̂m)2
n∑

s,t=1

δ̂2(t+s)E
[
(Z ′0)

2 − E (Z ′0)
2
]2

≤ c (αm − α̂m)2

(
1− δ̂2n

1− δ̂2

)2

E
[
(Z ′0)

2 − E (Z ′0)
2
]2

= Op
(

1

n

)

using 5.8.

n∑
s,t=1

Ectcs =
n∑

s,t=1

t−1∑
k 6=l=1

s−1∑
i 6=j=1

EBk,l,i,j

with Bk,l,i,j =
(
α2t−k−l
m η′kη

′
l − α̂2t−k−l

m η∗kη
∗
l

) (
α2s−i−j
m η′iη

′
j − α̂2s−i−j

m η∗i η
∗
j

)
.

As (η′k, η
∗
k) , k = 1, · · · , n are i.i.d. with mean 0, and as k 6= l, i 6= j, EBk,l,i,j = 0 except

for k = i, l = j and k = j, l = i. In particular, k + l = i + j, and hence, Bklkl = Bkllk

and

EBklkl = EBkllk

= α2(t+s−k−l)
m

(
E (η′1)

2
)2

+ α̂2(t+s−k−l)
m

(
E∗ (η∗1)2)2

−α2t−k−l
m α̂2s−k−l

m E (η′1)
2 E∗ (η∗1)2 − α2s−k−l

m α̂2t−k−l
m E (η′1)

2 E∗ (η∗1)2

= α2t−k−l
m E (η′1)

2
{(
α2s−k−l
m − α̂2s−k−l

m

)
E (η′1)

2
+ α̂2s−k−l

m

(
E (η′1)

2 − E∗ (η∗1)2
)}

+α̂2t−k−l
m E∗ (η∗1)2

{(
α̂2s−k−l
m − α2s−k−l

m

)
E∗ (η∗1)2 + α2s−k−l

m

(
E∗ (η∗1)2 − E (η′1)

2
)}

Using 5.13, |αm| , |α̂m| ≤ δ̂, E∗ (η∗1)2 ≤ c for some constant c with probability converging
to 1, we get for some constant D

|EBklkl| ≤ Dδ̂2(t+s−k−l)
{
|αm − α̂m|+

∣∣∣E (η′1)
2 − E∗ (η∗1)2

∣∣∣}
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As k = i, l = j or k = j, l = i is only possible if k, l ≤ min(s, t)− 1, we get∣∣∣∣∣
n∑

s,t=1

Ectcs

∣∣∣∣∣ ≤ 2
∑

1≤s≤t≤n

s−1∑
k 6=l=1

(|EBklkl|+ |EBkllk|)

≤ 4D
∑

1≤s≤t≤n

s−1∑
k 6=l=1

δ̂2(t+s−k−l)
{
|αm − α̂m|+

∣∣∣E (η′1)
2 − E∗ (η∗1)2

∣∣∣}
= 4D

∑
1≤s≤t≤n

s−1∑
k 6=l=1

δ̂2(t−s+k+l)
{
|αm − α̂m|+

∣∣∣E (η′1)
2 − E∗ (η∗1)2

∣∣∣}
≤ 4D(

1− δ̂2
)2

n∑
t=1

t∑
s=1

δ̂2(t−s)
{
|αm − α̂m|+

∣∣∣E (η′1)
2 − E∗ (η∗1)2

∣∣∣}

=
4D(

1− δ̂2
)2

n∑
t=1

1− δ̂2t

1− δ̂2

{
|αm − α̂m|+

∣∣∣E (η′1)
2 − E∗ (η∗1)2

∣∣∣}
= op(n)

as |αm − α̂m| = Op
(

1√
n

)
and E∗ (η∗1)2 →

p
E (η′1)2 for n → ∞ by Proposition 5.3.1 and

Lemma 8.3 of Bickel and Freedman, [6].

n∑
s,t=1

Edtds =
n∑

s,t=1

t−1∑
k=1

s−1∑
j=1

EBkj

with, abbreviating Sk = (η′k)
2 − E (η′k)

2 , S∗k = (η∗k)
2 − E∗ (η∗k)

2

Bkj =
(
α2(t−k)
m Sk − α̂2(t−k)

m S∗k
) (
α2(s−j)
m Sj − α̂2(s−j)

m S∗j
)

Note that ESk = E∗S∗k = 0 such that from the independence of (S ′k, S
∗
k) , k = 1, · · · , n, EBkj =

0 for k 6= j. Moreover,

EBkk = α2(t+s−2k)
m ES2

k + α̂2(t+s−2k)
m E∗ (S∗k)

2

−α2(t−k)
m α̂2(s−k)

m E (SkS
∗
k)− α2(s−k)

m α̂2(t−k)
m E (SkS

∗
k)

= α2(t−k)
m

{(
α2(s−k)
m − α̂2(s−k)

m

)
ES2

k + α̂2(s−k)
m

(
ES2

k − E (SkS
∗
k)
)}

+α̂2(t−k)
m

{(
α̂2(s−k)
m − α2(s−k)

m

)
E∗ (S∗k)

2 + α2(s−k)
m

(
E∗ (S∗k)

2 − E (SkS
∗
k)
)}

As (Sk, S
∗
k) are i.i.d., we get again, as E∗ (S∗1)2 ≤ C for some constant C from part c) of

the proof below, and hence by Cauchy-Schwarz

|E∗S∗k (S∗k − Sk)| ≤ C
{
E∗ (Sk − S∗k)

2}1/2

for some constant C,

EBkk ≤ Dδ̂2(t+s−2k)
{
|αm − α̂m|+

[
E∗ (S1 − S∗1)2]1/2}

= δ̂2(t+s−2k)op(1)

82



as α̂m →
p
αm and from part c) below. Remarking again that k = j is only possible for

k ≤ min(t, s)− 1, we have∣∣∣∣∣
n∑

s,t=1

Edtds

∣∣∣∣∣ ≤ 2
∑

1≤s≤t≤n

s−1∑
k=1

|EBkk|

= 2
∑

1≤s≤t≤n

s−1∑
k=1

δ̂2(t+s−2k)op(1)

= 2
∑

1≤s≤t≤n

s−1∑
l=1

δ̂2(t−s+2l)op(1)

≤ 2

1− δ̂4

n∑
t=1

t∑
s=1

δ̂2(t−s)op(1)

= op(n)

c) It remains to show that

E (S1 − S∗1)2 →
p

0 (5.14)

First we note that this implies that E∗ (S∗1)2 ≤ C with probability converging to 1 for
all large enough C, as, writing ‖S∗1‖

2 = E∗ (S∗1)2 for the usual L2-norm of real random
variables,

|‖S1‖ − ‖S∗1‖| ≤ ‖S1 − S∗1‖

implying

‖S∗1‖ ≤ min {‖S1‖ , ‖S1 − S∗1‖}

which is asymptotically bounded if ‖S1 − S∗1‖ →
p

0 and ‖S1‖ < ∞. The latter follows

from our assumption E ‖ε1‖4 <∞, which implies
Eη4

1 = E 〈ε1, νm〉4 ≤ E ‖ε1‖4 ‖νm‖4 <∞. Now

E (S1 − S∗1)2 ≤ E
(

(η′1)
2 − (η∗1)2

)2

= E (η∗1 − η′1)
2

(η∗1 + η′1)
2

As E (η∗1 − η′1)2 = d2
2

(
F̂n, F

)
→
p

0 by Proposition 5.3.1, we have (η∗1 − η′1)2 →
p

0, and 5.14

follows from a dominated convergence argument if we can show that there is a random
variable U with(

(η′1)
2 − (η∗1)2

)2

≤ 2
[
(η′1)

4
+ (η∗1)4

]
≤ 2

[
(η′1)

4
+ U4

]
and, as E (η′1)4 = E (η1)4 < ∞, we have EU4 < ∞. Let J be a Laplace random variable

in {1, · · · , n}, i.e. pr (J = k) =
1

n
, 1 ≤ k ≤ n, and we set

U = |ηJ |+ |αm − α̂m| |ZJ−1|+

∣∣∣∣∣ 1n
n∑
j=1

Zj

∣∣∣∣∣+ |α̂m|

∣∣∣∣∣ 1n
n∑
j=1

Zj

∣∣∣∣∣
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Then, EU4 <∞ (recall that all expectations in this proof are conditional on X0, · · · , Xn),
as, by the law of large numbers,

E |ηJ |4 =
1

n

n∑
j=1

η4
j ≤ C

for any C > Eη4
1 with probability converging to 1, and

E |ZJ−1|4 =
1

n

n∑
j=1

Z4
j−1 ≤ C

for any C > EZ4
1 analogously.

5.3.3 Bootstrapping the estimate of the autoregressive operator

Finally, we can consider Ψ̂n − ΨΠkn which represents the additional forecasting error

caused by using Ψ̂n instead of Ψ. Note that, by Theorems 3.1 and 3.2 of Mas, [44],

we have to consider ΨΠkn instead of Ψ. Let us assume that we use Ψ̂n to forecast an

independent realisation {X◦t } of the FAR(1)-process {Xt}. More precisely, we predict

X◦n+2 by Ψ̂n

(
X◦n+1

)
like in Theorem 3.1 of Mas, [44]. The following result shows that the

bootstrap works for approximating the distribution of Ψ̂n−ΨΠkn

(
X◦n+1

)
projected onto

νm.

Proposition 5.3.4. Under the assumptions of Proposition 5.3.1, we have for n → ∞
that

√
n
〈

Ψ̂n −ΨΠkn

(
X◦n+1

)
, νm

〉
and
√
n
〈

Ψ̂∗n − Ψ̂nΠkn

(
X◦n+1

)
, νm

〉
converge in distribution to the same limit.

Proof. The result follows from Proposition 5.3.2 and 5.3.3 by the delta method for the
bootstrap (Theorem 23.5 of van der Vaart, [55]), as

√
n
〈

Ψ̂n −ΨΠkn

(
X◦n+1

)
, νm

〉
=

1√
n

n∑
t=1

Zt−1ηt
〈
X◦n+1, νm

〉 1

λ̂m

=
√
nφ
(〈
Ĉn −ΨΓ̂n

(
X◦n+1

)
, νm

〉
, λ̂m

)
by Corollary 5.3.1 where φ(u, v) is continuously differentiable for all u and for all v in a
neighbourhood of λm > 0.
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5.4 Approximation of the innovations by the boot-

strap innovations for a special case

We now drop the assumption that the eigenvectors νm are known, and we have to estimate

them by the eigenvectors ν̂m of Γ̂n. Under suitable assumptions (compare, e.g., Theorem

16.2 of Horváth and Kokoszka, [28]), we have

lim sup
n→∞

nE ‖ĉj ν̂j − νj‖2 <∞

i.e. by Markov’s inequality

‖ĉj ν̂j − νj‖2 = Op
(

1

n

)
.

Here, ĉj = sgn (ν̂j, νj) has to be added to the relationship due to the inherent nonidentifi-

ability of the eigenbasis (compare the discussion in Section 2.5 of Horváth and Kokoszka,

[28]).

Our arguments remain unchanged, except that now we no longer have Ψ̂n (νm) = α̂mνm.

The corresponding relationship with ν̂m instead of νm does not hold either, as the co-

incidence of eigenvectors of Γ and C does not imply that Γ̂n and Ĉn have the same

eigenvectors. Nevertheless, we get that the distribution of the centered sample residuals

ε̂t projected onto νm converges to the distribution of the corresponding quantity involving

the true residuals εt.

Theorem 5.4.1. Let X0, · · · , Xn be a sample from a stationary FAR(1) process satisfying

i) E ‖εt‖4 <∞, Eεt = 0, εt i.i.d.

ii) ‖Ψ‖L < 1

iii) C has the singular value decomposition S with the eigenfunctions νj of Γ.

iv) The eigenvalues λ1 > λ2 > · · · of Γ have multiplicity 1 and satisfy λj − λj+1 ≥ baj

for some 0 < a < 1, b > 0 and all j ≥ 1.

v) supj≤kn
σj
√

2 log log n√
n

→ 0 for n→∞, where σ2
j = E

〈[
(I −R)−1 ∆

]
(νj) , νj

〉2
with

I the identity in the space of Hilbert-Schmidt operators on L2, R a linear operator
on that space given by R (S) = ΨSΨ∗ and ∆ the Hilbert-Schmidt operator given by
∆ (x) = 〈Ψ (X0) , x〉 ε1 +〈ε1, x〉Ψ (X0)+〈ε1, x〉 ε1−Cε (x), Cε denoting the covariance
operator of the innovations εt
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Then, d2

(
F̂n, F

)
→ 0 for n→∞ if kn →∞ such that

lim
n→∞

kn
log n

<
1

4 log
1

a

.

Assumption iv) is a regularity condition which could be enforced by regularizing the

eigenvalue estimators like in Guillas [22]. Assumption v) states that the law of the

iterated logarithm which holds for λ̂j by Theorem 4 of Menneteau [45], holds uniformly

in j ≤ kn. Note that in the definition of R we could use Ψ∗ = Ψ which follows from iii),

but we prefer to stick to the notation of Menneteau.

Proof. The proof coincides with that of proposition 5.3.1 until we start to evaluate
(η̂j − ηj)2. Now, we have for t ≥ 1

(ηt − η̂t)2 =
(〈

Ψ̂n (Xt−1) , νm

〉
− 〈Ψ (Xt−1) , νm〉

)2

(5.15)

=
(〈(

Ĉn − C
)

Γ̂†n (Xt−1) , νm

〉
+
〈
C
(

Γ̂†n − Γ−1
)

(Xt−1) , νm

〉)2

≤ 2
∥∥∥(Ĉn − C) Γ̂†n (Xt−1)

∥∥∥2

+ 2
〈
C
(

Γ̂†n − Γ−1
)

(Xt−1) , νm

〉2

using the Cauchy-Schwarz inequality and ‖νm‖ = 1 for the first term.
a) We first consider the first term on the right hand side of (5.15). From the definition
of the operator norm ‖·‖L we immediately have the well known inequality∥∥∥(Ĉn − C) Γ̂†n (Xt−1)

∥∥∥2

≤
∥∥∥Ĉn − C∥∥∥2

L

∥∥∥Γ̂†n (Xt−1)
∥∥∥2

From Theorem 16.1 of Horváth and Kokoszka, [28] we have, as the Hilbert-Schmidt norm
always dominates the operator norm, i.e. ‖·‖S≥ ‖·‖L, that

nE
∥∥∥Ĉn − C∥∥∥2

L
= O (1)

and hence, by Markov’s inequality,
∥∥∥Ĉn − C∥∥∥2

L
= Op

(
1

n

)
. Note that, under our assump-

tions i), ii), the FAR(1)-process is L4-m-approximable (see Example 16.1 of Horváth and
Kokoszka, [28]).

Now, as ν̂1, ν̂2, · · · are orthonormal,

∥∥∥Γ̂†n (Xt−1)
∥∥∥2

=

∥∥∥∥∥
kn∑
j=1

1

λ̂j
〈Xt−1, ν̂j〉 ν̂j

∥∥∥∥∥
2

(5.16)

=
kn∑
j=1

1

λ̂2
j

〈Xt−1, ν̂j〉2 (5.17)

≤
kn∑
j=1

1

λ̂2
j

‖Xt−1‖2 (5.18)
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Moreover, by stationarity,

E

(
1

n

n∑
t=1

‖Xt−1‖2

)
= E ‖X0‖2 <∞

i.e.
1

n

∑n
t=1 ‖Xt−1‖2 = Op (1) by Markov’s inequality. Therefore, we finally have

1

n

n∑
t=1

∥∥∥(Ĉn − C) Γ̂†n (Xt−1)
∥∥∥ ≤ ∥∥∥(Ĉn − C)∥∥∥2

L

kn∑
j=1

1

λ̂2
j

Op (1)

= Op
(

1

n

) kn∑
j=1

1

λ̂2
j

b) Now, we consider the second term on the right hand side of 5.15. From (5.6), we
have 〈Ψ (Xt−1) , νm〉 = 〈CΓ−1 (Xt−1) , νm〉 = αm 〈Xt−1, νm〉. Moreover, from 5.3, C is
selfadjoint and

〈
CΓ†n (Xt−1) , νm

〉
=

〈
kn∑
j=1

1

λ̂j
〈Xt−1, ν̂j〉 ν̂j, C (νm)

〉

= γm

kn∑
j=1

1

λ̂j
〈Xt−1, ν̂j〉 〈ν̂j, νm〉

From assumptions i), ii) and iv) the assumptions of Theorem 16.2 of Horváth and
Kokoszka, [28] are satisfied, and we have in particular from the inequalities preceding
said Theorem in [28],

nE ‖ĉj ν̂j − νj‖2 ≤ D

a2j
, nE

∣∣∣λ̂j − λj∣∣∣2 ≤ D

where D stands for some generic constant independent of j, n. As |ĉj| = 1, we have,

using αm =
γm
λm

〈
CΓ†n (Xt−1)− CΓ−1 (Xt−1) , νm

〉
= γm

kn∑
j=1, j 6=m

1

λ̂j
〈Xt−1, ĉj ν̂j〉 〈ĉj ν̂j, νm〉

+γm

(
1

λ̂m
〈Xt−1, ĉmν̂m〉 〈ĉmν̂m, νm〉 −

1

λm
〈Xt−1, νm〉

)
For j 6= m, we have, by Cauchy-Schwarz,

E 〈ĉj ν̂j, νm〉2 = E 〈ĉj ν̂j − νj, νm〉2 ≤ E ‖ĉj ν̂j − νj‖2 ≤ D

na2j

Analogously, for j = m,

E (〈ĉmν̂m, νm〉 − 1)2 ≤ D

na2m
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Therefore, we have again by Markov’s inequality

〈ĉj ν̂j, νm〉 = 〈νj, νm〉+Op
(

1

aj
√
n

)
uniformly in j. Therefore, we get for the average of the second term of 5.15.

