The Bootstrap for the Functional
Autoregressive Model FAR(1)

Vom Fachbereich Mathematik
der Technischen Universitat Kaiserslautern
zur Verleihung des akademischen Grades
Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte
Dissertation

von

Euna Gesare Nyarige

Gutachten:
Prof. Dr. J. Franke, Technische Universitat Kaiserslautern

Prof. Dr. J-P. Kreif§, Technische Universitat Braunschweig
Datum der Disputation: 22. Juni 2016

D 386

-
I m TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN



To my Dad and Mom

11



Acknowledgement

I am deeply and sincerely grateful to my supervisor Prof. Jiirgen Franke for his continuous

guidance, patience, and support during my entire research period.

I would also like to express my gratitude to Danilo Pezo for his continuous support and
suggestions concerning my research, his friendship, and for proof reading my manuscript.

I am grateful too to Dr. Habil. Joseph Tadjuidje for his suggestions concerning my work.

I am grateful to Dr. Falk Triebsch, Graduate School of Mathematics for his support
with regard to administartive matters concerning my Doctral studies and my schorla-
ship. Special thanks to the Deutscher Akademischer Austausch Dienst (DAAD) for their
funding which enabled me to undertake my research and also to the Technical University
of Kaiserslautern for the condusive environment and facilities which enabled me to carry

out my work.

I thank the entire Statistics working group at TU Kaiserslautern for the amicable atmo-
sphere I had during my studies. I am also deeply indebted to all my friends for all their

support.

Finally I am deeply grateful to my family for their continuous support and encouragement

through it all.

111



v



Abstract

Functional data analysis is a branch of statistics that deals with observations Xi,..., X,
which are curves. We are interested in particular in time series of dependent curves and,
specifically, consider the functional autoregressive process of order one (FAR(1)), which
is defined as X,,,1 = V(X,,) + €,41 with independent innovations ¢;. Estimates U for the
autoregressive operator ¥ have been investigated a lot during the last two decades, and
their asymptotic properties are well understood. Particularly difficult and different from
scalar- or vector-valued autoregressions are the weak convergence properties which also

form the basis of the bootstrap theory.

Although the asymptotics for \i/(Xn) are still tractable, they are only useful for large
enough samples. In applications, however, frequently only small samples of data are
available such that an alternative method for approximating the distribution of \iJ(Xn)
is welcome. As a motivation, we discuss a real-data example where we investigate a
changepoint detection problem for a stimulus response dataset obtained form the animal

physiology group at the Technical University of Kaiserslautern.

To get an alternative for asymptotic approximations, we employ the naive or residual-
based bootstrap procedure. In this thesis, we prove theoretically and show via simulations
that the bootstrap provides asymptotically valid and practically useful approximations of
the distributions of certain functions of the data. Such results may be used to calculate

approximate confidence bands or critical bounds for tests.
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Zusammenfassung

Die Funktionaldatenanalyse ist ein vergleichsweise neues Gebiet der Statistik, das sich
mit Daten X,..., X, befasst, die Funkktionen sind, zum Beispiel Kurven iiber einem
Intervall der reellen Achse. Wir interessieren uns insbesondere fiir Zeitreihen abhangiger
Kurven und betrachten ein einfaches Modell, den funktionalen autoregressiven Prozess der
Ordnung 1 oder FAR(1)-Prozess, der folgendermaflen definiert ist: X,, 11 = ¥(X,,) + €p11
mit unabhangigen Innovationen ¢,. Schétzer T des autoregressiven Operators ¥ sind in
den vergangenen zwei Jahrzehnten ausgiebig untersucht worden, und ihre asymptotischen
Eigenschaften sind gut bekannt. Besonders schwierig ist dabei die Verteilungskonvergenz,
die die Grundlage fiir Bootstrapverfahren ist. Sie unterscheidet sich deutlich von den

skalaren oder vektorwertigen Autoregressionen.

Obwohl die asymptotische Theorie fiir \if(Xn) noch handhabbar ist, niitzt sie in der Praxis
nur bei Stichproben, die grof§ genug sind. In Anwendungen ist das gerade bei Funktional-
daten oft nicht der Fall, so dass alternative Methoden zur Approximation der Verteilung
von \i/(Xn) wiinschenswert sind. Als Motivation betrachten wir ein Changepoint- Detek-
tionsproblem fiir einen funktionalen Realdatensatz aus dem Bereich der kognitiven Wis-
senschaften, den die Arbeitsgruppe Tierphysiologie der TU Kaiserslautern zur Verfiigung

gestellt hat.

Um eine Alternative zu asymptotischen Approximationen zu entwickeln, setzen wir das
naive oder residuenbasierte Bootstrapverfahren ein. In dieser Arbeit beweisen wir the-
oretisch, dass das Bootstrap asymptotisch valide und praktisch niitzliche Verteilungsap-
proximationen fiir gewisse Funktionen der Daten liefert. Die Theorie wird durch Simula-
tionen unterstiitzt. Derartige Ergebnisse konnen dazu benutzt werden, um approximative

Konfidenzbander oder kritische Bereiche fiir Tests zu berechnen.
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Chapter 1

Functional Data

1.1 Introduction

Functional Data Analysis (FDA) is a field of research concerned with observations which
are curves. The data are of the form X,,(¢), where t € [a,b] and X,,,n = 1,..., N denotes
the different observations (curves), see [28]. Considering a random function Z, a reali-
sation z(t) can be the height at time ¢, intensity at location ¢ implying that the set T’
over which the functions are defined may be but is not necessarily limited to time. A
random variable X is called a functional variable if it takes values in a functional space,
for instance a Hilbert space or Banach space, and a functional dataset is the observation

of N functional variables Xy, Xs, ..., Xy which may be identically distributed as X.