1

n

n∑
t=1

〈
C
(

Γ̂†n − Γ−1
)

(Xt−1) νm

〉2

=
1

n

n∑
t=1

{
γm

kn∑
j=1

1

λ̂j
〈Xt−1, ĉj ν̂j〉

1

aj
Op
(

1√
n

)

+γm

(
1

λ̂m
〈Xt−1, ĉmν̂m〉 −

1

λm
〈Xt−1, νm〉

)}2

≤ 2γ2
m

n

n∑
t=1

(
kn∑
j=1

1

ajλ̂j
〈Xt−1, ĉj ν̂j〉

)2

Op
(

1

n

)

+
2γ2

m

n

n∑
t=1

{(
1

λ̂m
− 1

λm

)
〈Xt−1, ĉmν̂m〉

+
1

λm
〈Xt−1, ĉmν̂m − νm〉

}2

≤ 2γ2
mkn
n

n∑
t=1

kn∑
j=1

1

a2jλ̂2
j

〈Xt−1, ĉj ν̂j〉2Op
(

1

n

)

+4γ2
m

(
1

λ̂m
− 1

λm

)2
1

n

n∑
t=1

〈Xt−1, ĉmν̂m〉2

+
4γ2

m

λ2
m

1

n

n∑
t=1

〈Xt−1, ĉmν̂m − νm〉2

where we use Jensen’s inequality for the last inequality.

Now, again by Cauchy-Schwarz and stationarity of Xt

1

n

n∑
t=1

〈Xt−1, ĉmν̂m − νm〉2 ≤
1

n

n∑
t=1

‖Xt−1‖2 ‖ĉmν̂m − νm‖2

≤ 1

n

n∑
t=1

‖Xt−1‖2Op
(

1

na2m

)
= Op

(
1

na2m

)

as
1

n

∑n
t=1 ‖Xt−1‖2 = Op (1) as discussed above. As ‖ĉmν̂m‖ = 1,

1

n

n∑
t=1

〈Xt−1, ĉmν̂m〉2 ≤
1

n

n∑
t=1

‖Xt−1‖2 = Op (1)

and

1

n

n∑
t=1

kn∑
j=1

1

a2jλ̂2
j

〈Xt−1, ĉj ν̂j〉2 ≤
kn∑
j=1

1

a2jλ̂2
j

1

n

n∑
t=1

‖Xt−1‖2 =
kn∑
j=1

1

a2jλ̂2
j

Op (1)
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such that

1

n

n∑
t=1

〈
C
(

Γ̂†n − Γ−1
)

(Xt−1) , νm

〉2

= kn

kn∑
j=1

1

a2jλ̂2
j

Op
(

1

n

)

+4γ2
m

(
1

λ̂m
− 1

λm

)2

Op (1) +Op
(

1

na2m

)

c) As the next step, we have to investigate

1

λ̂j
− 1

λj
=
λj − λ̂j
λ̂jλj

From assumption iv) we in particular have λj ≥ aj. As all eigenvalues have multiplicity
1, we have from Theorem 4 of Mas and Menneteau, [43], a law of the iterated logarithm

stating that

√
n

2 log log n

(
λ̂j − λj

)
is relatively compact with limit set [−σj, σj]. In

particular, for all large enough n and some δ > 0,∣∣∣λ̂j − λj∣∣∣ ≤ (σj + δ)

√
2 log log n

n
a.s,

We choose n large enough such that
∣∣∣λ̂j − λj∣∣∣ ≤ 1

2
λj a.s. for all j ≤ kn using assumption

v), i.e.

1

λ̂j
=

1

λj +
(
λ̂j − λj

) ≤ 1∣∣∣λj − |λ̂j − λj|∣∣∣ ≤
2

λj
a.s.

Therefore, using λj ≥ aj,

kn

kn∑
j=1

1

a2jλ̂2
j

≤ kn

kn∑
j=1

4

a2jλ2
j

≤ 4kn

kn∑
j=1

1

a4j
=

4kn
a4kn

kn−1∑
j=0

(
a4
)j

=
4kn
a4kn

1− a4kn

1− a4
≤ 4kn

(1− a4) a4kn

Analogously,

kn∑
j=1

1

λ̂2
j

≤ 4

(1− a2) a2kn

Finally,

(
1

λ̂m
− 1

λm

)2

=

(
λ̂m − λm

)2

λ̂2
mλ

2
m

≤
4
(
λ̂m − λm

)2

λ4
m

= Op
(

1

n

)

as nE
(
λ̂m − λm

)2

≤ D by the remark after Theorem 16.1 of Horváth and Kokoszka,

[28].
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d) Combining a), b), c), we have

1

n

n∑
t=1

(ηt − η̂t)2 = Op
(

1

na2kn

)
+Op

(
kn

na4kn

)
+Op

(
1

n

)
= Op

(
kn

na4kn

)
p→ 0 for n→∞

Under our assumptions on the rate of kn →∞. It follows d2
2

(
Fn, F̂n

)
p→ 0 with the same

rate and finally d2
2

(
F̂n, F

)
p→ 0, which ends the proof.

We do not consider this special case further. It already shows one of the main difficulties

of the general case, which is due to the fact that Γ̂n and Γ̂†n do not have the same eigen-

vectors in contrast to the toy example of the previous section. This has nothing to do

with the special form of C. Therefore, we immediately study general FAR(1)-processes

in the next chapter.
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Chapter 6

Bootstrap for FAR - Some Theory

In this chapter we consider the bootstrap for the general FAR(1)-model. We start with

some auxiliary results, then prove an analogue of the weak convergence result of Mas [44]

for the simpler case of fixed kn = p using the results of [47] on triangular arrays of Hilbert

space-valued random variables. Then, we show that the bootstrap innovations approx-

imate the true innovations in Mallows metric. In the next two sections, we show that

the bootstrap principle holds for the sample mean and the sample covariance operator.

Finally we discuss the problems of bootstrapping the estimate of the autoregressive op-

erator Ψ when it is projected onto a finite random subspace with fixed dimension kn = p

which is independent of the sample size n.

6.1 Some auxiliary results

We start with introducing some notation and properties which we shall need in the

rest of this chapter. We consider data X0, . . . , Xn from a stationary FAR(1)-process

with autoregressive operator Ψ, covariance operator Γ = EXt ⊗Xt and lag-1-covariance

operator C = EXt⊗Xt+1. We use Γ̂n, Ĉn for the sample versions of Γ, C. λj resp. νj are

the eigenvalues resp. eigenfunctions of Γ, and λ̂j, ν̂j their estimates. Then,

Ψ̂n = ĈnΓ̂†n, with Γ̂†n =

p∑
j=1

1

λ̂j
ν̂j ⊗ ν̂j
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is the estimate of Ψ, where p may be fixed or depend on n depending on the circumstances.

Πp =

p∑
j=1

νj ⊗ νj, Π̂p =

p∑
j=1

ν̂j ⊗ ν̂j

denote the projections onto the span of the first p eigenfunctions resp. empirical eigen-

functions.
Lemma 9. Π̂p = Γ̂nΓ̂†n = Γ̂†nΓ̂n, Ψ̂nΠ̂p = Ψ̂n

Proof.

Γ̂nΓ̂†n (x) = Γ̂n

(
p∑

k=1

1

λ̂k
〈ν̂k, x〉 ν̂k

)

=

p∑
k=1

1

λ̂k
〈ν̂k, x〉 Γ̂n (ν̂k)

=

p∑
k=1

ν̂k ⊗ ν̂k (x) = Π̂p (x)

as Γ̂n (ν̂k) = λ̂kν̂k. Analogously, we get Γ̂†nΓ̂n (x) = Π̂p (x). Now,

Ψ̂n (x) = ĈnΓ̂†n (x) =

p∑
k=1

1

λ̂k
〈ν̂k, x〉 Ĉn (ν̂k)

Ψ̂nΠ̂p (x) = Ψ̂n

(
p∑
j=1

〈ν̂j, x〉 ν̂j

)

=

p∑
j=1

〈ν̂j, x〉 Ψ̂n (ν̂j)

=

p∑
j=1

〈ν̂j, x〉
1

λ̂j
Ĉn (ν̂j)

as Γ̂†n (ν̂j) =
1

λ̂j
ν̂j.

Lemma 10. Ψ̂n −ΨΠ̂p =
1

n
SnΓ̂†n with Sn =

∑n
t=1Xt−1 ⊗ εt = n

(
Ĉn −ΨΓ̂n

)
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Proof. From Lemma 9, we have Ψ̂n −ΨΠ̂p =
(
Ĉn −ΨΓ̂n

)
Γ̂†n

n
(
Ĉn −ΨΓ̂n

)
(x) =

n∑
t=1

Xt−1 ⊗Xt (x)−Ψ

(
n∑
t=1

Xt−1 ⊗Xt−1 (x)

)

=
n∑
t=1

〈Xt−1, x〉Xt −
n∑
t=1

Ψ (〈Xt−1, x〉Xt−1)

=
n∑
t=1

〈Xt−1, x〉 (Xt −Ψ (Xt−1)) =
n∑
t=1

Xt−1 ⊗ εt (x)

Both Lemmas are essentially used already by Mas, [44]. We give their proofs here for the

sake of completeness.

Lemma 11. Let {Xt} be a L2-valued time series with E ‖Xt‖4 < ∞, which is L4 −m-
approximable. Let the eigenvalues λj, j ≥ 1 of Γ satisfy λ1 > λ2 > . . . > λp+1 and all
have multiplicity 1. Then, for any L2-valued random variable Y with E ‖Y ‖2 <∞, which
is independent of X0, . . . , Xn−1, we have for some constant D

E
∥∥∥Π̂p (Y )− Πp (Y )

∥∥∥2

≤ DE ‖Y ‖2 p

n

p∑
j=1

1

a2
j

where a1 = λ1 − λ2, aj = min (λj−1 − λj, λj − λj+1) , j = 2, . . . , p.

Proof. Let ĉj = sgn 〈ν̂j, νj〉, where ν1, . . . , νp, ν̂1, . . . , ν̂p are the first p eigenvectors of Γ

respectively Γ̂n. Then,

E ‖〈Y, ĉj ν̂j〉 ĉj ν̂j − 〈Y, νj〉 νj‖2 ≤ 2E ‖〈Y, ĉj ν̂j〉 (ĉj ν̂j − νj)‖2 + 2E ‖〈Y, ĉj ν̂j − νj〉 νj‖2

≤ 4E
(
‖Y ‖2 ‖ĉj ν̂j − νj‖2)

using Cauchy-Schwarz and ‖ν̂j‖ = ‖νj‖ = 1. Hence,

E
∥∥∥Π̂p (Y )− Πp (Y )

∥∥∥2

= E

∥∥∥∥∥
p∑
j=1

〈Y, ĉj ν̂j〉 ĉj ν̂j −
p∑
j=1

〈Y, νj〉 νj

∥∥∥∥∥
2

≤ 4p

p∑
j=1

E
(
‖Y ‖2 ‖ĉj ν̂j − νj‖2)

≤ DpE ‖Y ‖2
p∑
j=1

1

na2
j

by the remarks following Theorem 16.1 of Horvath and Kokoszka, [28].
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Corollary 6.1.1. If, under the assumptions of Lemma 11, λj − λj+1 ≥ ajb for some
0 < a < 1 and all j = 2, . . . , p+ 1, and some constant b > 0, then

E
∥∥∥Π̂p (Y )− Πp (Y )

∥∥∥2

≤ DE ‖Y ‖2 p

na2p

1

1− a2

Proof. We have aj ≥ ajb, and

p∑
j=1

1

a2j
=

1

a2p

1− a2p

1− a2
≤ 1

a2p

1

1− a2

6.2 Weak convergence for fixed p

We consider the FAR(1) model given by

Xt+1 = ΨXt + εt+1.

Regarding Lemma 10 we have

Ψ̂n −ΨΠ̂p =
1

n
SnΓ̂†p,

where again Sn(x) =
∑n

t=1 Xt−1⊗ εt(x), and we are interested in showing that for fixed p

√
n
(

Ψ̂n −ΨΠ̂p

)
=

1√
n
SnΓ̂†p

w→ S∞Γ†p, (6.1)

where S∞ is Gaussian and

Γ†p =

p∑
j=1

1

λj
νj ⊗ νj.

Note that this is the analogue of Theorem 3.1 of Mas, [44], who considers p = kn increasing

with n. However, the proof is different and simpler for the simpler kind of asymptotics

with fixed p. We investigate Sn and Γ̂†p separately and then apply an argument like

Slutsky’s Lemma to conclude the proof. We first compute the mean and covariance

operator of
1√
n
Sn. Note that

Sn(x) =
n∑
j=1

Yj(x) with Yt = Xt−1 ⊗ εt(x) =< Xt−1, x > εt
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As εt is independent of Xt−1 and has mean 0, the Yt(x) are white noise, i.e. pairwise

uncorrelated, with mean 0. From this we get

1√
n
ESn(z) =

1√
n

n∑
t=1

EYt(z) = 0

1

n
E{St(x)⊗ St(x)}(z) =

1

n
E 〈St(x), z〉St(x)

= E

〈
1√
n

n∑
t=1

〈Xt−1, x〉 εt , z

〉
1√
n

n∑
k=1

〈Xk−1, x〉 εk

=
1

n

∑
k,t

E 〈Xt−1, x〉 〈Xk−1, x〉 εt ⊗ εk (z)

= E 〈X1, x〉2 Eε2 ⊗ ε2 (z) = E 〈X1, x〉2 Γε (z) (6.2)

with Γε denoting the covariance operator of the innovations, using stationarity of Xt and

independence of the εt’s for k 6= t.

We have from our assumptions that X0, . . . , Xn are from a strictly stationary process

with zero mean and finite second moment. We therefore can conclude that E 〈X1, x〉2 ≤

||x||2E||X1||2 is bounded. We now want to check the assumptions of Theorem 5.2.1. First,

we note that Sn(x) is the sum of the pairwise uncorrelated random variables Yt(x), which

are, moreover, strictly stationary by stationarity of Xt. As the Yt are pairwise uncorre-

lated, E < Y1(x), Yt(x) >= 0 for t > 1 and E < Y1(x), Y1(x) >= E < X0, x >
2 E||ε1||2,

i.e. the long-run variance exists and is just E < Xt−1, x >
2 E||εt||2. Therefore, condition

(2.1) of [47] is trivially satisfied, and we conclude from their Theorem 2.1 that
1√
n
Sn(x)

is weakly compact, and a subsequence converges in distribution to a limit with mean 0

and covariance given by (6.2).

To get Gaussianity of the limit, we assume a mixing condition like in Theorem 2.3 of [47]

or Theorem 2.17 of [7]. We combine these results in the following proposition.

Proposition 6.2.1. Let X0, . . . , Xn be a sample from a stationary FAR(1) process with
i.i.d. innovations εt, having mean 0 and covariance operator Γε. Assume E||Xt||2<∞.

i)
1√
n
Sn(x)

w→ S∞(x)

where S∞(x) has mean 0 and covariance operator E 〈X1, x〉2 Γε.

ii) If E||Xt||2+δ< ∞ for some δ > 0, and if the time series Xt,−∞ < t < ∞ is strongly
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mixing with mixing coefficients αj, j ≥ 1, satisfying
∑

j|αj|δ/(2+δ)< ∞, then S∞(x) is
Gaussian.

Proof. i) We have already calculated the mean and the covariance operator of
1√
n
Sn(x)

above which both do not depend on n. The assertion then follows from Theorem 5.2.1,
which is Theorem 2.1 of Politis and Romano, [47] for the conditions of said result are
fulfilled as we have discussed above.

ii) The assertion follows from Theorem 2.3 of [47] as, due to independence of the εt

E||Yt(x)||2+δ= E|< Xt−1, x > |2+δE||εt||2+δ≤ E||Xt||2+δ||x||2+δE||εt||2+δ

by Cauchy-Schwarz, and

E||εt||2+δ= E||Xt −Ψ(Xt−1)||2+δ≤ (E||Xt −Ψ(Xt−1)||2)(2+δ)/2 ≤ cE||Xt||2+δ

for some constant c, using Hölder’s inequality and ||Ψ(Xt−1)||≤ ||Ψ||L||Xt−1||. Moreover,

Yt(x) =< Xt−1, x > (Xt −Ψ(Xt−1))

is a measurable function of finitely many Xt and, hence, has the same mixing rate as
Xt.

Let us remark that, in the mixing case, we would get ii) with a somewhat weaker condi-

tion on the quantile function of ||Xt|| from Theorem 2.17 of Bosq, [7]. Alternatively to

assuming mixing, we could use that due to the independence of εt from Xt−1, Xt−2, . . .

E{Yt(x)|Xt−1, Xt−2, . . .} = 0,

i.e. the Yt(x) are martingale differences. Then, under some additional assumptions,

1√
n
Sn(x) is also asymptotically normal from Theorem 2.16 of [7].

From an argument similar to Slutsky’s Lemma, we can conclude our main result of this

section, the asymptotic normality of
1√
n
SnΓ̂†n(x), from the following auxiliary result.

Proposition 6.2.2. Under the assumptions of Theorem 6.3.1 below, we have uniformly
in x

E||Γ̂†n(x)− Γ†p(x)||2= ||x||2O(
1

n
)

Proof. Note first that from the proof of Theorem 6.3.1 below and by our assumption on
the rate of the eigenvalues we have, as p is fixed,

λ̂j ≥
1

2
λj ≥ baj, j = 1, . . . , p
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for all large enough n. Then, with ĉj = sgn (〈ν̂j, νj〉),

E
∥∥∥Γ̂†n,p(x)− Γ†p(x)

∥∥∥2

= E

∥∥∥∥∥
p∑
j=1

1

λ̂j
〈ν̂j, x〉 ν̂j −

p∑
j=1

1

λj
〈νj, x〉 νj

∥∥∥∥∥
2

≤ 3E

∥∥∥∥∥
p∑
j=1

(
1

λ̂j
− 1

λj

)
〈ν̂j, x〉 ν̂j

∥∥∥∥∥
2

+3E

∥∥∥∥∥
p∑
j=1

1

λj
〈ĉj ν̂j, x〉 (ĉj ν̂j − νj)

∥∥∥∥∥
2

+3E

∥∥∥∥∥
p∑
j=1

1

λj
〈ĉj ν̂j − νj, x〉 νj

∥∥∥∥∥
2

= 3E
p∑
j=1

(
λ̂j − λj

)2

λ̂2
jλ

2
j

〈ν̂j, x〉2

+3E

∥∥∥∥∥
p∑
j=1

1

λj
〈ĉj ν̂j, x〉 (ĉj ν̂j − νj)

∥∥∥∥∥
2

+3E
p∑
j=1

1

λ2
j

〈ĉj ν̂j − νj, x〉2

The first term on the right-hand side is bounded by, using 〈ν̂j, x〉2 ≤ ‖x‖2 by Cauchy-
Schwarz,

3
∑p

j=1

E
(
λ̂j − λj

)2

b4a4j
‖x‖2 = ‖x‖2O

(
1

n

)
by the remarks after Theorem 16.1 of Horvath and Kokoszka, [28]. The third term on
the right-hand side is bounded by, again using Cauchy-Schwarz

3

p∑
j=1

1

b2a2j
E ‖ĉj ν̂j − νj‖2 ‖x‖2 ≤ D

p∑
j=1

1

b4a4j

1

n
‖x‖2 = ‖x‖2O

(
1

n

)
from the same remarks of Horvath and Kokoszka, [28] for some constant D. Finally, the
second term is bounded by

3pE
p∑
j=1

∥∥∥∥ 1

λj
〈ĉj ν̂j, x〉 (ĉj ν̂j − νj)

∥∥∥∥2

≤ 3p

p∑
j=1

1

b2a2j
‖x‖2 E ‖ĉj ν̂j − νj‖2 = ‖x‖2O

(
1

n

)
by the same argument.

Combining the two propositions, we get

Theorem 6.2.1. Under the assumptions of Theorem 6.3.1 we have for fixed p
i) With S∞ as in Proposition 6.2.1,

√
n(Ψ̂n −ΨΠ̂p)(z) =

1√
n
SnΓ̂†n(z)

w→ S∞Γ†p(z)
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ii) If additionally the mixing and moment conditions of Proposition 6.2.1, ii) are satisfied,

we have that S∞Γ†p(z) is Gaussian with mean 0 and covariance operator E
〈
X1,Γ

†
p(z)

〉2
Γε.

Proof. With x = Γ†p(z), we have immediately from Proposition 6.2.1 the results for

SnΓ†p(z) instead of SnΓ̂†n(z). So, it suffices to show that SnΓ̂†n(z)− SnΓ†p(z) = op(
√
n).

We have, recalling ||Sn||L= Op(
√
n) from the proof of Theorem 6.3.1

||Sn(Γ̂†n(z)− Γ†p(z))||≤ ||Sn||L ||Γ̂†n(z)− Γ†p(z)||= Op(1) = op(
√
n)

applying Proposition 6.2.2.

6.3 Approximation of the innovation distribution by

the empirical measure of sample residuals

The basis for residual-based bootstrapping in scalar regression and autoregression models

is the approximability of the innovations by the bootstrap innovations where the latter

are drawn from the centered sample residuals. This is stated in the following theorem in

terms of the Mallows metric. Note that now we have to allow kn to increase as, otherwise,

Ψ̂n would not be a consistent estimate of Ψ and we could not expect the sample residuals

to mimic the distribution of the true innovations.

Theorem 6.3.1. Let X0, . . . , Xn be a sample from a stationary FAR(1) process satisfying

i) E ‖εt‖4 <∞, Eεt = 0, {εt} i.i.d.

ii) Ψ is a Hilbert-Schmidt operator with ‖Ψ‖L < 1

iii) The eigenvalues λ1 > λ2 > . . . of Γ have multiplicity 1 and satisfy λj − λj+1 ≥ baj

for some 0 < a < 1 and some b > 0 for all j ≥ 1.

Let F, F̂n be the distribution of εj respectively the empirical distribution of ε̃1, . . . , ε̃n with

ε̃j = ε̂j −
1

n

n∑
k=1

ε̂k, ε̂j = Xj − Ψ̂n (Xj−1) , j = 1, . . . , n.

Then,

d2

(
F̂n, F

)
→
p

0, n→∞

if kn <
1

4 log
1

a

log n.
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Proof. Let Fn denote the empirical distribution of ε1, . . . , εn. Then, again from Lemma
8.4 of Bickel and Freedman, [6], we have d2 (Fn, F ) →

a.s
0. Hence it suffices to show that

d2

(
Fn, F̂n

)
→
p

0. As in the proof of Proposition 5.3.1, let J be Laplace distributed on

{1, . . . , n}, i.e. pr (J = t) =
1

n
, 1 ≤ t ≤ n, and consider the random variables

U0 = εJ , V0 = ε̃J = ε̂J −
1

n

∑n
j=1 ε̂j

with distributions Fn respectively F̂n. As in the proof of Theorem 3.1 of Franke and
Kreiss, [20], we have from the definition of the Mallows metric

d2
2

(
Fn, F̂n

)
≤ E ‖U0 − V0‖2 =

1

n

n∑
k=1

∥∥∥∥∥ε̂k − εk − 1

n

n∑
j=1

ε̂j

∥∥∥∥∥
2

≤ 6

n

n∑
k=1

‖ε̂k − εk‖2 +
3

n2

∥∥∥∥∥
n∑
j=1

εj

∥∥∥∥∥
2

From the law of large numbers for i.i.d. random variables we have

1

n

n∑
j=1

εj →
p
Eεj = 0, n→∞

such that the second term on the right-hand side vanishes for n→∞. For the first term,
we show in the following

‖ε̂t − εt‖2 ≤ ‖Xt−1‖2Rn + 3 ‖Πkn (Xt−1)−Xt−1‖2

where Rn does not depend on t, and Rn →
p

0. Πkn denotes the projection on the eigen-

vectors ν1, . . . , νkn of the covariance operator Γ of {Xt} as in Lemma 11. Hence,

1

n

n∑
t=1

‖ε̂t − εt‖2 ≤ 1

n

n∑
t=1

‖Xt−1‖2Rn + 3
1

n

n∑
t=1

‖Πkn (Xt−1)−Xt−1‖2

→
p

0, n→∞,

as
1

n

∑n
t=1 ‖Xt−1‖2 → E ‖X1‖2 <∞, and, by stationarity of {Xt}

E

(
1

n

n∑
t=1

‖Πkn (Xt−1)−Xt−1‖2

)
= E

∞∑
j=kn+1

〈X1, νj〉2 → 0

for kn →∞, using a monotone convergence argument and E
∑∞

j=1 〈X1, νj〉2 = E ‖X1‖2.
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a) By definition of εt, ε̂t, we have

‖εt − ε̂t‖2 =
∥∥∥Xt −Ψ (Xt−1)−Xt + Ψ̂n (Xt−1)

∥∥∥2

=
∥∥∥(Ψ̂n −Ψ

)
(Xt−1)

∥∥∥2

=
∥∥∥(Ψ̂n −ΨΠ̂kn

)
(Xt−1) + Ψ

(
Π̂kn − Πkn

)
(Xt−1) + Ψ (Πkn (Xt−1)−Xt−1)

∥∥∥2

≤ 3
∥∥∥(Ψ̂n −ΨΠ̂kn

)
(Xt−1)

∥∥∥2

+ 3
∥∥∥(Π̂kn − Πkn

)
(Xt−1)

∥∥∥2

+ 3 ‖Πkn (Xt−1)−Xt−1‖2

using ‖Ψ‖L < 1, where Π̂kn is defined as in Lemma 11. We now show that the first and
the second terms are bounded in the required manner.

b) We split
(

Π̂kn − Πkn

)
(Xt−1) into two terms

(
Π̂kn − Πkn

)
(Xt−1) =

kn∑
j=1

〈Xt−1, ν̂j〉 ν̂j −
kn∑
j=1

〈Xt−1, νj〉 νj

=
kn∑
j=1

〈Xt−1, ĉj ν̂j〉 (ĉj ν̂j − νj) +
kn∑
j=1

〈Xt−1, ĉj ν̂j − νj〉 νj

where, again, ĉj = sgn 〈ν̂j, νj〉. As ν1, ν2, . . . are orthonormal, we have for the second
term ∥∥∥∥∥

kn∑
j=1

〈Xt−1, ĉj ν̂j − νj〉 νj

∥∥∥∥∥
2

=
kn∑
j=1

〈Xt−1, ĉj ν̂j − νj〉2

≤ ‖Xt−1‖2
kn∑
j=1

‖ĉj ν̂j − νj‖2

where the right hand side converges to 0 in probability, as, from the remarks after The-
orem 16.1 of Horvath and Kokoszka, [28],

E
kn∑
j=1

‖ĉj ν̂j − νj‖2 ≤ 1

n

kn∑
j=1

D

a2j
=

D

na2kn

1− a2kn

1− a2
≤ D′

na2kn
→ 0

for n→∞ under the condition on the rate of kn.

For the first term, we have, as ‖ĉj ν̂j‖ = 1,

∥∥∥∥∥
kn∑
j=1

〈Xt−1, ĉj ν̂j〉 (ĉj ν̂j − νj)

∥∥∥∥∥
2

≤ kn

kn∑
j=1

〈Xt−1, ĉj ν̂j〉2 ‖ĉj ν̂j − νj‖2

≤ ‖Xt−1‖2 kn

kn∑
j=1

‖ĉj ν̂j − νj‖2
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where again the right hand side converges to 0 in probability as, from above,

Ekn
n∑
j=1

‖ĉj ν̂j − νj‖2 ≤ knD

na2kn
→ 0

for n→∞ under the condition on the rate of kn.

c) Using Lemma 10, we have

∥∥∥(Ψ̂n −ΨΠ̂kn

)
(Xt−1)

∥∥∥2

=

∥∥∥∥ 1

n
SnΓ̂†n (Xt−1)

∥∥∥∥2

≤
∥∥∥∥ 1

n
Sn

∥∥∥∥2

L

∥∥∥Γ̂†n (Xt−1)
∥∥∥2

≤
∥∥∥∥ 1

n
Sn

∥∥∥∥2

L
‖Xt−1‖2

kn∑
j=1

1

λ̂2
j

as in the proof, part a), of Theorem 5.4.1. Moreover, as C = ΨΓ,

∥∥∥∥ 1

n
Sn

∥∥∥∥2

L
=

∥∥∥Ĉn −ΨΓ̂n

∥∥∥2

≤ 2
∥∥∥Ĉn − C∥∥∥2

L
+ 2

∥∥∥Ψ
(

Γ− Γ̂n

)∥∥∥2

L

≤ 2
∥∥∥Ĉn − C∥∥∥2

L
+ 2

∥∥∥Γ̂n − Γ
∥∥∥2

L

as ‖Ψ‖L ≤ 1. From the remarks after Theorem 16.1 of Horvath and Kokoszka, [28], we

have E
∥∥∥Γ̂n − Γ

∥∥∥2

L
= O

(
1

n

)
, and from Theorem 3 of Mas and Pumo, [42], analogously

E
∥∥∥Ĉn − C∥∥∥2

L
= O

(
1

n

)
. Hence

∥∥∥∥ 1

n
Sn

∥∥∥∥2

L
= Op

(
1

n

)
From assumption iii) and the rate condition on kn, we have, as a < 1,

1

λkn
≤ 1

bakn
≤ 1

b
n1/4

From Theorem 4.1 of Bosq, [7], we then have, as ‖·‖L ≤ ‖·‖S ,

1

λkn

∥∥∥Γ̂n − Γ
∥∥∥
L
≤ 1

b
n1/4

∥∥∥Γ̂n − Γ
∥∥∥
L
→
a.s.

0 for n→∞

Therefore, we have for all large enough n,∥∥∥Γ̂n − Γ
∥∥∥
L
≤ 1

2
λkn a.s. and, as in the proof of Theorem 8.7 of Bosq, [7],

λ̂kn ≥ λkn −
∥∥∥Γ̂n − Γ

∥∥∥
L
≥ 1

2
λkn a.s.
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using supj≥1

∣∣∣λ̂j − λj∣∣∣ ≤ ∥∥∥Γ̂n − Γ
∥∥∥
L
. Therefore, for large enough n,

∥∥∥∥ 1

n
Sn

∥∥∥∥2

L

kn∑
j=1

1

λ̂2
j

≤ 4

∥∥∥∥ 1

n
Sn

∥∥∥∥2

L

kn∑
j=1

1

λ2
j

≤ 4

∥∥∥∥ 1

n
Sn

∥∥∥∥2

L

kn∑
j=1

1

b2a2j

≤ 4

b2

∥∥∥∥ 1

n
Sn

∥∥∥∥2

L

1

a2kn

1

1− a2
= Op

(
1

na2kn

)
= op (1)

Let us remark that the logarithmic rate for kn in case of exponentially bounded λj−λj+1

like in assumption iii) also appears in the convergence rate results of Guillas, [22].

6.4 Bootstrap for Sn and the sample mean

We have seen in section 6.2 that the asymptotic behaviour of Ψ̂n is mainly determined

by the behaviour of Sn = n(Ĉn−ΨΓ̂n). In this section we show that the bootstrap works

for Sn. The proof of this result can be easily modified to show that the bootstrap works

for the sample mean. We start with stating that the well-known strong consistency of

Ψ̂n as an estimate of Ψ in particular holds under our set of assumptions.

Lemma 12. Under the conditions of Theorem 6.3.1, we have∥∥∥Ψ̂n −Ψ
∥∥∥
L
→
a.s.

0, n→∞

Proof. The result is a slight modification of Theorem 8.7 of Bosq, [7], taking into account
that Bosq considers Ψ̃n = Π̂knΨ̂n instead of Ψ̂n as an estimate of Ψ. From the discussion
in the proof of Theorem 6.3.1, the conditions of that theorem of Bosq are satisfied. In
our notation,∥∥∥Ψ̂n −Ψ

∥∥∥
L
≤
∥∥∥Ψ̂n −ΨΠkn

∥∥∥
L

+
∥∥∥Ψ
(

Πkn − Π̂kn

)∥∥∥
L

+
∥∥∥ΨΠ̂kn −Ψ

∥∥∥
L

From the proof of Theorem 8.7 of Bosq, [7], in particular (8.92), (8.93), the second and
third terms converge to 0 a.s.
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For the first term, we have in our notation for every x,

(
Ψ̂n −ΨΠkn

)
(x) = Ĉn

(
kn∑
j=1

1

λ̂j
〈x, ĉj ν̂j〉 ĉj ν̂j

)
− C

(
kn∑
j=1

1

λj
〈x, νj〉 νj

)

= Ĉn

(
kn∑
j=1

(
1

λ̂j
− 1

λj

)
〈x, ĉj ν̂j〉 ĉj ν̂j

)

+Ĉn

(
kn∑
j=1

1

λj
(〈x, ĉj ν̂j〉 − 〈x, νj〉) ĉj ν̂j

)

+Ĉn

(
kn∑
j=1

1

λj
〈x, νj〉 (ĉj ν̂j − νj)

)

+
(
Ĉn − C

)( kn∑
j=1

1

λj
〈x, νj〉 νj

)
= an1(x) + an2(x) + an3(x) + an4(x)

with Ani = sup‖x‖≤1 ani(x), 1 ≤ i ≤ 4, we have
∥∥∥Ψ̂n −ΨΠkn

∥∥∥
L
≤
∑4

i=1Ani and, from the

proof of Theorem 8.7 of Bosq, [7], (8.84), (8.86), (8.88) and (8.90), we have Ani →
a.s.

0 for

i = 1, . . . , 4.

Proposition 6.4.1. Under the assumptions of Theorem 6.3.1, we have for n→∞

nd2
2

(
Ĉn −ΨΓ̂n(W ), Ĉ∗n − Ψ̂nΓ̂∗n(W )

)
=

1

n
d2

2 (Sn(W ), S∗n(W ))→
p

0

where W is an arbitrary L2-valued random variable independent of X ′0, ε
′
1, . . . , ε

′
n, ε
∗
1, . . . , ε

∗
n.

Proof. Again, we follow essentially the proof of Theorem 4.1 of Franke and Kreiss, [20]. As
in the proof of Proposition 5.3.2 we choose (ε′t, ε

∗
t ) i.i.d. such that L (ε′t) = F, L∗ (ε∗t ) = F̂n

and E ‖ε′t − ε∗t‖
2 = d2

2

(
F, F̂n

)
. Moreover, we choose X∗0 = X ′0 in the recursive definition

of X∗t , and we assume (ε′t, ε
∗
t ) , t ≥ 1, independent of X ′0. Then, we have

X ′t = Ψ
(
X ′t−1

)
+ ε′t, X

∗
t = Ψ̂n

(
X∗t−1

)
+ ε∗t , t ≥ 1 (6.3)

a) First, we show the following analogue relationship to (4.18) of Franke and Kreiss, [20]:

E
{
‖X ′t −X∗t ‖

2 | X0, . . . , Xn

}
≤ D

(
E ‖X ′0‖

2
+ E∗ ‖ε∗1‖

2
)∥∥∥Ψ− Ψ̂n

∥∥∥2

L

+Dd2
2

(
F, F̂n

)
for some generic constant D, for all n large enough.