Functional data are usually sampled in a discrete manner from continuous time processes
and are represented as X,,(t;),n =1,2,...,N,i = 1,2, ...,m, where n represents the index
of observations or curves and ¢ denotes the sampling points for each curve which may or
may not be equidistant. An example is weather data which is recorded once each day
for ten years. In this case taking each year as a curve, we have N = 10 and m = 365,
it is easily noted that the sampling points m are equi-distant. On the other hand, if
we consider the Berkeley Growth Study data, see Ramsay and Silverman, [49] then the
sampling points are not equidistant. In the study the height of 10 girls was recorded in
31 instances, with the aim of studying their growth. According to how the measurements
were recorded, it is clear that the data is not equidistant. Another example of irregularly

spaced data is that of transactions at the point of sale (POS) which differ for different
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days and times. It should be noted that most standard statistical techniques are based
on equidistant data. However, aggregation of irregularly spaced data to conform to
the standard models leads to a loss of information when the intervals of averaging are
too big. On the other hand, for very small intervals, complexity may be introduced
unnecessarily since each interval may not necessarily contain useful information. Once
the discrete data has been sampled, to convert it to functional form we assume that there
exists an underlying function X which generates it. Conversion to functional form may
involve some smoothing which essentially means that we assume some relationship exists
between two adjacent observations X, (¢;) and X,,(¢;). Smoothing further implies that the
underlying function possesses a given number of regularity conditions which are useful

for describing the data or making inferences about it.

When the data is recorded during observation, some noise may be present so that what
is recorded is of the form Y = X +e¢. In this case, as in standard regression, Y represents
the response variable, X the explanatory variable (regressor) and e is the noise also called
disturbance which adds roughness to the observed data. This noise may be filtered during
smoothing of data to functional form or later after the desired computations have been
done on the data in functional form. It should be quickly noted that when dealing with
functional linear models, three cases can be distinguished. In the first case we have the
fully functional model where both the response and regressor are curves, the second and
third cases consider a scalar response and functional regressors and vice versa. Details of
these models can be found in Horvath and Kokoszka, [28]. In the event that there is no
observational noise, then the conversion process from discrete to functional form is called
interpolation. As already noted above, for different values of n, the argument values t;
may be different and the interval of observation may also vary. This non-uniformity of
data collected therefore implies that a functional approach would be better suited for
the representation and later analysis of the data since it is able to deal well with such
cases as opposed to existing methods such as multivariate methods which require that

observations be equidistant.

The resolution of the data is also of importance when dealing with functional data as

it dictates, to some extent, what is achievable or not with the data. Resolution can



be described as the density of the argument values t¢; relative to the curvature of the
data, i.e it is a question of whether the number of observations recorded are enough
to describe the data well including the minute details, see for instance Ramsay and
Silverman, [52]. Higher curvature (data that includes a lot of detail) requires more data
points for estimation so as to ensure satisfactory description and vice versa. An example of
this is the data considered by Laukaitis and Rackauskas [38] which involves cash flow and
transactions intensities at POS (Point of Sale) and ATMs (Automatic Teller Machines).
In this case the curvature is high since there is a need to capture all the patterns for
instance when the POS and ATMs are busiest among other things. They employ the
limit of the measure precision in that they consider all the recorded transactions and
therefore they are in a position to make reasonable inferences. In the event that all
points are not considered, then there needs to be a way of ensuring that the collected

data represents the high curvature observed.

Smoothing can be achieved by use of different methods. The most optimal method
to be used depends on the underlying characteristics of the sampled data. Smoothing
methods available include basis function methods, local weighting and roughness penalty
approach. Basis function methods involve representing the observations as a weighted
linear combination. Local weighting emphasizes on the local dependence of observations
such that those closest to the argument values get the highest weights. Roughness penalty
on the other hand defines smoothing at the level of the criterion being optimised. See

[52].

Basis functions are most commonly employed for smoothing (estimating functions from
discrete observations). A functional observation X; smoothed by an appropriate basis is

expressed as a weighted linear combination,

where ¢ (t) are known functions which are orthogonal of each other and c¢;;, are weighting
coefficients. The number K of basis functions used depends on the amount of smoothing
that is required. In the case of interpolation, K = m, where m is the number of sampling

points per curve. Choice of basis functions depends on the underlying characteristics of



the data. Some of the most commonly used basis functions include,

1. Fourier basis: This can be represented for a given function z as &(t) = c¢o+c; sin wt+
o cos wt+cgsin 2wt+... where the basis is defined as ¢o(t) = 1, ¢or—1(t) = sin kwt,
and ¢9x(t) = cos k wt. This basis is periodic with period 27 /w. Its coefficients can
be efficiently computed by use of the Fast Fourier Transform when N is a power of
2. This basis is very useful for data that displays some periodicity, which may be
distorted by noise, without local fluctuations and with uniform curvature. However,
in the event of discontinuities in the function or its lower derivatives, the basis may

perform poorly to some extent, see for instance [48] or [52] for more details.

2. Spline basis: This is employed for non-periodic data. A spline is composed of a
combination of polynomials of a given order defined over specified sub-intervals of
the function to be estimated with each polynomial being connnected to the next at
a point called the breakpoint or knot. To define a spline one requires the order of
the polynomial and the sequence of break points or knots. When the curvature of
the function does not exhibit a lot of variation, the breakpoints can be set at equally
spaced intervals. However flexibility can be enhanced by increasing the number of
breakpoints for instance where the variation or curvature is high and vice versa.
It should be noted though that increasing the value of K (the number of basis
functions), does not necessarily lead to a better fit because the best fit depends
on among others the knot sequence and the number of knots, see [?] for a detailed
exposition of the same. The B-spline basis system is the most popular among
spline systems because of its efficient computation. Like other splines, it consists of
polynomial pieces that are joined at knots. A B-spline of degree z consists of z + 1
polynomial pieces, each of degree z. At the knots, there exists derivatives of order
z — 1. As mentioned above, the problem of overfitting or underfitting plays a role
here and to correct it penalties are employed. This involves penalising a feature of
interest for instance the second derivative of the fitted curve. We apply this basis

here.

3. Wavelets: These combine properties of the Fourier and Spline basis systems. This

4



implies that they are well adapted to coping with functions with discontinuities
unlike in the case of the Fourier basis. In the case of Wavelet basis a mother
wavelet is constructed which has the property of compact support and is built in
such a way as to ensure orthogonality of the basis functions. As is the case in the
Fourier transform there exists a Discrete Wavelet Transform which ensures speeds
of O(n) in computation as long as n = 2™, which is even faster than the Fast Fourier

Transform, see for instance [1] and [38].

4. Other basis systems include; the constant basis which can be used to view constant
scalar observations as functions, polynomial basis which has good approximations
in the center and is very poor at the boundaries, the step function basis among

others.

It should be stressed that no particular basis can be uniformly applied but, depending

on the underlying characteristics of the data a suitable basis can be chosen.

Another method of converting discrete observations to functional form is by use of least
squares. In this case the observations are assumed to follow the model y; = x(t) + ¢,
where y; are the discrete observations, z(¢;) is a suitable basis function expansion (chosen
according to the underlying characteristics of the data) and €; is the error or exogeneous
variable. It should be noted that at times more than one basis function can be used
to approximate the function z. In this case the first set of basis functions takes into
consideration large features in the data while the other set considers local features and
a combination of these two is then used. The method of least squares is applied as in
the multivariate or scalar situation in that we choose the fit that minimizes the sum of

squared errors, i.e

Z (yj - Cjk¢k> (1.1)

j=1
As in the multivariate and scalar cases, fitting can be done using ordinary, weighted or
localised least squares. Localised least squares for instance is preferred as compared to
weighted or ordinary least squares as it considers local features near a given point of

interest and will therefore provide a fit that better represents the data.



The roughness penalty approach is also useful for smoothing. This method smoothes by
penalising a feature of interest in order to get the best fit, for instance the curvature can
be the feature that we are interested in controlling. In this case the penalty is simply the
squared norm of the second derivative, which is zero for a straight line. It is practical

since it allows for control of features of interest.

Once the smoothing method and the proper basis have been selected, the number of basis
functions K required to provide a good fit should be considered. K large implies that
we have minimal bias but large variance and vice versa. This is the common problem of
bias-variance or mean squared error trade-off and therefore K should be chosen such that
there is a balance between the two. A thorough exposition of the above methods can be
obtained from Ramsay and Silverman [49] for the functional case while several books on

regression contain detailed information on the method of least squares.

1.2 Dependent functional data

Functional data can either be dependent or independent in nature. An example of in-
dependent functional data is the Berkeley growth study where the height of one girl is
independent from the height of another. Dependent functional data arises for instance
when an almost continuous time record is separated into consecutive intervals, for in-
stance days, minutes or seconds among others. This implies and is mostly the case that
some temporal dependence will exist. An example is Electro Encophalography (EEG)
data recorded before during and after a given task which the subject is given. It is
obvious that the recorded observations have some dependence as they represent three
consecutive states of a subject. Data of such nature can be represented by the equation
Xn(t) = &unae, 0 <t < h, n€Z,n=1,..,N. Here a function X,, is an interval whose
length is h. This dependence can be approximated with a known model for instance
the Functional Autoregressive Model (FAR) also referred to as Autoregressive Hilbertian
Model (ARH) and in cases where the exact model is unknown the effect of the dependence

on the procedure under investigation should be checked.

Although consecutive observations may have some level of dependence, in some cases, as



the distance between the observations increases, then we have asymptotic independence
of observations. Two observations A and B are asymptotically independent if they satisfy

certain mixing conditions for instance strong mixing i.e

a(k) = sup{|P(ANB) — P(A)P(B)|: —oo <t < 400, Ae X' ,Be X/ $} =0

as k — oo. Asymptotic independence of observations implies that procedures and the-
orems for independent data for instance the Central Limit Theorem can be applied to
these data. In some cases however, the approximation quality of asymptotic results is
limited to rather large samples. An alternative is the bootstrap which allows us to ob-
tain approximative distributions of an estimate of a parameter with frequently minimal
assumptions if any. Once we have these approximative distributions we can then obtain
confidence intervals, test hypotheses and so on. We quickly note that although the boot-
strap is very useful in the event that we do not know the underlying distribution of the
data, care must be taken when applying it so that the underlying characteristics of the
original sample are replicated in the bootstrap pseudosamples. The bootstrap technique

will be discussed in more detail in the last two chapters.

1.3 Selected applications

Functional data analysis has been employed in different fields of research to solve different
problems. Castro et. al. [12] employ functional methods to predict sulfur dioxide levels
emmited by a power plant. This is required in order to control air quality. The aim
of their study was to predict the amount of sulfer dioxide that would be emmited, so
that the staff in the plant could be in a position to take contol action in the event
that the amount exceeded a certain set limit. In particular they use the functional
autoregressive model and manage to show that its predictions are better and more reliable
than other semiparametric and neural methods which have been employed before. They
also apply bootstrap techniques in the functional context to deal with the confidence of

their predictions a technique which we employ later on in this study.

Besse et. al. [5] compare different methods for forecasting functional data. They propose

a hybrid method which is a local adaptation of the FAR(1) by introducing a weighted

7



kernel estimator of the covariance operator. The FAR forecasts were seen to outperform
the scalor methods like SARIMA and ARIMA. This could be attributed to the fact that
for real data and longer forecast horizons, the assumptions of linearity and stationarity

are more likely to be violated thus making the scalar methods less powerful.