We use the recursive definition 6.3 to get

X ′t = Ψt (X ′0) +
t−1∑
k=0

Ψk
(
ε′t−k

)
, X∗t = Ψ̂t

n (X ′0) +
t−1∑
k=0

Ψ̂k
n

(
ε∗t−k

)
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First, we note that

Ψk − Ψ̂k
n =

(
Ψ− Ψ̂n

) k−1∑
j=0

ΨjΨ̂k−1−j
n

From Lemma 12, we get for ‖Ψ‖L < δ̂ < 1∥∥∥Ψ̂n

∥∥∥
L
≤ ‖Ψ‖L +

∥∥∥Ψ̂n −Ψ
∥∥∥
L
≤ δ̂

for large enough n and∥∥∥∥∥
k−1∑
j=0

ΨjΨ̂k−1−j
n

∥∥∥∥∥
L

≤
k−1∑
j=0

∥∥Ψj
∥∥∥∥∥Ψ̂k−1−j

n

∥∥∥ ≤ k−1∑
j=0

‖Ψ‖j
∥∥∥Ψ̂n

∥∥∥k−1−j

≤ δ̂k−1

k−1∑
j=0

(
‖Ψ‖
δ̂

)j
≤ δ̂k−1

1− ‖Ψ‖
δ̂

=
δ̂k

δ̂ − ‖Ψ‖

i.e. we have for large enough n

∥∥∥Ψk − Ψ̂k
n

∥∥∥
L
≤ δ̂k

δ̂ − ‖Ψ‖

∥∥∥Ψ− Ψ̂n

∥∥∥
L

Now, writing E as an abbreviation of E {· | X0, . . . , Xn} and using

X ′t −X∗t =
(

Ψt − Ψ̂t
n

)
(X ′0) +

t−1∑
k=0

Ψk
(
ε′t−k − ε∗t−k

)
+

t−1∑
k=0

(
Ψk − Ψ̂k

n

) (
ε∗t−k

)
we get, as X ′0, (ε′t, ε

∗
t ) are independent and

∥∥Ψk
∥∥ ≤ ‖Ψ‖k

E ‖X ′t −X∗t ‖
2 ≤ 3

∥∥∥Ψt − Ψ̂t
n

∥∥∥2

L
E ‖X ′0‖

2
+ 3

t−1∑
k=0

‖Ψ‖2k E
∥∥ε′t−k − ε∗t−k∥∥2

+3
t−1∑
k=0

∥∥∥Ψk − Ψ̂k
n

∥∥∥2

L
E
∥∥ε∗t−k∥∥2

≤ 3

E ‖X ′0‖
2 δ̂2t(
δ̂ − ‖Ψ‖

)2 + E∗ ‖ε∗1‖
2
t−1∑
k=0

δ̂2k(
δ̂ − ‖Ψ‖

)2

∥∥∥Ψ− Ψ̂n

∥∥∥2

L

+3
1

1− ‖Ψ‖2d
2
2

(
F, F̂n

)
≤ 3(

δ̂ − ‖Ψ‖
)2

(
δ̂2tE ‖X ′0‖

2
+ E∗ ‖ε∗1‖

2
)∥∥∥Ψ− Ψ̂n

∥∥∥2

L

+
3

1− ‖Ψ‖2d
2
2

(
F, F̂n

)
104



b) From the definition of Sn in Lemma 10, we have

nd2
2

(
Ĉn −ΨΓ̂n(W ), Ĉ∗n − Ψ̂nΓ̂∗n(W )

)
=

1

n
d2

2 (Sn(W ), S∗n(W ))

≤ 1

n
E

∥∥∥∥∥
n∑
t=1

〈
X ′t−1,W

〉
ε′t −

n∑
t=1

〈
X∗t−1,W

〉
ε∗t

∥∥∥∥∥
2

≤ 2

n
E

∥∥∥∥∥
n∑
t=1

〈
X ′t−1 −X∗t−1,W

〉
ε′t

∥∥∥∥∥
2

+
2

n
E

∥∥∥∥∥
n∑
t=1

〈
X∗t−1,W

〉
(ε′t − ε∗t )

∥∥∥∥∥
2

=
2

n

n∑
t=1

E
〈
X ′t−1 −X∗t−1,W

〉2 E ‖ε′t‖
2

+
2

n

n∑
t=1

E
〈
X∗t−1,W

〉2 E ‖ε′t − ε∗t‖
2

≤ 2

n

n∑
t=1

E
∥∥X ′t−1 −X∗t−1

∥∥2 E ‖W‖2 E ‖ε′1‖
2

+
2

n

n∑
t=1

E
〈
X∗t−1,W

〉2
d2

2

(
F, F̂n

)
using the independence of (ε′t, ε

∗
t ) from X ′t−1, X

∗
t−1, W and Eε′t = E∗ε∗t = 0, and Cauchy-

Schwarz. From a), we have for some constant D

1

n

n∑
t=1

E ‖X ′t −X∗t ‖
2 ≤ D

(
E ‖X ′0‖

2
+ E∗ ‖ε∗1‖

2
)∥∥∥Ψ− Ψ̂n

∥∥∥2

L
+Dd2

2

(
F, F̂n

)
→
p

0

from Theorem 6.3.1 and Lemma 12, as

E∗ ‖ε∗1‖
2 =

1

n

n∑
t=1

‖ε̂t‖2 →
p
E ‖ε1‖2

from Theorem 6.3.1 and Lemma 8.3 of Bickel and Freedman, [6].

Moreover,

1

n

n∑
t=1

E
〈
X∗t−1,W

〉2 ≤ E ‖W‖2 2

n

n−1∑
t=0

E ‖X ′t‖
2

+ E ‖W‖2 2

n

n−1∑
t=0

E ‖X ′t −X∗t ‖
2

= 2E ‖W‖2 E ‖X1‖2 + op (1)

such that the assertion of the proposition follows from d2
2

(
F, F̂n

)
→
p

0 by Theorem

6.3.1.
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Checking the proof carefully and using E < Y,W >2≤ O(E||Y ||2) for bounded random

variables W instead of E < Y,W >2= E||Y ||2E||W ||2 for independent Y,W we get also

Corollary 6.4.1. Proposition 6.4.1 continues to hold if the independence assumption on
W is replaced by the assumption that W is a bounded random variable.

6.4.1 Bootstrapping the sample mean

In this subsection we do still assume without loss of generality that EXt = 0, but we do

no longer assume that it is known, but that we have to estimate it by the sample mean

X̄n =
1

n

n−1∑
t=0

Xt.

Note that EX̄n = 0, and that we also have the bootstrap analogue E∗X̄∗n = 0 as, with X∗t

in the proof of Proposition 6.4.1,

E∗X∗t = E∗
(

Ψ̂t
n(X ′0) +

t∑
k=1

Ψ̂t−k
n (ε∗k)

)
= 0

due to linearity, EX ′t = EXt = 0 and, by definition, E∗ε∗t = 0. Therefore, we have to

compare X̄n and X̄∗n without additional centering.

Theorem 6.4.1. Under the assumptions of Theorem 6.3.1, we have for n→∞

nd2
2

(
X̄n, X̄

∗
n

)
→
p

0

Proof. a) We choose X ′t, X
∗
t , 0 ≤ t ≤ n− 1, as in the proof of Proposition 6.4.1. Then,

nd2
2

(
X̄n, X̄

∗
n

)
≤ nE||X̄ ′n − X̄∗n||2=

1

n

n−1∑
t,s=0

E < X ′t −X∗t , X ′s −X∗s > .

As in the proof of Proposition 6.4.1, part a), we have X ′t −X∗t = at + bt + ct with

X ′t−X∗t =
(

Ψt − Ψ̂t
n

)
(X ′0)+

t∑
k=1

Ψt−k (ε′k − ε∗k)+
t∑

k=1

(
Ψt−k − Ψ̂t−k

n

)
(ε∗k) = at+bt+ct.

So, we have to study

1

n

n−1∑
t,s=0

E < at + bt + ct, as + bs + cs > .
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We show in the following two parts of the proof that the dominant terms

1

n

n−1∑
t,s=0

E < bt, bs > and
1

n

n−1∑
t,s=0

E < ct, cs >

are of order op(1). The remaining terms can be handled analogously, and the assertion
follows.

b) As (ε′k, ε
∗
k), k = 1, . . . , n, are independent with mean 0, we have for s ≤ t

E < bt, bs > =
t∑

k=1

s∑
l=1

< Ψt−k (ε′k − ε∗k) ,Ψs−l (ε′l − ε∗l ) >

=
s∑

k=1

E < Ψt−k (ε′k − ε∗k) ,Ψs−k (ε′k − ε∗k) >

≤
s∑

k=1

||Ψt−k||L||Ψs−k||LE||ε′k − ε∗k||2

≤
s∑

k=1

δ̂t+s−2kd2
2(F, F̂n)

= δ̂t−s
s∑

k=1

δ̂2(s−k)d2
2(F, F̂n) = δ̂t−sd2

2(F, F̂n)O(1)

where δ̂ < 1 is as in the proof of Proposition 6.4.1. We conclude

1

n

n−1∑
t,s=0

E < bt, bs >≤
2

n

n−1∑
t=0

t∑
s=0

δ̂t−sd2
2(F, F̂n)O(1) = d2

2(F, F̂n)O(1) = op(1)

by Theorem 6.3.1.

c) As ε∗k, k = 1, . . . , n, are independent, we have for s ≤ t and some generic constant D

E < ct, cs > =
t∑

k=1

s∑
l=1

E <
(

Ψt−k − Ψ̂t−k
n

)
(ε∗k) ,

(
Ψs−l − Ψ̂s−l

n

)
(ε∗l ) >

=
s∑

k=1

E <
(

Ψt−k − Ψ̂t−k
n

)
(ε∗k) ,

(
Ψs−k − Ψ̂s−k

n

)
(ε∗k) >

≤ D

s∑
k=1

δ̂t+s−2k||Ψ− Ψ̂n||2LE∗||ε∗k||2

= δ̂t−s
s∑

k=1

δ̂2(s−k)||Ψ− Ψ̂n||2LOp(1) = δ̂t−s||Ψ− Ψ̂n||2LOp(1)

using the bounds on ||Ψt − Ψ̂t
n||L and E∗||ε∗k||2 from the proof of Proposition 6.4.1. We

107



conclude

1

n

n−1∑
t,s=0

E < ct, cs >≤
2

n

n−1∑
t=0

t∑
s=0

δ̂t−s||Ψ− Ψ̂n||2LOp(1) = ||Ψ− Ψ̂n||2LOp(1) = op(1)

by Lemma 12.

6.5 Bootstrapping the covariance operator

In this section, we show that the bootstrap works for the covariance operator estimate

Γ̂n. It is obvious from the proof that a similar result would also hold for the lag 1-

autocovariance operator estimate Ĉn, at least under the condition that C is a symmetric

operator, which is automatically satisfied for Γ. Γ̂n is an unbiased estimate of Γ. We

need that this is asymptotically true for the bootstrap analogue too which we formulate

as an own result.

Lemma 13. E∗Γ̂∗n = Γ̂n +Op
(

1

n

)
, if

∥∥∥Ψ̂n −Ψ
∥∥∥
L
→
a.s.

0

Proof. From the representation of X∗t in terms of X∗0 = X ′0 and ε∗1, . . . , ε
∗
t (compare the

proof of Theorem 6.3.1), we have

X∗t = Ψ̂t
n (X ′0) +

t−k∑
k=1

Ψ̂t−k
n (ε∗k)

As E∗ε∗k = 0 and as X ′0 is independent of X0, . . . , Xn with mean 0, we know, using linearity
of Ψ̂l

n, l ≥ 1, that we have E∗X∗t = 0 such that we consider

Γ̂∗n =
1

n

n−1∑
t=0

X∗t ⊗X∗t

as the version of the covariance operator estimate in the bootstrap world to simplify
notation. Plugging in the recursive definition of X∗t , we get

Γ̂∗n =
1

n

n−1∑
t=0

(
Ψ̂t
n (X ′0)⊗ Ψ̂t

n (X ′0) +
t∑

k=1

Ψ̂t
n (X ′0)⊗ Ψ̂t−k

n (ε∗k)

+
t∑

k=1

Ψ̂t−k
n (ε∗k)⊗ Ψ̂t

n (X ′0) +
t∑

k,l=1

Ψ̂t−k
n (ε∗k)⊗ Ψ̂t−l

n (ε∗l )

) (6.4)

As E∗Ψ̂l (ε∗k) = 0 due to linearity and as ε∗1, . . . , ε
∗
n, X

′
0 are independent, we get

EΓ̂∗n =
1

n

n−1∑
t=0

(
EΨ̂t

n (X ′0)⊗ Ψ̂t
n (X ′0) +

t∑
k=1

E∗Ψ̂t−k
n (ε∗k)⊗ Ψ̂t−k

n (ε∗k)

)
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As in the bootstrap world, Ψ̂l
n are fixed, and as for any linear operator A and y ∈ L2, we

have A(y)⊗A(y) = Ay⊗ yAT , with AT denoting the adjoint of A, we have to investigate
mainly E∗ε∗k ⊗ ε∗k, as we know already EX ′0 ⊗X ′0 = EX0 ⊗X0 = Γ.

E∗ε∗k ⊗ ε∗k =
1

n

n∑
t=1

ε̃t ⊗ ε̃t =
1

n

n∑
t=1

(
ε̂t − ¯̂εn

)
⊗
(
ε̂t − ¯̂εn

)
=

1

n

n∑
t=1

ε̂t ⊗ ε̂t − ¯̂εn ⊗ ¯̂εn

with ¯̂εn =
1

n

∑n
k=1 ε̂k. As ε̂k = Xk − Ψ̂n (Xk−1),

1

n

n∑
t=1

ε̂t ⊗ ε̂t =
1

n

n∑
t=1

(
Xt − Ψ̂n (Xt−1)

)
⊗
(
Xt − Ψ̂n (Xt−1)

)
= Γ̂n +

1

n
(Xn ⊗Xn −X0 ⊗X0)− 1

n

n∑
t=1

Ψ̂n (Xt−1)⊗Xt

− 1

n

n∑
t=1

Xt ⊗ Ψ̂n (Xt−1) + Ψ̂nΓ̂nΨ̂T
n

As for the linear operator A and y, z ∈ L2, we have A(y)⊗z = (y ⊗ z)AT and y⊗A(z) =
A (y ⊗ z) from the definition of ⊗, the second and third terms are ĈnΨ̂T

n and Ψ̂nĈ
T
n

respectively, such that, as Ĉn = Ψ̂nΓ̂n

1

n

n∑
t=1

ε̂t ⊗ ε̂t = Γ̂n − Ψ̂nΓ̂nΨ̂T
n +

1

n
(Xn ⊗Xn −X0 ⊗X0)

= Γ̂n − Ψ̂nΓ̂nΨ̂T
n +Op

(
1

n

)

Similarly, we have

¯̂εn ⊗ ¯̂εn =
1

n2

n∑
k,l=1

ε̂k ⊗ ε̂l =
1

n2

n∑
k,l=1

(
Xk − Ψ̂n (Xk−1)

)
⊗
(
Xl − Ψ̂n (Xl−1)

)
= X̄1:n ⊗ X̄1:n − Ψ̂n

(
X̄1:n ⊗ X̄0:(n−1)

)
−
(
X̄0:(n−1) ⊗ X̄1:n

)
Ψ̂T
n

Ψ̂n

(
X̄0:(n−1) ⊗ X̄0:(n−1)

)
Ψ̄T
n

where X̄1:n, X̄0:(n−1) denote the sample means of X1, . . . , Xn respectively X0, . . . , Xn−1.

As
∥∥∥Ψ̂n −Ψ

∥∥∥
L
→
p

0 we have
∥∥∥Ψ̂n

∥∥∥
L

= Op(1), and as X̄0:(n−1), X̄1:n are Op
(

1√
n

)
from

the law of large numbers of FAR(1)-processes (compare Theorem 3.7 of Bosq, [7]), we

immediately get that ¯̂εn ⊗ ¯̂εn = Op
(

1

n

)
. So we get

E∗ε∗k ⊗ ε∗k = Γ̂n − Ψ̂nΓ̂nΨ̂T
n +

1

n
Rn
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with Rn = Op(1). Hence, we have for the dominant term in E∗Γ̂∗n

E∗
t∑

k=1

Ψ̂t−k
n ε∗k ⊗ ε∗k

(
Ψ̂t−k
n

)T
=

t∑
k=1

Ψ̂t−k
n

(
Γ̂n − Ψ̂nΓ̂nΨ̂T

n

)(
Ψ̂t−k
n

)T
+

t∑
k=1

Ψ̂t−k
n

1

n
Rn

(
Ψ̂t−k
n

)T
=

t∑
k=1

Ψ̂t−k
n Γ̂n

(
Ψ̂t−k
n

)T
−

t−1∑
l=0

Ψ̂t−l
n Γ̂n

(
Ψ̂t−l
n

)T
+Op

(
1

n

)
= Γ̂n − Ψ̂t

nΓ̂n

(
Ψ̂t
n

)T
+Op

(
1

n

)

where we have used that Rn = Op(1),
∥∥∥Ψ̂l

n

∥∥∥
L
≤
∥∥∥Ψ̂n

∥∥∥l
L
≤ δ̂l for some δ̂ < 1 and large

enough n as in the proof of Proposition 6.4.1 and
∑t

k=1 δ̂
2(t−k) ≤ 1

1− δ̂2
. Finally,

E∗
1

n

n−1∑
t=0

t∑
k=1

Ψ̂t−k
n ε∗k ⊗ ε∗k

(
Ψ̂t−k
n

)T
=

1

n

n−1∑
t=0

(
Γ̂n − Ψ̂t

nΓ̂n

(
Ψ̂t
n

)T)
+Op

(
1

n

)
= Γ̂n +Op

(
1

n

)

as, using again the above argument that
∥∥∥Ψ̂l

n

∥∥∥
L
≤ δ̂l∥∥∥∥∥

n−1∑
t=0

Ψ̂t
nΓ̂n

(
Ψ̂t
n

)T∥∥∥∥∥
L

≤
n−1∑
t=0

δ̂2t
∥∥∥Γ̂n

∥∥∥
L
≤ 1

1− δ̂2

∥∥∥Γ̂n

∥∥∥
L

= Op(1)

Analogously, the expectation of the first term in 6.4 is Op
(

1

n

)
.

Note that under our standard assumption,
∥∥∥Ψ̂n −Ψ

∥∥∥
L
→
a.s.

0 holds by Lemma 12.

The following result just states a rule of calculation needed in the proof of the following

main result.

Lemma 14. If (U,U∗) , (V, V ∗) are i.i.d. L2-valued random variables such that d2
2 (U,U∗) =

E ‖U − U∗‖2; then

E ‖(U ⊗ V − U∗ ⊗ V ∗) (x)‖2 ≤ 2
(
E ‖U‖2 + E ‖U∗‖2) d2

2 (U,U∗) ‖x‖2

for any x in L2.

Proof. Using independence of (U,U∗) and (V, V ∗)

E ‖(U ⊗ V − U∗ ⊗ V ∗) (x)‖2 = E ‖(U − U∗)⊗ V (x) + U∗ ⊗ (V − V ∗) (x)‖2

≤ 2
(
E 〈U − U∗, x〉2 E ‖V ‖2 + E 〈U∗, x〉2 E ‖V − V ∗‖2)

≤ 2d2
2 (U,U∗) ‖x‖2 (E ‖U‖2 + E ‖U∗‖2)
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as E ‖V − V ∗‖2 = E ‖U − U∗‖2 and E ‖V ‖2 = E ‖U‖2

Theorem 6.5.1. Under the assumptions of Theorem 6.3.1, we have uniformly in x ∈ L2

for n→∞

1

‖x‖2nd
2
2

(
Γ̂n(x)− Γ(x), Γ̂∗n(x)− Γ̂n(x)

)
→
p

0

Proof. As in the proof of Proposition 6.4.1 we choose (ε′t, ε
∗
t ) i.i.d. such that L (ε∗t ) =

F̂n, L (ε′t) = F and E ‖ε′t − ε∗t‖
2 = d2

2

(
F, F̂n

)
. Moreover, we choose X∗0 = X ′0 independent

of (ε′k, ε
∗
k) , k ≥ 1, and L (X ′0) = L (X0). Due to stationarity of {Xt},EΓ̂n = Γ, and from

Lemmas 12 and 13 we have E∗Γ̂∗n = Γ̂n +Op
(

1

n

)
. Hence, up to terms of order

1

n
, which

we denote by ∼ to simplify notation:

Γ̂′n − Γ−
(

Γ̂∗n − Γ̂n

)
∼ 1

n

n−1∑
t=0

(X ′t ⊗X ′t − E (X ′t ⊗X ′t)− (X∗t ⊗X∗t − E∗ (X∗t ⊗X∗t )))

=
1

n

n−1∑
t=0

At

Replacing X ′t, X
∗
t by their representation in terms of X ′0, ε

′
1, . . . , ε

′
t respectively ε∗1, . . . , ε

∗
t ,

i.e.

X ′t = Ψt (X ′0) +
t∑

k=1

Ψt−k (ε′k) , X
∗
t = Ψ̂t

n (X ′0) +
t∑

k=1

Ψ̂t−k
n (ε∗k)

we have At = at + bt + bTt + ct + dt with

at = Ψt [X ′0 ⊗X ′0 − E (X ′0 ⊗X ′0)]
(
Ψt
)T − Ψ̂t

n [X ′0 ⊗X ′0 − E (X ′0 ⊗X ′0)]
(

Ψ̂t
n

)T
bt =

t∑
k=1

[
Ψt−k (ε′k ⊗X ′0)

(
Ψt
)T − Ψ̂t−k

n (ε∗k ⊗X ′0)
(

Ψ̂t
n

)T]

ct =
t∑

k 6=l=1

[
Ψt−k (ε′k ⊗ ε′l)

(
Ψt−l)T − Ψ̂t−k

n (ε∗k ⊗ ε∗l )
(

Ψ̂t−l
n

)T]

dt =
t∑

k=1

[
Ψt−k (ε′k ⊗ ε′k)− E (ε′k ⊗ ε′k)

(
Ψt−k)T − Ψ̂t−k

n (ε∗k ⊗ ε∗k) + E∗ (ε∗k ⊗ ε∗k)
(

Ψ̂t−k
n

)T]

where we have used that (ε′k, ε
∗
k) are i.i.d. with mean 0 to get, e.g., Eε′k⊗ ε′l = 0 for k 6= l.

As we are interested in

E
∥∥∥[Γ̂′n − Γ−

(
Γ̂∗n − Γ̂n

)]
(x)
∥∥∥2

∼ 1

n2

n−1∑
s,t=0

E 〈At(x), As(x)〉
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we have to study terms like
E
∑n−1

s,t=0 〈at(x), bs(x)〉 , E
∑n−1

s,t=0 〈ct(x), cs(x)〉 , E
∑n−1

s,t=0 〈dt(x), ds(x)〉.

a) We start with
∑n−1

s,t=0 E 〈ct(x), cs(x)〉 =
∑n−1

s,t=0

∑t
k 6=l=1

∑s
i 6=j=1 EB

(s,t)
klij (x) where

B
(s,t)
klij (x) =

〈
Ψt−k (ε′k ⊗ ε′l)

(
Ψt−l)T (x)− Ψ̂t−k

n (ε∗k ⊗ ε∗l )
(

Ψ̂t−l
n

)T
(x),

Ψs−i (ε′i ⊗ ε′j) (Ψs−j)T (x)− Ψ̂s−i
n

(
ε∗i ⊗ ε∗j

) (
Ψ̂s−j
n

)T
(x)

〉
As k 6= l, we have Eε′k ⊗ ε′l(z) = E 〈ε′k, z〉 ε′l = E 〈ε′k, z〉Eε′l = 0 and, analogously, E∗ε∗k ⊗
ε∗l (z) = 0 for all z. Moreover, if e.g. j 6= k, l, we have

E
〈
Ψt−k (ε′k ⊗ ε′l) (z),Ψs−i (ε′i ⊗ ε′j) (y)

〉
= E 〈ε′k, z〉

〈
Ψt−kε′l,Ψ

s−iε′j
〉
〈ε′i, y〉

=
〈
E
{
〈ε′k, z〉 〈ε′i, y〉Ψt−kε′l

}
,EΨs−iε′j

〉
= 0

as EΨs−iε′j = Ψs−i (Eε′j). Analogously, the expectations of the other terms are vanishing,

such that for k 6= l, i 6= j, EB(s,t)
klij (x) = 0 except for k = i 6= l = j or k = j 6= l = i. To

get the expectations of the remaining terms, we decompose

Ψt−k (ε′k ⊗ ε′l)
(
Ψt−l)T − Ψ̂t−k

n (ε∗k ⊗ ε∗l )
(

Ψ̂t−l
n

)T
=
(

Ψt−k − Ψ̂t−k
n

)
(ε′k ⊗ ε′l)

(
Ψt−l)T + Ψ̂t−k

n (ε′k ⊗ ε′l)
(

Ψt−l − Ψ̂t−l
n

)T
+Ψ̂t−k

n (ε′k ⊗ ε′l − ε∗k ⊗ ε∗l )
(

Ψ̂t−l
n

)T
= β1,t + β2,t + β3,t

and using ‖Ψj‖L ≤ ‖Ψ‖
j
L ≤ δ̂j for some δ̂ < 1.

‖β1,t(x)‖ ≤
∥∥∥Ψt−k − Ψ̂t−k

n

∥∥∥
L
‖ε′k ⊗ ε′l‖L

∥∥Ψt−l∥∥
L ‖x‖

≤ Dδ̂2t−k−l
∥∥∥Ψ− Ψ̂n

∥∥∥
L
‖ε′k ⊗ ε′l‖L ‖x‖

for some generic constant D from the proof of Proposition 6.4.1. Analogously,

‖β2,t(x)‖ ≤ Dδ̂2t−k−l
∥∥∥Ψ− Ψ̂n

∥∥∥
L
‖ε′k ⊗ ε′l‖L ‖x‖

‖β3,t(x)‖ ≤ δ̂2t−k−l ‖ε′k ⊗ ε′l − ε∗k ⊗ ε∗l ‖L ‖x‖

where we use
∥∥∥Ψ̂j

n

∥∥∥
L
≤
∥∥∥Ψ̂n

∥∥∥j
L

and
∥∥∥Ψ̂n

∥∥∥
L
≤ δ̂ for large enough n again from the proof

of Proposition 6.4.1. Using ‖U ⊗ V ‖L ≤ ‖U‖ ‖V ‖, which follows from the definition of
the operator norm and of ⊗ and from the Cauchy-Schwarz inequality, we have

‖βi,t(x)‖ ≤ Dδ̂2t−k−l
∥∥∥Ψ− Ψ̂n

∥∥∥
L
‖ε′k‖ ‖ε′l‖ ‖x‖ , i = 1, 2

For β3t, we use

‖ε′k ⊗ ε′l − ε∗k ⊗ ε∗l ‖L ≤ ‖(ε′k − ε∗k)⊗ ε′l‖L + ‖ε∗k ⊗ (ε′l − ε∗l )‖L
≤ ‖ε′k − ε∗k‖ ‖ε′l‖+ ‖ε∗k‖ ‖ε′l − ε∗l ‖
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to get
‖β3t(x)‖ ≤ δ̂2t−k−l ‖x‖ {‖ε′l‖ ‖ε′k − ε∗k‖+ ‖ε∗k‖ ‖ε′l − ε∗l ‖}.
Now, as k 6= l,∣∣∣EB(s,t)

klkl (x)
∣∣∣ ≤ E |〈β1t(x) + β2t(x) + β3t(x), β1s(x) + β2s(x) + β3s(x)〉|

≤ 4D2δ̂2(t+s−k−l)
∥∥∥Ψ− Ψ̂n

∥∥∥2

L
E ‖ε′k‖

2 E ‖ε′l‖
2 ‖x‖2

+4Dδ̂2(t+s−k−l)
∥∥∥Ψ− Ψ̂n

∥∥∥
L

{
E ‖ε′l‖

2 E (‖ε′k‖ ‖ε′k − ε∗k‖)

+E (‖ε′k‖ ‖ε∗k‖)E (‖ε′l‖ ‖ε′l − ε∗l ‖)} ‖x‖
2

+δ̂2(t+s−k−l)E {‖ε′l‖ ‖ε′k − ε∗k‖+ ‖ε∗k‖ ‖ε′l − ε∗l ‖}
2 ‖x‖2

Note that the expectation in the last term may be written as

E ‖ε′l‖
2 E ‖ε′k − ε∗k‖

2
+ 2E (‖ε′l‖ ‖ε′l − ε∗l ‖)E (‖ε∗k‖ ‖ε′k − ε∗k‖) + E∗ ‖ε∗k‖

2 E∗ ‖ε′l − ε∗l ‖
2

≤
(
E ‖ε′l‖

2
+ 2

√
E ‖ε′l‖

2
√

E∗ ‖ε∗k‖
2 + E∗ ‖ε∗k‖

2

)
d2

2

(
F, F̂n

)
≤ 2

(
E ‖ε′l‖

2
+ E∗ ‖ε∗k‖

2
)
d2

2

(
F, F̂n

)
due to our particular choice of (ε′k, ε

∗
k). Analogously, we get for the term involving expec-

tation in the second to last term that it is bounded by, using that ε′l, ε
′
k are identically

distributed,

E ‖ε′l‖
2
√

E ‖ε′k‖
2d2

(
F, F̂n

)
+

√
E ‖ε′k‖

2
√
E∗ ‖ε∗k‖

2
√
E ‖ε′l‖

2d2

(
F, F̂n

)
= E ‖ε′k‖

2

(√
E ‖ε′k‖

2 +

√
E∗ ‖ε∗k‖

2

)
d2

(
F, F̂n

)

From Theorem 6.3.1, we have d2
2

(
F, F̂n

)
= op(1) and, using Lemma 8.3 of Bickel and

Freedman, [6], E∗ ‖ε∗t‖
2 →

p
E ‖εt‖2, i.e. E∗ ‖ε∗t‖

2 = Op(1). From Lemma 12,
∥∥∥Ψ− Ψ̂n

∥∥∥
L
→
a.s.

0. So, we have with some generic constant D∣∣∣EB(s,t)
klkl (x)

∣∣∣ ≤ Dδ̂2(t+s−k−l) ‖x‖2 op(1)

uniformly in k, l, s, t and x. Analogously, we have the same upper bound for
∣∣∣EB(s,t)

kllk (x)
∣∣∣

too. Finally, we conclude, using that k = i, l = j or k = j, l = i is only possible for
k, l ≤ min(s, t)

∣∣∣∣∣
n−1∑
s,t=0

E 〈ct(x), cs(x)〉

∣∣∣∣∣ ≤
n−1∑
s,t=0

min(s,t)∑
k 6=l=1

δ̂2(t+s−k−l)D ‖x‖2 op(1)

= ‖x‖2 op(n)

as the first factor is O(n) by the same kind of calculations as in the proof of Proposition
5.3.3, part b).
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b) As the next term, we consider

n−1∑
s,t=0

E 〈dt(x), ds(x)〉 =
n−1∑
s,t=0

t∑
k=1

s∑
l=1

EB(s,t)
kl (x)

where

B
(s,t)
kl (x) =

〈[
Ψt−k (ε′k ⊗ ε′k − Eε′k ⊗ ε′k)

(
Ψt−k)T − Ψ̂t−k

n (ε∗k ⊗ ε∗k − E∗ε∗k ⊗ ε∗k)
(

Ψ̂t−k
n

)T ]
(x),[

Ψs−l (ε′l ⊗ ε′l − Eε′l ⊗ ε′l)
(
Ψs−l)T − Ψ̂s−l

n (ε∗l ⊗ ε∗l − E∗ε∗l ⊗ ε∗l )
(

Ψ̂s−l
n

)T ]
(x)

〉
Due to independence of (ε′k, ε

∗
k) , (ε′l, ε

∗
l ) and linearity of the operators involved, we have

EB(s,t)
kl = 0 for k 6= l. For the remaining case, as in a), we decompose the left factor of

the scalar product into 3 terms, where now

β1t =
(

Ψt−k − Ψ̂t−k
n

)
(ε′k ⊗ ε′k − Eε′k ⊗ ε′k)

(
Ψt−k)T

β2t = Ψ̂t−k
n (ε′k ⊗ ε′k − Eε′k ⊗ ε′k)

(
Ψt−k − Ψ̂t−k

n

)T
β3t = Ψ̂t−k

n (ε′k ⊗ ε′k − Eε′k ⊗ ε′k − ε∗k ⊗ ε∗k + E∗ε∗k ⊗ ε∗k)
(

Ψ̂t−k
n

)T
such that
B

(s,t)
kk (x) = 〈β1t(x) + β2t(x) + β3t(x), β1s(x) + β2s(x) + β3s(x)〉

For the first two terms, we use

‖ε′k ⊗ ε′k − E (ε′k ⊗ ε′k)‖L ≤ ‖ε′k ⊗ ε′k‖L + E ‖ε′k ⊗ ε′k‖L
≤ ‖ε′k‖

2
+ E ‖ε′k‖

2

and we conclude as in a), with EOp(1) = O(1) uniformly in k, t

‖βit(x)‖ ≤ Op(1)δ̂2(t−k)
∥∥∥Ψ− Ψ̂n

∥∥∥
L
‖x‖ , i = 1, 2.

For the third term, we abbreviate ∆k = ε′k ⊗ ε′k − ε∗k ⊗ ε∗k such that

‖β3t(x)‖ ≤ δ̂2(t−k) ‖∆k − E∆k‖L ‖x‖
Using Cauchy-Schwarz, we have for some generic constant D∣∣∣EB(s,t)

kk (x)
∣∣∣ ≤ E |〈β1t(x) + β2t(x) + β3t(x), β1s(x) + β2s(x) + β3s(x)〉|

≤ 4Dδ̂2(t+s−2k)
∥∥∥Ψ− Ψ̂n

∥∥∥2

L
‖x‖2

+4Dδ̂2(t+s−2k)
∥∥∥Ψ− Ψ̂n

∥∥∥
L
E ‖∆k − E∆k‖L ‖x‖

2

+δ̂2(t+s−2k)E ‖∆k − E∆k‖2
L ‖x‖

2

As
∥∥∥Ψ− Ψ̂n

∥∥∥
L
→
a.s.

0, and as, from Lemma 15 below

E ‖∆k − E∆k‖L ≤
√
E ‖∆k − E∆k‖2

L and E ‖∆k − E∆k‖2
L ≤ E ‖∆k‖2

L →p 0
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uniformly in k as (ε′k, ε
∗
k) are identically distributed, we have∣∣∣EB(s,t)

kk (x)
∣∣∣ ≤ D ‖x‖2 δ̂2(t+s−2k)op(1)

uniformly in k, s, t, x. Hence, as for k = l, we have k ≤ min(s, t)

∣∣∣∣∣
n−1∑
s,t=0

E 〈dt(x), ds(x)〉

∣∣∣∣∣ ≤
n−1∑
s,t=0

min(s,t)∑
k=1

δ̂2(t+s−2k)D ‖x‖2 op(1)

= ‖x‖2 op(n)

as the first factor is O(n) by the same calculations as in the proof of Proposition 5.3.3,
part b).

c) We consider a third case in detail below. The other components of
∑n−1

s,t=0 E 〈At(x), As(x)〉
can be shown to be of order ‖x‖2 op(n) in the same manner, and we finally conclude, as

E∗Γ̂∗n = Γ̂n +Op
(

1

n

)
,

nE
∥∥∥Γ̂′n(x)− Γ(x)−

[
Γ̂∗n(x)− Γ̂n(x)

]∥∥∥2

∼ 1

n

n−1∑
s,t=0

〈At(x), As(x)〉

= ‖x‖2 op(1)

uniformly in x and our assertion follows.