Antoniadis and Sapatinas [1] propose three linear wavelet methods to address the problem
of continuous time prediction. They employ the wavelet basis for smoothing from dis-
crete to continuous functional data, and to solve the ill-posed inverse problem they turn
to regularization methods, in particular the Tikhonov-Phillips regularization method.
They also prove the consistency of their estimators under certain assumptions, for in-
stance, second order differentiability is not required for the smoothed curves inorder to
obtain asymptotic rates, a condition that is required in the classical case. They apply
their methods for prediction of the El Nifio Southern Oscillation (ENSO) together with
other methods that have been applied in literature for comparison. They compared their
method with the smoothing spline interpolation estimator from Besse ef. al. [5] and a
SARIMA model with 12 months seasonality. One of their proposed methods was the
same as that of Besse et. al. [5] save for the fact that they use wavelet basis as opposed
to splines. In terms of perfomance the two methods were the same which implies that
the proposed wavelet method should be chosen considering that its computation time is
20 times faster. In general the functional methods were better and the SARIMA model

had the worst perfomance both graphically and in terms of prediction error.

Damon and Guillas [14] use functional methods and in particular the Autoregressive
Hilbertian model (ARH) to estimate the concentration of ozone in the atmosphere. Ozone
is an atmospheric pollutant and therefore the study aims at predicting the amount that
will be in the air at a particular point in time in order to take control or corrective
measures when a certain limit is exceeded. The main enhancement in their work is that
apart from employing the ARH model, they also consider the influence of exogeneous
variables temperature, wind speed and wind direction, which they incorporate into this
model. They compare the predictions from this model with those from the ARH model
without exogeneous variables, a functional kernel model and generalised additive models.

In this case the ARH with exogeneous variables gave the best results followed by the



ARH without exogeneous variables and Generalised additive models. This implies that
although the functional methods seem optimal because they consider the continuity of the
process which inturn implies a bulk of information as compared to multivariate methods,
their predictions in some instances can be improved by taking into consideration external

influences as in this case.

Laukaitis and Rackauskas [38] employ functional methods in particular the Hilbert-valued
autoregresssive process to study cash flow and transactions intensity in ATM (Automatic
Teller Machine) and POS (Point of Sale) networks. Their work extends to econometrics
the powerful functional data analysis methods which allow irregularly spaced data to be
analysed, a feature not supported by standard econometric methods. They use wavelet-
vaguelette estimators proposed in Antoniadis and Sapatinas, [1] and the projection type
method introduced and extensively studied in Bosq [7]. Both methods were found to
perform well (in terms of prediction). To be noted is that linear wavelet methods have a
much faster implementation than B spline bases and are therefore suitable for large scale

problems.

1.4 Motivation

We see that the functional data approach can be used in several different contexts with
very good results. Among the reasons this approach is powerful is the fact that it con-
siders the data as curves (functions), which implies that we assume there exists infinite
dimensional data points which translates to a bulk of information. In this case no infor-
mation is lost due to averaging as is the case when we consider scalar or vector methods.
Another point in favour of this approach is the fact that it can be applied even in the
case where the data is irregularly spaced. As the data are functions, we are not limited
to the functions themselves only but we could also consider their derivatives for instance
the acceleration of growth which is the second derivative, a feature not available for data
that is not functional. The fact that the curvature of the data can also be captured in
detail goes a long way in recommending the use of this approach as we are able to ob-

tain better predictions if we have a good representation of the data. Also with increased



computation capacity this means that having the data as functions although bulky is
still feasible in terms of computation time. The above are only some of the reasons for
applying the functional approach and they all suggest that whenever possible it should
be considered as its performance is superior to that of existing scalar and vector valued

methods.

Although we see that when we consider functional data we have availability of a bulk
of information per observation in the sample, the sample size in general may be small.
This poses a problem as it introduces a bias in the estimation of parameter estimates.
To overcome this problem we consider the naive bootstrap and seek to show that the
asymptotics obtained from it are close to those obtained empirically. In our work we focus
on the Functional Autoregressive model of order one (FAR(1)). We study existing results
on weak convergence properties of the predicton obtained from the model. We seek to
show theoretically and numerically that results obtained by employing the naive bootstrap
method mimic the weak convergence behaviour of the empirical estimates obtained from
the model, thereby solving the bias problem created by having a small sample size and

obtaining accurate estimates.

Apart from parameter estimation, the bootstrap can be used to estimate the asymptotic
distribution of the parameter estimates, which is useful when we want to investigate
properties of these estimates, for instance their confidence bands, or when we would
like to carry out tests of hypotheses as the critical values could be obtained using the

bootstrap.

1.5 Structure of the thesis

This thesis is organised as follows:

In Chapter 2 we give some introductory notions and theory of the functional autoregres-
sive model of order 1 (FAR(1)) and its properties. These are required to understand the

rest of the chapters and are therefore given here as preliminaries.

In Chapter 3 we explore the weak convergence of the estimates obtained from the model.
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We report some existing results and extend them slightly.

Chapter 4 looks at a practical change point problem involving functional data. We
apply existing theoretical results to functional stimulus response data from the animal
physiology group at the University of Kaiserslautern. Here, we use critical values of
changepoint tests derived from asymptotics, but the example provides also a motivation

for the bootstrap which promises better approximate critical values for small samples.

In Chapter 5 we have a first look at the bootstrap for FAR(1) models. We introduce the
naive or residual-based bootstrap which is the focus of this thesis, and for comparison
the block bootstrap. To illustrate the basic ideas and results we first study a simple toy
model where we can circumvent some of the major technical difficulties of the general

case.