As the final case, we study

n−1∑
s,t=0

E 〈at(x), bs(x)〉 =
n−1∑
s,t=0

s∑
k=1

EB(s,t)
k (x)

where

B
(s,t)
k (x) =

〈
Ψt [X ′0 ⊗X ′0 − EX ′0 ⊗X ′0]

(
Ψt
)T

(x)− Ψ̂t
n [X ′0 ⊗X ′0 − EX ′0 ⊗X ′0]

(
Ψ̂t
n

)T
(x),

Ψs−k (ε′k ⊗X ′0) (Ψs)T (x)− Ψ̂s−k
n (ε∗k ⊗X ′0)

(
Ψ̂s
n

)T
(x)

〉

we decompose the left factor of the scalar product into γ1t(x) + γ2t(x) with ξ0 = X ′0 ⊗
X ′0 − EX ′0 ⊗X ′0,

γ1t(x) =
(

Ψt − Ψ̂t
n

)
ξ0

(
Ψt
)T

(x)

γ2t(x) =
(
Ψt
)T
ξ0

(
Ψt − Ψ̂t

n

)T
(x)

115



Analogously, the second factor is β1s(x) + β2s(x) + β3s(x) with

β1s(x) =
(

Ψs−k − Ψ̂s−k
n

)
(ε′k ⊗X ′0) (Ψs)T (x)

β2s(x) = Ψ̂s−k
n (ε′k ⊗X ′0)

(
Ψs − Ψ̂s

n

)T
(x)

β3s(x) = Ψ̂s−k
n (ε′k ⊗X ′0 − ε∗k ⊗X ′0)

(
Ψ̂s
n

)T
(x) = Ψ̂s−k

n [(ε′k − ε∗k)⊗X ′0]
(

Ψ̂s
n

)T
(x)

As in part a) and b) of the proof, we have for some constant D

‖γit(x)‖ ≤ Dδ̂2t
∥∥∥Ψ− Ψ̂n

∥∥∥
L
‖ξ0‖L ‖x‖ , i = 1, 2

‖βis(x)‖ ≤ Dδ̂2s−k
∥∥∥Ψ− Ψ̂n

∥∥∥
L
‖ε′k ⊗X ′0‖L ‖x‖ , i = 1, 2

‖β3s(x)‖ ≤ δ̂2s−k ‖(ε′k − ε∗k)⊗X ′0‖L ‖x‖

We use

‖ξ0‖L ≤ ‖X
′
0 ⊗X ′0‖L + E ‖X ′0 ⊗X ′0‖L ≤ ‖X

′
0‖

2
+ E ‖X ′0‖

2

‖ε′k ⊗X ′0‖L ≤ ‖ε
′
k‖ ‖X ′0‖

‖(ε′k − ε∗k)⊗X ′0‖L ≤ ‖ε
′
k − ε∗k‖ ‖X ′0‖

Using Cauchy-Schwarz, we have for some suitable constant D, as, due to independence
of X ′0 and (ε′k, ε

∗
k)

E ‖ξ0‖L ‖ε
′
k ⊗X ′0‖L ≤ E

(
‖X ′0‖

2
+ E ‖X ′0‖

2
)
‖ε′k‖ ‖X ′0‖

= E ‖ε′k‖ 2E ‖X ′0‖
3
<∞

E ‖ξ0‖L ‖ε
′
k − ε∗k‖ ‖X ′0‖ = E ‖ε′k − ε∗k‖E ‖ξ0‖L ‖X

′
0‖

≤ d2

(
F, F̂n

)
2E ‖X ′0‖

3

So that

∣∣∣EB(s,t)
k (x)

∣∣∣ ≤ E |〈γ1t(x) + γ2t(x), β1s(x) + β2s(x) + β3s(x)〉|

≤ 4Dδ̂2(t+s)−k
∥∥∥Ψ− Ψ̂n

∥∥∥2

L
‖x‖2

+2Dδ̂2(t+s)−k
∥∥∥Ψ− Ψ̂n

∥∥∥
L
d2

(
F, F̂n

)
‖x‖2

= δ̂2(t+s)−k ‖x‖2 op(1)
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uniformly in t, s, k, x. Therefore,

n−1∑
s,t=0

E 〈at(x), bs(x)〉 ≤
n−1∑
s,t=0

s∑
k=1

δ̂2(t+s)−k ‖x‖2 op(1)

≤ 1

1− δ̂

n−1∑
s,t=0

δ̂2t+s ‖x‖2 op(1)

≤ 1(
1− δ̂

)2

1

1− δ̂2
‖x‖2 op(1)

Hence, this term is of even smaller order ‖x‖2 op(1) compared to ‖x‖2 op(n) of the terms
considered in a) and b).

Lemma 15. Let (ε′t, ε
∗
t ) , t = 1, . . . , n, be defined as in the proof of Theorem 6.5.1. Then,

under the assumptions of that theorem

E ‖ε′k ⊗ ε′k − ε∗k ⊗ ε∗k‖
2
L →p 0, n→∞

Proof. As in the proof of Theorem 6.5.1, part a), we have (for k=l here)

‖ε′k ⊗ ε′k − ε∗k ⊗ ε∗k‖
2
L ≤ ‖ε

′
k − ε∗k‖

2
(‖ε′k|+ ‖ε∗k‖)

2

Similar to the proof of Proposition 5.3.3, part c), we use that ‖ε′k − ε∗k‖ →
p

0, which follows

from d2
2

(
F, F̂n

)
= E ‖ε′k − ε∗k‖

2 →
p

0 and a dominated convergence argument i.e. we have

to find a real random variable W with EW 4 < ∞ and ‖ε′k − ε∗k‖
2 (‖ε′k|+ ‖ε∗k‖)

2 ≤ W 4.
As ‖ε′k − ε∗k‖ ≤ ‖ε′k‖+ ‖ε∗k‖, we choose W = ‖ε′k‖+U for some U ≥ 0 with EU4 <∞ and
‖ε∗k‖ ≤ U . Note that we have E ‖ε′k‖

4 = E ‖εk‖4 <∞ by assumption. Recall that ε∗k can

be written as ε̃J with J being a Laplace variable in {1, . . . , n}, i.e. pr (J = k) =
1

n
, k =

1, . . . , n. Hence,

ε∗k = ε̃J = ε̂J −
1

n

n∑
k=1

ε̂k = XJ − Ψ̂n (XJ−1)− 1

n

n∑
k=1

Xk +
1

n

n∑
k=1

Ψ̂n (Xk−1)

and using
∥∥∥Ψ̂n

∥∥∥ ≤ δ̂ for large enough n from the proof of Proposition 6.4.1,

‖ε∗k‖ ≤ ‖XJ‖+ δ̂ ‖XJ−1‖+

∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥+ δ̂

∥∥∥∥∥ 1

n

n∑
k=1

Xk−1

∥∥∥∥∥ = U

We have EU4 < ∞ (recall that all expectations are conditional w.r.t. X0, . . . , Xn if
considering (ε′t, ε

∗
t )), as, e.g.,

E ‖XJ‖4 =
1

n

n∑
j=1

‖XJ‖4 ≤ C

for any C > E ‖XJ‖4 and all large enough n by the strong law of large numbers for
strictly stationary real time series.
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Corollary 6.5.1. Under the assumptions of Theorem 6.5.1, we have for any random
variable W independent of X0, ε1, . . . , εn

1

E ‖W‖2nd
2
2

(
Γ̂n(W )− Γ(W ), Γ̂∗n(W )− Γ̂n(W )

)
→
p

0

uniformly in E ‖W‖2

Proof. The result follows from replacing x by W in the proof of Proposition 6.2.2 and
using that, due to independence, E ‖W‖2 shows up as a factor instead of E ‖x‖2.

6.6 Some remarks on bootstrapping the autoregres-

sive operator

We would like to show that the bootstrap holds for the estimate of the autoregressive

parameter Ψ. In view of the asymptotic results of Mas, [44], we can only expect that the

prediction error restricted to the subspace generated by (ν̂1, . . . , ν̂kn) can be approximated

by the bootstrap, e.g. that

√
n
(

Ψ̂n −ΨΠ̂kn

)(
X̃t

)
and
√
n
(

Ψ̂∗n − Ψ̂nΠ̂∗kn

)(
X̃t

)
asymptotically have the same distribution. Similar to the approach of Shibata, [51],

for investigating the prediction performance of autoregressive models with data-adaptive

order, we consider the prediction error of predicting X̃t+1 from X̃t for an independent

realisation of the time series {Xt}, i.e. we separate estimation based on X0, . . . , Xn and

prediction which is done for {X̃t}. Now, from Lemma 10,

√
n
(

Ψ̂n −ΨΠ̂kn

)(
X̃t

)
=

1√
n
SnΓ̂†n

(
X̃t

)
√
n
(

Ψ̂∗n − Ψ̂nΠ̂∗kn

)(
X̃t

)
=

1√
n
S∗nΓ̂∗†n

(
X̃t

)
However, showing that the bootstrap approximation holds for these terms, we cannot

just combine the arguments leading to Propositions 6.2.2 and 6.4.1. The main issue is

that

Γ̂n(x) =
∑∞

j=1 λ̂j 〈x, ν̂j〉 ν̂j =
1

n

∑n−1
t=0 Xt ⊗Xt

has an explicit representation in terms of the data whereas we do not have an easy similar

property for
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Γ̂†n(x) =
∑kn

j=1

1

λ̂j
〈x, ν̂j〉 ν̂j

or even for the eigenvectors ν̂j. In proving his asymptotic Theorem 3.1, Mas [44] uses

pertubation theory of operators to get representations like

ν̂k ⊗ ν̂k =
1

2πi

∫
Cn

(
zI − Γ̂n

)−1

dz

where Cn is the boundary of an open subset of C containing λk, but no other eigen-

value, e.g. the boundary of a small circle with center λk. This leads to a corresponding

representation

Γ̂†k =
kn∑
j=1

∫
Cj

1

z

(
zI − Γ̂n

)−1

dz

of the truncated inverse of Γ̂n in terms of Γ̂n. Under appropriate assumptions Mas shows

as his Proposition 5.1

1√
nkn

Sn

(
Γ̂†n − Γ†

)
(Xn+1)→

p
0 with Γ† =

kn∑
j=1

1

λj
νj ⊗ νj

It is easy to check, that this result also holds with X̃t replacing Xn+1.

Note that in the definition of Sn on p.1242 of Mas, [44], a factor
1

n
is missing. Otherwise,

equation (13) of Mas would not hold - compare also our Lemma 10. As E
∑n

t=1 Xt−1 ⊗

εt(x) = 0 and E ‖
∑n

t=1Xt−1 ⊗ εt‖2
= E 〈X, x〉2 E ‖ε1‖2, we have to scale with

1√
n

, not

with
√
n as in the proposition 5.1 of Mas.

If we consider a fixed kn = p, writing Γ̂†n,p, Ψ̂n,p etc. to make this visible, we even have,

as this is just a special case

1√
n
Sn

(
Γ̂†n,p − Γ†p

)
(Xn+1)→

p
0 with Γ†p =

p∑
j=1

1

λj
νj ⊗ νj (6.5)

To use this result we need the additional assumptions 3.1-3.4 of Mas, [44], from our

section 3.2 above. Assumption 3.1 is part of our usual assumptions in this chapter. It is

easily checked that it holds for the bootstrap process X∗t too for all large enough n, i.e.

ker
(

Γ̂n

)
= 0 a.s.,E∗ ‖ε∗t‖

2 ≤ C <∞ uniformly in n and
∥∥∥Ψ̂n

∥∥∥
L
< 1 a.s.

However, the other assumptions and, in particular 3.3 about the Karhunen-Loéve ex-

pansion, are hard to check for X∗t such that we do not easily have the analogue of 6.5
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in the bootstrap world, though, in view of Propositions 6.2.1 and 6.2.2 it is likely true

too. If we assume this property, then we can show immediately that the bootstrap works

for the predictor Ψ̂n,p, for fixed kn = p. Note, that for constructing the bootstrap data

we still use the estimate Ψ̂n with increasing kn as, otherwise, the residuals ε̂t would not

approximate the innovations εt.

Proposition 6.6.1. Under the conditions of Theorem 6.3.1 and assuming additionally
3.2-3.4 and

1√
n
S∗n

(
Γ̂∗†n,p − Γ†p

)(
X̃t

)
→
p

0 (6.6)

we have for {X̃t} from an independent realisation of {Xt}
a)
√
n
(

Ψ̂n,p −ΨΠ̂p

)(
X̃t

)
→
w
S∞Γ†p(X̃t), for n → ∞, where S∞,Γ

†
p are as in Theorem

6.2.1.
b)
√
n
(

Ψ̂∗n,p − Ψ̂nΠ̂∗p

)(
X̃t

)
→
w
S∞Γ†p(X̃t), for n→∞, too, i.e. the bootstrap approxima-

tion holds.

Proof. a) follows from Theorem 6.2.1. As in the proofs of Propositions 6.2.1 and 6.2.2,
we choose X ′0, (ε

′
t, ε
∗
t ) , t = 1, . . . , n, where X0, . . . , Xn are treated as given. Then,

√
n
(

Ψ̂′n,p −ΨΠ̂′p

)(
X̃t

)
has the same distribution as

√
n
(

Ψ̂n,p −ΨΠ̂p

)(
X̃t

)
. From

Lemma 10,

√
n
(

Ψ̂′n,p −ΨΠ̂′p

)
=

1√
n
S ′nΓ̂′†n,p,

√
n
(

Ψ̂∗n,p − Ψ̂nΠ̂∗p

)
=

1√
n
S∗nΓ̂∗†n,p

We decompose, writing here ∼ for equal distribution for n→∞

1√
n
S ′nΓ̂′†n,p

(
X̃t

)
=

1√
n
S ′n

(
Γ†p

(
X̃t

))
+

1√
n
S ′n

(
Γ̂′†n,p − Γ†p

)(
X̃t

)
∼ 1√

n
S ′n

(
Γ†p

(
X̃t

))
as the second term on the right-hand side of the first line converges to 0 in probability
from Proposition 5.1 of Mas, [44].

From assumption 6.6 we have the analogue for the bootstrap data

1√
n
S∗nΓ̂∗†n,p

(
X̃t

)
∼ 1√

n
S∗n

(
Γ†p

(
X̃t

))
Then, from Proposition 6.4.1

d2
2

(
1√
n
Sn

(
Γ†p

(
X̃t

))
,

1√
n
S∗n

(
Γ†p

(
X̃t

)))
→
p

0

such that b) follows from a) and Lemma 8.3 of Bickel and Freedman, [6].
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Chapter 7

Simulation Studies and Results

In this chapter results for the simulations carried out are reported. The goal of the

simulation study is to assess the theoretical results obtained in the previous chapter. In

particular, we carry out a simulation to test the goodness of fit of the model in which case

the critical value is obtained by bootstrap technique. We also carry out a simulation to

estimate the model parameter using the bootstrap technique and also to check whether

the distribution obtained by bootstrapping is close to that obtained asymptotically i.e.

to investigate numerically the weak convergence of the predictions.

7.1 Weak Convergence of the FAR(1) Process

The FAR(1) series is generated according to the model

Xn+1(t) =

∫ 1

0

ψ(t, s)Xn(s)ds+ εn+1(t) (7.1)

The sample consists of 252 curves Xn(t), including a burn-in phase of 50 observations

which we do not use for estimation, each curve with 100 data points between [0,1] which

are generated from an initial observation X0 of zeros. Residuals (ε) are generated from a

Wiener process, chosen for its simplicity, randomness and constant mean zero.

The Gaussian kernel is chosen for the process and numerical integration employed to

estimate the value of the constant C such that ‖Ψ‖= 0.5 or ‖Ψ‖ = 0.8. It should be

quickly noted that the constant C is required and chosen so as to ensure the observed

process will have a stationary solution. This follows directly from the scalar autoregressive
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process where to attain stationarity the condition ψ < 1 should be fulfilled. The Gaussian

kernel is given by

ψ(t, s) = Cexp{−(t2 + s2)/2} (7.2)

The constant kernel ψ(t, s) = C and the sloping kernel ψ(t, s) = Ct were also considered

and their constants too were chosen such that the condition ‖Ψ‖ = 0.5 was fulfilled.

A summary of the simulation process is given below;

1. Start with X0 = 0.

2. Generate a sampleX1, ..., Xn+2. Allow a burn-in period of 50 observations, such that

the actual sample size used for estimation isN = 200. The firstN functions are used

in the estimation of Ψ̂n which is then used to predict X̂n+2 i.e X̂n+2 = Ψ̂n(Xn+1).

3. From the relationship Ψ̂n = ΨΠ̂kN +
1

N
SnΓ̂†n, we calculate

1

N
SnΓ†n and subtract

this value from Ψ̂n to obtain ΨΠ̂kN . SnΓ̂†n is defined as

SnΓ†n(x) =
n∑
k=1

∑
l≤kN

∑
j≤kN

λ̂−1
l 〈x, êl〉 〈Xk−1, êl〉 〈εk, êj〉 εj (7.3)

4. Finally we obtain√
N

kN

(
Ψ̂n(Xn+1)−ΨΠ̂kN (Xn+1)

)
(7.4)

5. For the bootstrap process, we obtain the residuals by subtracting Ψ̂(Xn+1) from

ΨΠ̂kN (Xn) and center them.

6. We generate B bootstrap samples X∗n+1 = Ψ̂n(X∗n)+ε∗n+1 from a fixed starting point

say X∗0 = X0 and as above allow for a burn-in of 50 observations.

7. Ψ̂∗n is calculated in the same manner as above for each bootstrap sample and we

use the average for prediction.

8. Finally we compute the quantity√
N

kN

(
Ψ̂∗n(Xn+1)− Ψ̂n(Xn+1)

)
(7.5)
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Figure 7.1: Sample of functional observations

9. The whole process is repeated M=1000 times and the distances between the boot-

strap and empirical approximations are compared.

A sample of six consecutive curves computed using the Gaussian kernel with ‖Ψ‖= 0.5

can be seen in Figure 7.1. As already mentioned in the preceding Chapters, due to an ill

posed inverse problem, we employ a truncated version of the population parameter. We

illustrate the effect of this truncation diagrammatically in Figure 7.2. The figures were

computed using B = 200 replications, and a Gaussian kernel with ‖Ψ‖= 0.5.

It is obvious from Figure 7.2 that the bootstrap estimator of the function is very close

to the empirical predictor, a feature that is highly desirable since we aim at employing

the bootstrap predictor in place of the empirical predictor in the event that the sample

size is small so that we cannot rely on asymptotic estimations. Another feature that is

noticeable is the fact that both the bootstrap and empirical estimates of the observation

are smoother (shorter). This is obviously due to the fact that the empirical and bootstrap

estimators are projected onto the first p principal components that represent most of the

variability. However, although the graphical features are not quite satisfactory, Ψ̂n still

retains its position as the best estimator of the unknown underlying linear operator, see

Kokoszka, [28] for more details on the comparison of the estimators of Ψ.
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Figure 7.2: Sample of functional observations with their empirical and bootstrap predic-
tions

Figure 7.3 shows the observation together with its bootstrap and empirical estimators of

the second curve in Figure 7.2 on the left while on the right, with a different scale, we

have only the empirical and bootstrap predictions. This is to have a clearer picture of

their form.

As noted in Mas, [44], the linear operator Ψ̂n does not converge in distribution to Ψ and

a truncation is necessary in order to ensure convergence. Due to this truncation, we have

that the corresponding truncated observations are smooth in appearance as compared

to the true observations and they therefore are closer to the empirical and bootstrap

observations in terms of graphical appearance. An illustration of this is given in Figure

7.4. The Figure 7.4 shows six consecutive randomly chosen truncated observations (blue)

together with their empirical (red) and bootstrap (green) predictions. The bootstrap

observations were generated from a naive bootstrap procedure with 200 observations and

Gaussian kernel with ‖Ψ‖= 0.5.

We seek to compare the sequences 7.4 and 7.5. When the sequences are close, then we can

infer that the bootstrap predictions are close to the empirical predictions. This in turn

implies that in the event that we have a small sample then we can employ the bootstrap

for estimating the operator and carrying out predictions. Apart from this, using the
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Figure 7.3: Empirical and bootstrap predictions

0 100 200
0.2

0.3

0.4

0.5

0.6

0.7

0 100 200
−0.15

−0.1

−0.05

0

0.05

0 100 200
−0.4

−0.3

−0.2

−0.1

0

0 100 200
0

0.1

0.2

0.3

0.4

0 100 200
−0.6

−0.4

−0.2

0

0.2

0 100 200
−0.4

−0.3

−0.2

−0.1

0

Six consecutive observations with their empirical and bootstrap approximations

Figure 7.4: Truncated observations, Empirical and bootstrap predictions
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Table 7.1: Prediction errors; Brownian motion innovations, Gaussian kernel ‖Ψ‖= 0.8,
Naive bootstrap

B=1000 En Rn BEn BRn

Average 0.0766 0.0658 0.0760 0.0657

Table 7.2: Prediction errors; Brownian motion innovations, Gaussian kernel ‖Ψ‖= 0.8,
Block bootstrap

B=1000 En Rn BEn BRn

Average 0.0873 0.0745 0.0708 0.06886

bootstrap to estimate the asymptotic distribution of the parameter of interest (operator

Ψ), will also enable to compute other statistics of interest for instance confidence bands

or to carry out hypothesis tests among other things. We compare the sequences in two

ways, the distance between the predictions En and Rn which are defined below and

diagrammatically by projecting the differences between the curves into the most relevant

directions (further details below) as in Ferraty et. al., [18].

To estimate the prediction error at time n, we consider the quantities En and Rn from

Didericksen et. al., [16], which are defined as

En =

√∫ 1

0

(
Xn(t)− X̂n(t)

)2

dt and Rn =

∫ 1

0

∣∣∣Xn(t)− X̂n(t)
∣∣∣ dt (7.6)

Their bootstrap counterparts are given by

BE∗n =

√∫ 1

0

(
X̂n(t)− X̂∗n(t)

)2

dt and BR∗n =

∫ 1

0

∣∣∣X̂n(t)− X̂∗n(t)
∣∣∣ dt

The quantities above allow us to assess the distance between the empirical and bootstrap

approximations of the predictions. A summary of the prediction errors for the real and

bootstrap cases is given in Tables 7.1 and 7.2.

To obtain a graphical comparison, we consider the method employed by Ferraty et.

al. which involves comparing the density of the componentwise bootstrapped error〈
Ψ̂∗n(X)− Ψ̂n(X), ûj

〉
, with that of the true error

〈
Ψ̂n(X)−ΨΠ̂kN (Xn+1), ûj

〉
, j =

1, , , 4. ν̂j is the jth orthonormal eigenfunction of

CΨ̂n(X) =
1

n

n∑
i=1

〈
Ψ̂n(Xi), .

〉
Ψ̂n(Xi) (7.7)
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Figure 7.5: Empirical and Naive bootstrap predictions

These particular eigenfunctions are chosen because they are relevant directions for the

variable Ψ̂n(X), and the method in general helps in checking whether we have asymptotic

normality in the relevant directions, i.e the first p most important principal components.

The Bspline basis of order four is used over the interval [0, 1]. Figures ?? and ?? give

the projections onto the first principal component for the naive and block (length=25)

bootstrap cases. It is evident that the naive bootstrap gives a better approximation

as far as the graph is concerned. In terms of the distances En and Rn we observe the

same behaviour with the naive bootstrap posting slightly better results. We quickly

note however that with better tuning of the block length the performance of the block

bootstrap may be improved. In this case the results obtained may not be so reliable since

a block of length 25 ensures that there are only 10 blocks to resample from which may

be considered too small.

We do not consider the 2nd, 3rd and 4th principal components, as for this model the
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Figure 7.6: Empirical and Block bootstrap predictions

projection onto the 1st principle component already explains approximately 95% of vari-

ability.

7.2 Goodness of Fit

To test the goodness of fit of the FAR(1) model, we test the null hypothesis

H0 : Ψ = 0 versus H1 : Ψ 6= 0 (7.8)

where Ψ is as defined in Equation 2.1.

From the relation C = ΨΓ, (see equations 2.4 for a definition) it is evident that when

Ψ = 0, then C = 0 too. The test statistic employed is therefore of the form

TN(p, p) = N

p∑
i=1

p∑
j=1

λ̂−1
i λ̂−1

j 〈C (ν̂i) , ν̂j〉2 (7.9)

where 〈C (ν̂i) , ν̂j〉 =
1

N − 1

∑N−1
n=1 〈Xn, ν̂i〉 〈Xn+1, ν̂j〉 and we reject or fail to reject the

null hypothesis by comparing the value of the test statistic (kernel) for fixed p with the

critical value obtained by bootstrapping. This test statistic has been chosen since it is

clear that if H0 fails then Ψ(ν̂j) 6= 0 for some j ∈ 1, ...p, since we are projecting onto the

subspace consisting of the first p principle components. If Ψ(ν̂j) 6= 0, then from the test
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statistics definition we have that the power goes to 1 as n→∞, thus the test is consistent.

The same test statistic was also employed for a scalar response model (functional linear

model) and it was found to give good results, see [50]. It is also employed by [7] for the

FAR(p) of which the FAR(1) is a special case. A summary of the testing procedure is

given below.

Under the null hypothesis, we simulate M = 1000 time series Xt+1 = εt+1. For each

m ∈ 1, ...,M ;

1. Perform functional principal component analysis and compute the value of the test

statistic TN . Estimate the kernel operator Ψ̂n.

2. Compute the residuals ε̂n+1 = Xn+1 − Ψ̂(Xn) and center them.

3. Using the centered residuals generate B = 1000 bootstrap samples each time com-

puting the test statistic T ∗. Compute the critical value C∗, which is the 95%

quantile of T ∗b , b = 1, ..., B.

4. Reject H0 if T ∗b > C∗ and compute the probability value
p̂ = #{b : Tb > C∗}

M
.

Under the alternative, we simulate M = 1000 time series Xt+1 = Ψ(Xt) + εt+1. We

considered three kernels ψ, namely Gaussian, sloping kernel and the constant kernel. For

each m ∈ 1, ...,M , steps 1, ..., 4 above were repeated.

7.2.1 Results

When the Gaussian kernel with p = 4 and B = M = 1000 was employed, the probability-

value (p-value) under the null hypothesis was 0.044 compared to the nominal level0.05

while under the alternative hypothesis we obtained 1. This can be tied to the fact that

for functional data each curve contains a lot of information and therefore it is simpler to

differentiate between white noise and an FAR(1) process. The same results were obtained

for the sloping and constant kernels, whose constants C, like that in the Gaussian case

were chosen so as to fulfill the condition ‖Ψ‖= 0.55.
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7.3 Kernel estimation using the bootstrap

Following Didericksen et. al. [16], we compare the kernel estimated by means of the

bootstrap with that estimated from the sample. The main aim of this work is to establish

whether the bootstrap estimated kernel is close to the empirically estimated kernel as is

desired.

To check the accuracy of the estimation, we compute the root mean squared error(RMSE)

and the Averaged Distance (AD), defined as

RMSE =

√∫ 1

0

∫ 1

0

(
ψ̂(t, s)− ψ(t, s)

)2

dsdt (7.10)

AD =

∫ 1

0

∫ 1

0

∣∣∣ψ̂(t, s)− ψ(t, s)
∣∣∣ dsdt (7.11)

As in [16], we compare different kernels to see whether significant differences can arise as

a result of the kernel employed in generating the data. Kernels considered include

1. Gaussian: ψ(t, s) = Cexp {−0.5 (t2 + s2)}

2. Identity: ψ(t, s) = C

3. Sloping plane (t): ψ(t, s) = Ct

where the constant C is chosen such that ‖Ψ‖ = 0.5 and ‖Ψ‖ = 0.8.

We consider the first 4 principal components which should explain most of the variability

in the sample. The value 85% is the cumulative percentage of variability that is considered

standard and is the acceptable value in most studies, see for instance [28]. It is evident

from [16] that the distances decrease with increasing N. The estimated kernel ψ however

has peculiar behaviour in that its mean squared error or mean absolute error increase

with increasing number of principal components which is counter intuitive considering

the opposite should occur. This can be attributed to the fact that the values of λj are

very small and therefore a small error in their estimation leads to a larger error in their

inverse.

Our aim is to compute the bootstrap estimate of the kernel and the distances between

the bootstrap estimates ψ̂∗(t, s) and the estimator of the true kernel ψ̂(t, s). Two types
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of bootstrap were employed; the block bootstrap and the naive bootstrap which differ

in the manner of resampling. For the innovations we consider the Brownian bridge and

Brownian motion.

When considering the block bootstrap, the resampling procedure is as follows;

1. Generate a FAR(1) series according to equation 2.1. In this case the Gaussian

kernel was employed and for the error we employed the Brownian bridge defined as

BB(t) = W (t)− tW (1) (7.12)

where W (.) is the standard Wiener process. A burn-in period of 50 observations is

allowed. ψ̂(t, s) is estimated as

ψ̂p(t, s) =
1

N − 1

p∑
k,l=1

ψ̂klν̂k(t)ν̂l(s) (7.13)

where ψ̂ji = λ̂−1
i (N − 1)−1

∑N−1
n=1 〈Xn, ν̂i〉 〈Xn+1, ν̂j〉.

2. For each sample generated, a block bootstrap with B=50 was carried out each

time computing ψ̂∗b (t, s), b = 1, · · · , B. The bootstrap kernel estimators are added

together before being averaged to produce the final bootstrap estimate.

3. The root mean squared error (RMSE) and averaged distance (AD) are then com-

puted.

The procedure is repeated 50 times.

Although we tried several different block lengths, in all cases the perfomance of the block

bootstrap was not very good. It is observed that the distance between the bootstrap and

empirical kernels decreases with increasing N and increases with increasing p.

The resampling procedure for the naive bootstrap is given as

1. Generate a FAR(1) series according to equation 2.1 with given kernel (Gaussian,

identity or sloping) and innovation (Brownian motion or Brownian Bridge).

2. Estimate the kernel ψ̂(t, s) and X̂n, the predictions obtained by using the operator

estimated from the sample.
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3. Compute the residuals which are given by ε̂n = Xn− X̂n and center them to obtain

ε̃.

4. Resample the residuals with replacement and generate an FAR (1) process with the

kernel operator estimated in Step 2 above.

5. Estimate the bootstrap kernels ψ̂∗b (t, s), b = 1, · · · , B and compute their average to

obtain the estimate to be used in comparing distances.

6. Repeat the whole procedure M times.

As in the block bootstrap above, we used M = 50 replications.

In the naive bootstrap case, we have that the distance between the bootstrap and true

estimator also reduces with increasing sample size N. We notice too that 50 bootstrap

replications are enough to provide a good estimate and increasing the number of bootstrap

replications does not improve the estimates.

The naive bootstrap proved to be better at estimating the distance between the bootstrap

and empirical kernels as compared to the block bootstrap. As in the empirical case, [16],

the distances reduced with increasing N but as observed in the true case increasing p

from p = 2 to p = 4 instead of reducing the distance increased it. The same reason

is given for the bootstrap case i.e the eigenvalues estimated decrease with increasing p

and therefore a small error in their estimation results in a large error when they are

inverted. Didericksen et. al., [16] suggest remedying this situation by adding a baseline

b̂ to λi, i > 2, where b̂ = 1.5
(
λ̂1 + λ̂2

)
. This ensures that the MSE and AD do not

increase with p. In the bootstrap case we do not employ this remedy, we simply note

that the bootstrap kernel is very close to the empirical kernel which was our main aim.

Results of simulations are given in Tables [7.3-7.14]. CPV is an abbreviation for cumu-

lative percentage of variance which is a method that is employed inorder to decide the

number of principal components to be included in the estimation. A CPV of 85% and

above is considered sufficient in most cases in literature. The performance improves with

increasing sample size.
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Table 7.3: Kernel estimation errors; Brownian bridge innovations, Gaussian kernel ‖Ψ‖=
0.5, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.3880 (0.0204) 0.0998 (0.0055) 0.3321 (0.0166) 0.0830 (0.0043)
CPV 76.9% 77.73% 76.9% 77.73%
p = 3 0.5651 (0.0268) 0.1560 (0.0207) 0.4538 (0.0075) 0.1243 (0.0057)
CPV 83.87% 84.85% 83.87% 84.85%
p = 4 0.8522 (0.0386) 0.2596 (0.0308) 0.6686 (0.0139) 0.2025 (0.0107)
CPV 88.79% 90.56% 88.79% 90.56%

N = 100
p = 2 0.3328 (0.0109) 0.0706 (0.0096) 0.2860 (0.0039) 0.0595 (0.0032)
CPV 77.15% 77.57% 77.15% 77.57%
p = 3 0.3879 (0.0141) 0.0964 (0.0112) 0.3209 (0.0036) 0.0784 (0.0029)
CPV 83.87% 84.34% 83.87% 84.34%
p = 4 0.5968 (0.0232) 0.1580 (0.0078) 0.4741 (0.0175) 0.1251 (0.0057)
CPV 87.38% 87.97% 87.38% 87.97%

N = 200
p = 2 0.2884 (0.0090) 0.0611 (0.0079) 0.2511 (0.0022) 0.0515 (0.0019)
CPV 76.51% 76.91% 76.51% 76.91%
p = 3 0.3108 (0.0158) 0.0745 (0.0129) 0.2566 (0.0028) 0.0600 (0.0021)
CPV 84.98% 85.84% 84.98% 85.84%
p = 4 0.4563 (0.0231) 0.1072 (0.0179) 0.3676 (0.0079) 0.0859 (0.0062)
CPV 87% 87.39% 87% 87.39%

133



Table 7.4: Kernel estimation errors; Brownian bridge innovations, Gaussian kernel ‖Ψ‖=
0.8, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.3661 (0.0186) 0.1561 (0.0157) 0.3062 (0.0067) 0.1315 (0.0055)
CPV 81.53% 81.33% 81.53% 81.33%
p = 3 0.5219 (0.0255) 0.1551 (0.0072) 0.4175 (0.0200) 0.1257 (0.0060)
CPV 87.88% 87.7% 87.88% 87.7%
p = 4 0.8037 (0.0366) 0.2720 (0.0162) 0.6275 (0.0286) 0.2118 (0.0127)
CPV 90.68% 90.87% 90.68% 90.87%

N = 100
p = 2 0.2774 (0.0118) 0.1293 (0.0102) 0.2344 (0.0035) 0.1091 (0.0030)
CPV 83.2% 83.1% 83.2% 83.1%
p = 3 0.3524 (0.0152) 0.1036 (0.0031) 0.2877 (0.0122) 0.0831 (0.0025)
CPV 88.97% 88.66% 88.97% 88.66%
p = 4 0.5457 (0.0236) 0.1473 (0.0058) 0.4309 (0.0184) 0.1178 (0.0046)
CPV 91.37% 91.30% 91.37% 91.30%

N = 200
p = 2 0.2343 (0.0105) 0.1203 (0.0092) 0.1999 (0.0025) 0.1023 (0.0022)
CPV 83.33% 83.62% 83.33% 83.62%
p = 3 0.2625 (0.0146) 0.0772 (0.0117) 0.2152 (0.0021) 0.0613 (0.0016)
CPV 89.16% 89.09% 83.33% 83.62%
p = 4 0.4279 (0.0221) 0.1027 (0.0172) 0.3384 (0.0047) 0.0828 (0.0036)
CPV 91.43% 91.44% 91.43% 91.44%
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Table 7.5: Kernel estimation errors; Brownian bridge innovations, Identity kernel ‖Ψ‖=
0.5, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.4006 (0.0210) 0.1005 (0.0173) 0.3484 (0.0052) 0.0842 (0.0041)
CPV 76.62% 77.49% 76.62% 81.33%
p = 3 0.5625 (0.0267) 0.1564 (0.0210) 0.4554 (0.0073) 0.1252 (0.0055)
CPV 83.79% 84.78% 83.79% 84.78%
p = 4 0.8542 (0.0374) 0.2627 (0.0140) 0.6733 (0.0296) 0.2054 (0.0106)
CPV 87.54% 88.67% 87.54% 88.67%