In the central Chapter 6, we first prove that the basis for residual-based bootstrap meth-
ods holds, i.e. the distribution of the innovations may be approximated by the distribu-
tion of the bootstrap residuals which is the empirical distribution of the centered sample
residuals. Then we prove that the bootstrap principle asymptotically holds for the crucial
covariance operator estimate. Moreover, we also prove that the bootstrap may be applied
to the estimate of the autoregressive operator under an artificial condition which is likely
to hold. To show the latter conjecture, perturbation theory for linear operators like in
the deep proof of weak convergence given by Mas [44] has to be extended to the world of

the bootstrap data which would go beyond the scope of this thesis.

Finally, in Chapter 7 we present some simulations.
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Chapter 2

The Functional Autoregressive
Model (FAR(1)) and its Properties

This chapter concentrates on the theoretical properties of the FAR(1) (Functional Au-
toregressive Model of order one) also denoted as ARH (Autoregressive Hilbertian Model).
The two terms will be used interchangeably thoughout this work. In the first section we
define some terms that appear in this chapter. In Section 2 the model is introduced and
its composition, together with conditions required for it to exist and be stationary are
described. The next section deals with dimension reduction which is a prerequisite for

the ill posed inverse problem that arises when estimating the models operator.

2.1 Definitions

This subsection contains definitions which are useful in understanding the material in
the following chapters. These definitions are from Brockwell and Davis, [8] and Gohberg
et.al., 23] and Bosq, [7] which are useful references in case the reader would like a deeper
understanding of the Hilbert space or to check for the proofs of the theorems stated

below.

Definition 2.1.1. Strict stationarity: A real process & = (&,t € T) is said to be strictly
stationary if and only if P(€t1+h 77777 fon) = P(&1 ..... &)’ k>1and tq,..,tx,h € T. See [7].

Definition 2.1.2. Weak stationarity: A second order process is said to be weakly sta-

tionary if its mean m(t) = m is constant and independent of ¢ and its covariance is given
by ¢(s + h,t +h) = c(s,t), for s,t,h € T. See [7].

13



Definition 2.1.3. L? —m — approximability: A sequence {X,,} € L%, is called LP —m —
approzximable if each X,, admits the representation

Xn = f(ena 6nfl,...)

where ¢; are i.i.d elements taking values in a measurable space S, and f is a measurable
function f : S — H. Moreover if {¢,} is an independent copy of ¢; defined on the same
probability space, then letting

m) o ! /7
X?’(L - f(enyen—la'-~76n—m+1a€n_m;€n_m_1,----)

we have

> v (X, = XM) < 00

m=1

In this case v, is a distance measure.

Definition 2.1.4. A Hilbert space H is an inner product space which is complete, i.e
an inner product space in which every Cauchy sequence X, converges in norm to some
element x € H.

Definition 2.1.5. Closure: Given a set S C H, the closure of S, written as S is the set
of those vectors in H which are limits of sequences of vectors in S, i.e x € Sif x,, =
for some sequence z,, € S. If S =5, then S is a closed set.

Definition 2.1.6. Separability: The Hilbert space H is separable if H = sp {v;,t € T},
i.e. the closure of the span, with 1, t € T, a finite or countably infinite orthonormal
set. We include Theorem 2.4.2 of [8] without proof to further explain the concept of
separability.

Theorem 2.1.1. If H is the separable Hilbert space defined above with v;,1 =1,2,... an
orthonormal set, then

1. The set of all finite linear combinations of vy, vs, ... is dense in H, i.e for each x € H
and € > 0, there exists a positive integer k and constants cq, ca, ..., cp such that

le = o, el < e

r= 7 (z,v) v, for eachx € H ie ||z = I (x,v;) v||= 0 as n — oo.
lallP= S5, ) P for each = € H.

Parsevals identity: (x,y) = >~ (x,v;) (v;,y) for each .y € H.

x =0 if and only if (x,v;) =0, for alli =1,2,....

SARER NS

For later reference, we state without proof Theorems 2.3.1 and 2.4.1 of [8] in order to
illustrate the projection from a given space (for instance the Hilbert space) to a closed

subspace of this space.

Theorem 2.1.2. If M is a closed subspace of the Hilbert space H and x € H, then

14



1. there is a unique element v € M such that
|2 — || = infyen ||z =y

2.2 € M and ||x — 2| = infyer ||z — yl| if and only if (x — %) € M™*, i.e & is the
(orthogonal) projection Pyx of x onto M.

Theorem 2.1.3. If vq,...,v; is an orthonormal subset of the Hilbert space H and M =
sp{vi, ...,k }, then Pyx = Zle (x,v;) v; for all x € H.

2.2 Functional Autoregressive Model

We consider the Functional Autoregressive model of order one, FAR(1). This is an
example of a model based on dependent observations. The model is defined in a separable
Hilbert space ‘H with inner product (-,-) and generating norm ||-||. To have a specific
situation, we consider the Hilbert space L2[0,1] but our considerations can be easily

transfered to other L?-spaces. The inner product for the L? space is defined as
@) = [ sty oy en

A sequence X,, n € Z, of H-random variables is called an autoregressive Hilbertian

process of order 1 (ARH(1)) if it is strictly stationary and such that
Xn+1 — U= \I/(Xn - M) + €nt1, N E Z (21)

where X, are functions in L? [0, 1], Fe, = 0, ¥ is a bounded linear operator and (Q, A) =
(L?]0,1],B), B Borel o-algebra, as in Bosq [7] or Horvath et al., [28]. When the ¢, are
such that E(e,|X,_1) = 0, then X,, is called a Markov process. pu is assumed without
loss of generality to be zero, although in applications this is generally not the case. The
main attraction of this model lies in its ability to predict X, ,; using (X, ), which is a
very useful property in various fields where the occurence of an event depends to some
extent on its past and an innovation or shock, €. These fields include medicine, finance,

meteorology among others.

The autoregressive operator ¥ : L?[0,1] — L?[0,1] is assumed to be a bounded linear
operator. In the next section, we collect some definitions related to such operators on the

Hilbert space H.

15



2.2.1 Operators in the Hilbert Space (L?[0,1])

The norm generated by the inner product of H for the space £ of bounded linear operators

is given by

[W][z=sup [[¥(z)]]

=<1

An operator VU is said to be compact if for orthonormal bases v; and f; of H and a

sequence A; of real numbers tending to zero the following relation holds
U(z)=> N(z,v) fi, €M
j=1
which can also be represented as
V=Y Ny @ f
j=1

Here, the Kronecker product of x,y € H is a linear operator given by = ® y(z) =
(r,z)y, z € H. It is also possible to replace f; with —f; therefore the A; can be as-
sumed positive. For further reference, we state a few properties of the Kronecker product
here, where x,y € H, A is a linear operator and AT denotes the corresponding adjoint

operator. They follow immediately from the definition.
r@y=(@yo)
r® (Ay) = Az ®y (2.2)

(Ar) @y =z @ yA"

A compact operator is said to be Hilbert-Schmidt if Z;’il >\? < 00. The space of Hilbert-

Schmidt operators § is separable and admits the inner product

<\Ijl>\112>3: Z <\Ijl(9i)7hj> <\112(gi)>hj>

1<i,j<00

where (g;), (h;) are orthonormal bases in . The associated norm is

1/2 1/2
5= (Z Ai) - (me(gjn?)

16



An operator ¥ € L is symmetric if (V(z),y) = (z,¥(y)), x,y € H and positive if
(U(z),z) > 0. A symmetric positive Hilbert-Schmidt operator admits the decomposition
U(z)=> Nz, €M (2.3)

j=1
thus ¥(v;) = A\jv;, j > 1, and A, v; are the eigenvalues and eigenvectors of W. A

compact operator is called nuclear if . |A;|< oo with norm

RSP
j=1

The relationship between the different norms can be summarised as
I.la> |I-lls> |l-]lc. For a detailed exposition the references Bosq, [7], Horvath and

Kokoszka, [28] and Gohberg et. al., [23] are among the vast literature on the topic.

Assume, e.g., that the operator ¥ in our model 2.1 belongs to the class of integral

operators in L? defined by

\IJ(x)(t):/@Z)(t,s)m(s)ds, xr € L?

where 1) (., .) is a real kernel, see Horvath et al [28]. Then it is a Hilbert-Schmidt operator

if and only if

//wQ(t,s)dtds < 00

which is evident from Section 2.2.1. The kernel in this case represents the covariance of
the functions which is normally symmetric and therefore the operator is Hilbert-Schmidt
symmetric positive definite and admits the decomposition 2.3, where v; is an orthonormal

basis. The model is nonparametric since W is an infinite dimensional parameter.

2.3 Estimation of the Operator V¥

The operator ¥ which is normally unknown, can be estimated by say 0, from the sample.
As in the scalar case, we require a condition on the operator ¥ in 2.1 in order to obtain
a stationary solution to the process. To achieve this we consider one of the following

assumptions

17



Assumption 2.1. There exists an integer jo > 1 such that ||U%| < 1

Assumption 2.2. There exist a > 0 and 0 < b < 1 such that |97 || < al’, j >0

If the assumption 3.1 above holds, then we have a unique strictly stationary solution, see
for instance Theorem 3.1 of Bosq, [7] or Theorem 13.1 of Horvath and Kokoszka, [28].
Moreover, Lemma 3.1 of [7] states that the two assumptions above are equivalent. The
proof of the Lemma can be found in the above mentioned references for the interested

reader.

It should be noted that an estimate of ¥ cannot be based on likelihood since the Lebesgue
measure does not exist on non-locally compact spaces and the notion of density is not
yet available for functional data. Having this in mind and from the classical method of

moments, the operator ¥, can be represented as ¥ = CT'~!, where,
'=EX,®X,) and C=E(X,® X,:1) (2.4)

are the covariance and cross covariance operators of the process and ® is the Kronecker
product. We denote the sample versions by fn, C,. To simplify an already involved
notation, we follow Horvath and Kokoszka, [28] and assume that EX; = 0 is known

throughout the thesis, i.e. we consider

n—1 n—1

. 1 A 1

Fn = ﬁ E Xt (029 Xt and Cn = ﬁ E Xt X Xt+1 (25)
t=0 t=0

In the general case, we would have to subtract the sample mean X,,, e.g.

n—1 n—1
_ _ 1 _ _
(Xi-X)e (X -X)=-> XioX,-X,0X,

=0 t=0
From Bosq, [7], however, we know that the first term on the right-hand side is of or-

1 1
der O, <7), whereas the second term is of order O, (—) such that our simplifying
n n

assumption has no influence on asymptotic results.

I' is a symmetric, positive definite and compact operator which admits the spectral de-

composition
D) =Y A (@) v (2.6)
j=1
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However, I'"! is not a bounded operator. Indeed, I'"! admits the representation

Z)\ (x,v;) v

which does not have a bounded inverse, considering ||[I'~(v;)|| = /\j_1 — 00 as j — 0.

A practical solution to this problem is to consider the first p most important Functional
Principal Components, and since in practice the population principal components are un-

known, these are replaced by the EFPC’s (Empirical Functional Principal Components),

A

v;. T, (also referred to as f‘IL) is then given by
A p ~ A
Loty =) A7 05) 0 = Tl (2) (2.7)

which is defined in the whole of L? and is bounded if 5\j > (0, 7 < p and the estimate

thus obtained is unique. S\j are the empirical eigenvalues.