N = 100
p = 2 0.3483 (0.0109) 0.0711 (0.0095) 0.3041 (0.0039) 0.0602 (0.0031)
CPV 76.9% 77.36% 76.9% 77.36%
p = 3 0.3898 (0.0140) 0.0978 (0.0112) 0.3257 (0.0035) 0.0803 (0.0029)
CPV 83.77% 84.27% 83.77% 84.27%
p = 4 0.5957 (0.0225) 0.1579 (0.0169) 0.4755 (0.0075) 0.1263 (0.0057)
CPV 87.28% 87.90% 87.28% 87.90%

N = 200
p = 2 0.3038 (0.0086) 0.0593 (0.0077) 0.2679 (0.0019) 0.0508 (0.0017)
CPV 76.21% 76.64% 76.21% 76.64%
p = 3 0.3149 (0.0162) 0.0781 (0.0134) 0.2625 (0.0029) 0.0634 (0.0023)
CPV 83.46% 83.82% 83.46% 83.82%
p = 4 0.4596 (0.0202) 0.1086 (0.0153) 0.3718 (0.0051) 0.0873 (0.0039)
CPV 86.88% 87.30% 86.88% 87.30%
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Table 7.6: Kernel estimation errors; Brownian bridge innovations, Identity kernel ‖Ψ‖=
0.8, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.3706 (0.0183) 0.1536 (0.0155) 0.3151 (0.0043) 0.1306 (0.0037)
CPV 81% 80.97% 81% 80.97%
p = 3 0.5155 (0.0255) 0.1539 (0.0203) 0.4171 (0.0071) 0.1251 (0.0051)
CPV 83.79% 84.78% 83.79% 84.78%
p = 4 0.8100 (0.0349) 0.2702 (0.0269) 0.6342 (0.0125) 0.2093 (0.0093)
CPV 90.63% 90.8% 90.63% 90.8%

N = 100
p = 2 0.3002 (0.0117) 0.1370 (0.0105) 0.2554 (0.0036) 0.1164 (0.0031)
CPV 82.64% 82.65% 82.64% 82.65%
p = 3 0.3503 (0.0157) 0.1038 (0.0030) 0.2874 (0.0126) 0.0840 (0.0025)
CPV 88.86% 88.57% 88.86% 88.57%
p = 4 0.5385 (0.0232) 0.1485 (0.0058) 0.4260 (0.0180) 0.1194 (0.0047)
CPV 91.26% 91.22% 91.26% 91.22%

N = 200
p = 2 0.2535 (0.0101) 0.1325 (0.0091) 0.2181 (0.0033) 0.1142 (0.0030)
CPV 82.7% 83.18% 82.7% 83.18%
p = 3 0.2632 (0.0146) 0.0785 (0.0117) 0.2168 (0.0022) 0.0629 (0.0017)
CPV 89.05% 89% 89.05% 89%
p = 4 0.4260 (0.0212) 0.1080 (0.0161) 0.3378 (0.0044) 0.0869 (0.0036)
CPV 91.3% 91.34% 91.3% 91.34%
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Table 7.7: Kernel estimation errors; Brownian bridge innovations, Sloping kernel ‖Ψ‖=
0.5, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.3951 (0.0186) 0.1108 (0.0038) 0.3248 (0.0164) 0.0862 (0.0027)
CPV 76.26% 77.32% 76.26% 77.32%
p = 3 0.5589 (0.0285 0.1728 (0.0095) 0.4481 (0.0228) 0.1292 (0.0062)
CPV 83.33% 84.52% 83.33% 84.52%
p = 4 0.8557 (0.0343) 0.2536 (0.0115) 0.6700 (0.0266) 0.1928 (0.0083)
CPV 87.37% 88.57% 87.37% 88.57%

N = 100
p = 2 0.3490 (0.0096) 0.0830 (0.0029) 0.2815 (0.0086) 0.0616 (0.0024)
CPV 76.45% 77.14% 76.45% 77.14%
p = 3 0.3996 (0.0144) 0.1093 (0.0039) 0.3234 (0.0122) 0.0830 (0.0030)
CPV 83.12% 83.85% 83.12% 83.85%
p = 4 0.5877 (0.0243) 0.1537 (0.0068) 0.4653 (0.0190) 0.1172 (0.0050)
CPV 87.04% 87.74% 87.04% 87.74%

N = 200
p = 2 0.3038 (0.0078) 0.0736 (0.0019) 0.2418 (0.0073) 0.0536 (0.0015)
CPV 75.81% 76.45% 75.81% 76.45%
p = 3 0.3354 (0.0175) 0.0968 (0.0048) 0.2721 (0.0151) 0.0698 (0.0034)
CPV 82.79% 83.35% 82.79% 83.35%
p = 4 0.4566 (0.0204) 0.1112 (0.0047) 0.3668 (0.0161) 0.0815 (0.0030)
CPV 86.65% 87.12% 86.65% 87.12%
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Table 7.8: Kernel estimation errors; Brownian bridge innovations, Sloping kernel ‖Ψ‖=
0.8, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.4047 (0.0142) 0.1446 (0.0036) 0.3142 (0.0132) 0.1084 (0.0026)
CPV 80.22% 80.5% 80.22% 80.5%
p = 3 0.5357 (0.0245) 0.1526 (0.0062) 0.4241 (0.02) 0.1154 (0.0045)
CPV 86.62% 86.92% 86.62% 86.92%
p = 4 0.8042 (0.0326) 0.2226 (0.01) 0.6284 (0.0258) 0.1698 (0.0076)
CPV 89.98% 90.45% 89.98% 90.45%

N = 100
p = 2 0.3615 (0.0089) 0.1177 (0.0027) 0.2771 (0.0086) 0.0848 (0.0021)
CPV 81.04% 81.34% 81.04% 81.34%
p = 3 0.4023 (0.0155) 0.1082 (0.0033) 0.3152 (0.0133) 0.0802 (0.0025)
CPV 86.93% 87.07% 86.93% 87.07%
p = 4 0.5561 (0.0245) 0.1351 (0.0059) 0.4407 (0.0204) 0.1042 (0.0045)
CPV 90.13% 90.31% 90.13% 90.31%

N = 200
p = 2 0.3242 (0.0053) 0.1037 (0.0021) 0.2389 (0.0060) 0.0754 (0.0016)
CPV 81.03% 81.48% 81.03% 81.48%
p = 3 0.3340 (0.0140) 0.0890 (0.0023) 0.2564 (0.0124) 0.0635 (0.0016)
CPV 86.93% 87.14% 86.93% 87.14%
p = 4 0.4342 (0.0170) 0.0867 (0.0027) 0.3424 (0.0137) 0.0658 (0.0020)
CPV 90.03% 90.18% 90.03% 90.18%
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Table 7.9: Kernel estimation errors; Brownian motion innovations, Gaussian kernel ‖Ψ‖=
0.5, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.4332 (0.0285) 0.1357 (0.0064) 0.3618 (0.0242) 0.1093 (0.0048)
CPV 90.51% 90.88% 90.51% 90.88%
p = 3 0.7502 (0.0456) 0.2156 (0.0122) 0.6054 (0.0376) 0.1643 (0.0081)
CPV 93.79% 94.18% 93.79% 94.18%
p = 4 1.1924 (0.0607) 0.3276 (0.0184) 0.9272 (0.0484) 0.2476 (0.0130)
CPV 95.5% 95.86% 95.5% 95.86%

N = 100
p = 2 0.3386 (0.019) 0.0883 (0.0037) 0.2850 (0.0161) 0.0715 (0.0029)
CPV 90.09% 90.39% 90.09% 90.39%
p = 3 0.5288 (0.0314) 0.1263 (0.0058) 0.4310 (0.0253) 0.0962 (0.0036)
CPV 93.47% 93.74% 93.47% 93.74%
p = 4 0.9364 (0.0584) 0.1850 (0.0111) 0.4741 (0.0453) 0.3200 (0.0076)
CPV 95.24% 95.45% 95.24% 95.45%

N = 200
p = 2 0.2217 (0.0103) 0.0779 (0.0023) 0.1845 (0.0089) 0.0614 (0.0018)
CPV 90.49% 90.80% 90.49% 90.80%
p = 3 0.3814 (0.0235) 0.0973 (0.0047) 0.3119 (0.0195) 0.0756 (0.0037)
CPV 93.69% 93.91% 93.69% 93.91%
p = 4 0.6339 (0.0374) 0.1250 (0.0049) 0.5034 (0.0298) 0.0969 (0.0038)
CPV 95.36% 95.50% 95.36% 95.50%
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Table 7.10: Kernel estimation errors; Brownian motion innovations, Gaussian kernel
‖Ψ‖= 0.8, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.3477 (0.0264) 0.1336 (0.0048) 0.2826 (0.0217) 0.1058 (0.0035)
CPV 92.98% 92.61% 92.98% 92.61%
p = 3 0.6528 (0.0375) 0.1872 (0.008) 0.5175 (0.0291) 0.1436 (0.0061)
CPV 95.52% 95.38% 95.52% 95.38%
p = 4 1.1332 (0.0599) 0.2960 (0.0166) 0.8755 (0.0465) 0.2242 (0.0118)
CPV 96.8% 96.78% 96.8% 96.78%

N = 100
p = 2 0.2509 (0.0180) 0.0851 (0.0031) 0.2035 (0.0149) 0.0666 (0.0023)
CPV 93.17% 92.95% 93.17% 92.95%
p = 3 0.4628 (0.0238) 0.1054 (0.0046) 0.3699 (0.02) 0.0811 (0.0036)
CPV 95.61% 95.49% 95.61% 95.49%
p = 4 0.8510 (0.0532) 0.1464 (0.0063) 0.6695 (0.0419) 0.1116 (0.0046)
CPV 96.87% 96.8% 96.87% 96.8%

N = 200
p = 2 0.1487 (0.0078) 0.0654 (0.0019) 0.1205 (0.0062) 0.0513 (0.0016)
CPV 93.88% 93.87% 93.88% 93.87%
p = 3 0.3414 (0.0245) 0.0670 (0.0033) 0.2716 (0.0209) 0.0526 (0.0027)
CPV 96.07% 96.06% 96.07% 96.06%
p = 4 0.6090 (0.0371) 0.0954 (0.0047) 0.4814 (0.0301) 0.0754 (0.0036)
CPV 97.15% 97.15% 97.15% 97.15%
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Table 7.11: Kernel estimation errors; Brownian motion innovations, Identity kernel ‖Ψ‖=
0.5, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.4503 (0.0307) 0.1312 (0.0067) 0.3768 (0.0259) 0.1062 (0.0052)
CPV 90.73% 91.03% 90.73% 91.03%
p = 3 0.7647 (0.0463) 0.2167 (0.0126) 0.6184 (0.0384) 0.1633 (0.0083)
CPV 93.97% 94.31% 93.97% 94.31%
p = 4 1.2107 (0.0615) 0.3319 (0.019) 0.9405 (0.0497) 0.2503 (0.0134)
CPV 95.61% 95.96% 95.61% 95.96%

N = 100
p = 2 0.3489 (0.0203) 0.0806 (0.0035) 0.2959 (0.0173) 0.0659 (0.0029)
CPV 90.34% 90.59% 90.34% 90.59%
p = 3 0.5396 (0.0335) 0.1263 (0.0062) 0.4413 (0.0271) 0.0963 (0.0040)
CPV 93.66% 93.90% 93.66% 93.90%
p = 4 0.9524 (0.0579) 0.1927 (0.0126) 0.7502 (0.0447) 0.1440 (0.0085)
CPV 87.28% 87.90% 87.28% 87.90%

N = 200
p = 2 0.2304 (0.0115) 0.0698 (0.0024) 0.1939 (0.0101) 0.0561 (0.0019)
CPV 90.73% 91.02% 90.73% 91.02%
p = 3 0.3885 (0.0235) 0.0950 (0.0048) 0.3180 (0.0194) 0.0734 (0.0037)
CPV 93.89% 94.09% 93.89% 94.09%
p = 4 0.6398 (0.0366) 0.1280 (0.0051) 0.5077 (0.0291) 0.0986 (0.0038)
CPV 95.47% 95.62% 95.47% 95.62%
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Table 7.12: Kernel estimation errors; Brownian motion innovations, Identity kernel ‖Ψ‖=
0.8, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.3795 (0.0297) 0.1364 (0.0055) 0.3093 (0.0243) 0.1089 (0.0038)
CPV 93.27% 92.89% 93.27% 92.89%
p = 3 0.6711 (0.0387) 0.1873 (0.0077) 0.5337 (0.0298) 0.1429 (0.0055)
CPV 95.79% 95.60% 95.79% 95.60%
p = 4 1.1523 (0.0619) 0.3018 (0.0182) 0.8882 (0.0480) 0.2289 (0.013)
CPV 96.98% 96.93% 96.98% 96.93%

N = 100
p = 2 0.2795 (0.0212) 0.0868 (0.0033) 0.2291 (0.0178) 0.0688 (0.0025)
CPV 93.52% 93.33% 93.52% 93.33%
p = 3 0.4758 (0.0250) 0.1040 (0.0041) 0.3818 (0.0209) 0.0803 (0.0031)
CPV 95.90% 95.78% 95.90% 95.78%
p = 4 0.8701 (0.0527) 0.1527 (0.0072) 0.6818 (0.0414) 0.1160 (0.0053)
CPV 97.06% 96.98% 97.06% 96.98%

N = 200
p = 2 0.1641 (0.0092) 0.0689 (0.0022) 0.1337 (0.0074) 0.0545 (0.0017)
CPV 94.20% 94.24% 94.20% 94.24%
p = 3 0.3503 (0.0241) 0.0677 (0.0034) 0.2797 (0.0205) 0.0529 (0.0027)
CPV 96.35% 96.34% 96.35% 96.34%
p = 4 0.6145 (0.0366) 0.0989 (0.0053) 0.4849 (0.0297) 0.0779 (0.0040)
CPV 97.34% 97.34% 97.34% 97.34%
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Table 7.13: Kernel estimation errors; Brownian motion innovations, Sloping kernel ‖Ψ‖=
0.5, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.4342 (0.0238) 0.0942 (0.0053) 0.3445 (0.0204) 0.0719 (0.0040)
CPV 91.67% 91.73% 91.67% 91.73%
p = 3 0.8201 (0.0554) 0.1981 (0.0124) 0.6413 (0.0471) 0.1506 (0.0089)
CPV 94.46% 94.65% 94.46% 94.65%
p = 4 1.3519 (0.0742) 0.3598 (0.0289) 1.0401 (0.0594) 0.2715 (0.0211)
CPV 95.87% 96.15% 95.87% 96.15%

N = 100
p = 2 0.3475 (0.0220) 0.0529 (0.0028) 0.2751 (0.0191) 0.0408 (0.0023)
CPV 91.23% 91.24% 91.23% 91.24%
p = 3 0.6202 (0.0502) 0.0987 (0.0049) 0.4925 (0.0411) 0.0757 (0.0040)
CPV 83.12% 83.85% 83.12% 83.85%
p = 4 0.9982 (0.0597) 0.1906 (0.0133) 0.7747 (0.0469) 0.1449 (0.0101)
CPV 95.59% 95.72% 95.59% 95.72%

N = 200
p = 2 0.2792 (0.0162) 0.0292 (0.0017) 0.2172 (0.0148) 0.0225 (0.0014)
CPV 91.66% 91.68% 91.66% 91.68%
p = 3 0.4478 (0.0274) 0.0624 (0.0041) 0.3548 (0.0219) 0.0491 (0.0034)
CPV 94.36% 94.41% 94.36% 94.41%
p = 4 0.6975 (0.0363) 0.1009 (0.0053) 0.5438 (0.0276) 0.0782 (0.0043)
CPV 95.72% 95.79% 95.72% 95.79%
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Table 7.14: Kernel estimation errors; Brownian motion innovations, Sloping kernel ‖Ψ‖=
0.8, Naive bootstrap

MSE AD

ψ̂ − ψ ψ̂∗ − ψ̂ ψ̂ − ψ ψ̂∗ − ψ̂
N = 50
p = 2 0.4639 (0.0220) 0.1025 (0.0049) 0.3573 (0.0197) 0.0783 (0.0038)
CPV 93.95% 93.61% 93.95% 93.61%
p = 3 0.8305 (0.0534) 0.2001 (0.0110) 0.6494 (0.0456) 0.1520 (0.0080)
CPV 95.99% 95.87% 95.99% 95.87%
p = 4 1.3655 (0.0773) 0.3666 (0.0352) 1.0532 (0.0615) 0.2781 (0.026)
CPV 97.03% 97.04% 97.03% 97.04%

N = 100
p = 2 0.3932 (0.0184) 0.0571 (0.0027) 0.2948 (0.0172) 0.0435 (0.0021)
CPV 93.85% 93.64% 93.85% 93.64%
p = 3 0.6383 (0.0487) 0.1022 (0.0051) 0.5029 (0.0404) 0.0782 (0.0042)
CPV 95.89% 95.82% 95.89% 95.82%
p = 4 0.9910 (0.0586) 0.1900 (0.0129) 0.7726 (0.0468) 0.1443 (0.0098)
CPV 96.92% 96.9% 96.92% 96.9%

N = 200
p = 2 0.3481 (0.0139) 0.0309 (0.0016) 0.2560 (0.0138) 0.0238 (0.0013)
CPV 94.41% 94.35% 94.41% 94.35%
p = 3 0.4834 (0.0253) 0.0624 (0.0040) 0.3773 (0.0206) 0.0488 (0.0033)
CPV 96.22% 96.22% 96.22% 96.22%
p = 4 0.7087 (0.0352) 0.1011 (0.0053) 0.5524 (0.0271) 0.0780 (0.0043)
CPV 97.14% 97.15% 97.14% 97.15%
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[24] Härdle, W., Horowitz, J. and Kreiss, J.-P., (2003) Bootstrap methods for time series,

International Statistical Review, 71,2:435-459.
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