From Equation 2.1, and as in the scalar autoregressive case multiplying through by X,

we have
Xn ® Xn+1 =X, ® (lI}Xn) +X,® €nt1 = VX, X, +X,® €nt1

Considering the definitions of the covariance and cross covariance operators 2.4, and the

fact that the e term vanishes, if we consider expectation, we have
C =T (2.8)

and ¥ = CT~!. We therefore have a representation of the form

n—1 P
U, () = Gl (x 1k1<Xk7;>\ (x,05) U »>X,€Jr1
The estimate of ¥ is therefore given by
n—1 p
U (z) T -1 - 1;;)‘ 2, 05) (X U3) (Xig1, 03) i (2.9)

where the last term is obtained by an additional smoothing step on X,,;; and 7;. The
empirical eigenfunctions, are known to converge to the population eigenfunctions asymp-

totically. See Bosq [7], or Kokoszka et. al. [28] for more details.
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Having obtained the estimator of the population parameter W, it is important that we
gauge its optimality, i.e how good the estimator can estimate the true parameter. In the
case of the FAR parameter W, Didericksen et. al. [16] show that the above predictor is
the most optimal in the Mean Squared Error and Mean Absolute error sense, since its
prediction error is comparable to that of the infeasible predictor W(x) for appropriately

chosen p.

2.4 Predictor Estimation and Dimension reduction

As noted above, the model exists in an infinite dimensional space but we need to work
with it in a finite dimensional space. To do this we need to reduce the dimensionality
of the data from infinite to finite while at the same time retaining as much information
as possible. Two different methods have been proposed in the functional case for this

purpose as discussed in the following subsections.

2.4.1 Functional Principal Component Analysis

Functional Principal Component Analysis is a dimension reduction technique that trans-
forms the data from infinite dimensional space to finite dimensional space. This is done
with the aim of representing the data in such a way that as much information as possible
of the original data is retained. The data are represented using the first say p principal
components which are normally arranged in descending order of magnitude. The princi-
pal components are chosen in such a way that they represent the highest variability in
the data and that they are orthogonal to each other. Orthogonality is required to ensure
that the variability represented by each component is unique. The number of functional
principal components to be computed can be chosen using several criteria. These include
cross-validation, cumulative percentage of variance (CPV), Akaikes Information Criterion

(AIC), graphical methods (Scree plot), among others.

Given the covariance operator I' defined above, see Equation 2.4 and additionally as-
suming that I' is symmetric, positive definite and compact, it admits representation 2.6,

where )\; and v; are the eigenvalues and eigenfunctions respectively. Now these are pop-
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ulation Functional Principal Components which are not normally available in practice,
therefore they have to be estimated by their empirical counterparts S\j and 7;. It should
be noted that the estimated eigenvalues and eigenfunctions are not necessarily unique.
This is due to the fact that the estimate of the operator obtained with ; is the same
as that obtained with —7;. For the eigenvalues, their multiplicity may be greater than
one. To solve these problems, the eigenvalues identifiability can be obtained by assuming
A1 > Ay > ... > A, > 0. As for the eigenfunctions we introduce ¢; = sign ((7;,v;)) such

that ¢;0; is close to v}, see Bosq, [7].

In order that the empirical counterparts are employed satisfactorily, their consistency

should be proven. The empirical estimator of T, T, is given by
(Xiyx) X; (2.10)

The expectation of [, is therefore given by

n—1
L1
ED, =~ Z(;IE (Xi2) Xi = T

A

Thus I'), is an asymptotically unbiased estimator of I'. This result can be found for in-
stance in Bosq, [7]. Looking at the empirical eigenvalues and eigenfunctions, we have
a collection of results that are used to prove consistency. The notation used is that of

subsection 2.2.1. Lemma 4.2 of [7] proves the following result,

Lemma 1. Suppose A, B € L are two compact operators with singular value decomposi-
tion A(z) =372, Nj (x,v5) fj and B(x) = > 272 v (x,u;) g;. Then, for j > 1,

[Aj —wl< [[A= B¢

On the other hand, from Lemma 2.3 of Horvath and Kokoszka, [28], (compare also Lemma

4.3 of Bosq, [7]) we have

Lemma 2. \; > Xy > ... >\, >0, 1/;» = c;vj with ¢; = sign((u;,v;)), A symmetric, i.e.
v; = [;, then

luj = vil|< a5l A= Blle, 1< <p

where a; = 2\/§max[()\j,1 — )\j)_l, ()\] — )\j+1)_1] ’ij Z 2 and a; = 2\/5()\1 — )\2)_1

21



Having the above results in mind and from the fact that it has been proven that asymp-
totic results of operators can be transferred successfully to the eigenelements, see Mas
and Menneteau, [43], it is then possible to use the empirical estimators of the popu-
lation eigenelements when carrying out functional principal component analysis. This
works when we have strict stationarity as this will ensure that the covariance operator
is bounded. Further, Hormann and Kokoszka [25] prove that for {X,,} that is L*-m-
approximable, and for some constant Uy < oo then nE|T, — T||2< Ux. From this
result they further prove in their Theorem 3.2 that principal components are consis-
tent in the case of weak dependence in particular that consistency holds in the case of

L*-m-approximability.

This method has been used extensively and successfully for dimension reduction, and we
employ it in this study. It should be noted though that due to the fact that only the
first few FPC’s are incorporated, the estimated curves will be smoother than the original

curves.

2.4.2 Predictive Factor Decomposition

This method was introduced by Kargin and Onatski [31], in which they proposed a
reduced rank approximation of the autoregression operator that minimizes the prediction
error, that is

min E|| X, 11 — U X, |*= Jnin E||(¥ — ¥;) X,.|? (2.11)
k

U ERy LE

where Ry represents the set of all finite operators acting on H. Unlike the case of Func-
tional Principal Component analysis (FPCA) they focus on obtaining a reduced rank
approximation, which is a linear combination of factors that contribute most to predic-
tion as opposed to the variability in the data, arguing that directions based on FPCA
are not necessarily justified by efficiency in the problem of prediction. Their estimator is

given as

k
\ila,k = Z ‘<Xn7 i)a,i>
=1

~

Cba.s (2.12)

)
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where lA)a,Z» =15 1/ 2550471», T4, are the eigenfunctions of the operator ® defined by the polar

decomposition WI'/2 = U®Y? and U is a unitary operator. They argue that to get a
consistent estimator of W, I should be defined as T'y =T+ af , a a positive real number
since the eigenfunctions of ® do not converge to those of ®. In their work they showed that
the Predictive Factor method perfomed better than the Functional Principal Component
analysis method when it came to predicting Euro dollar future contracts. On the contrary,
Didericksen et. al. [16] argue that this method never dominates the Functional Principal
Component (FPC) method although with good tuning of the parameters a and %k good

results may be obtained.

2.4.3 Principal Component Analysis through Conditional Ex-
pectation (PACE)

This method extends functional principal component analysis (FPCA) to situations in-
volving functional longitudinal data with few repetitions which are irregularly spaced
but with sufficiently dense pooled time points. FPCA as described above is widely ap-
plied for dimension reduction in the functional case but in the case of very few data per
subject it encounters difficulties. Few data in this case may imply one or two observa-
tions/measurements for some subjects. This method was suggested by Yao et. al., [58]
and it was found to give the best prediction under Gaussian assumptions and the best

linear prediction for the non-Gaussian case of the function principal scores.

In their work, [58] consider sparse and irregular longitudinal data, where presence of
measurement error is also accounted for. Because of the sparseness of the data, the
classical FPCA would give biased approximations, due to sparseness of time points and
presence of measurement error. The PACE method suggested on the other hand gives the
functional principal score of a given subject as the conditional expectation of the score on
the observation of that subject at a given time, i.e for an observation Y;; = X;(T};) + ¢;
where Yj; is the jth observation of the random function X with measurement error e,
and the PACE score is given by &, = E [@M}Nfl} where Y; denotes measurement on the ith
subject. Their method was applied to simulated data and in the real case to longitudinal

CD4 counts. In both cases it was found to give substantial gain over the classical FPCA
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for sparse data. It was also noted from simulations that the method performed well with

regular dense data. Asymptotics for the parameters involved were also established.

2.5 Weak Dependence

Owing to the fact that functional data arise from almost continuous data partitioned into
intervals, for instance daily weather records, existance of some temporal dependence is
inevitable. Hérmann and Kokoszka [25] quantify this notion of weak dependence using
a moment based measure. They use the idea of m-dependence which is to approximate
X,, n € Z by m-dependent processes XT(Lm), m > 1. Now for a sequence X,, taking values
in a given measurable space, the o-algebras generated by the observations up to and from
time [, that is F;” = of{..., X;—2, X;_1, X;} and F;" = 0{X}, Xi11, Xi42, ...} are said to be
m-dependent if for any [ the o-algebras F,” and .Eim are independent. Their theory is

based on LP — m — approximability.

Their definition is an extension of the scalar and vector LP — approximability with a
few differences, for instance independence of the innovations in their case. It can also
be noted that since m dependence implies the CLT, so does LP — m — approximability.
Although not directly comparable with classical mixing coefficients such as a-mixing or
[-mixing, it can be shown that this form of dependence holds for time series models, for

example the FAR model as illustrated in [25].
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Chapter 3

Weak Convergence in the Functional
Autoregressive Model (FAR(1))

In this chapter we explore the results on the weak convergence of the predictor in the
FAR(1). In the first section some definitions required within the chapter are given. In
section 2 we give existing results on the weak convergence of the autoregressive operator
and predictor together with assumptions required. In the next section we extend the
existing results on the prediction from 1-step ahead to n-steps ahead and in the last
section we give conditions under which the random projector (from section 1) can be
replaced by a non-random one. The weak convergence results in this chapter motivate
the bootstrap chapter which follows as we are interested in carrying out predictions and

obtaining confidence bands in practice even in the event of small sample size.

3.1 Definition

Definition 3.1.1. (Martingale differences): For a filtration Fy C F; C Fo C ... C F,, C
.... of sub-o-algebras of F and a sequence (Xj;,7 > 1) of integrable Banach space random
variables, (X;) is a martingale difference with respect to (F;) if it is adapted to (F;) and

E (X;||Fi—1) = 0. See Bosq, [7].

3.2 Known Results

Here we introduce the results by Mas, [44] which we use extensively in this chapter and

the next. Mas studies weak convergence of the functional autoregressive model which
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elaborates on the rate of convergence and gives an exact asymptotic distribution. The
fact that the exact asymptotic distribution is known ensures that confidence set bounds
for ¥(X,,) can be obtained. The model is studied in a separable Hilbert space H = W2,
with smoothness index m = 0 belonging to N (W%2 = £2). The linear operator ¥ is
supposed to be a compact operator, which is advantageous since the class of compact

operators is a larger class than the normally used class of Hilbert-Schmidt operators.

Although the operator ¥,, and the predictor ¥,,(X,,) have been shown to converge almost
surely by Bosq [7] and hence, in probability, by Mas [41], from Theorem 3.2.1 below
(Theorem 3.2 of Mas, [44]) it is shown that it is impossible for the operator to converge
in distribution as it is. This convergence is impossible as from the proof of Theorem 3.2.1,
in specific equation 3.5, it can be deduced that weak convergence i.e. ¥, — ¥ depends
only on the second term of 3.5 i.e S,I'f where S, is defined as,

Sp =Y X1 @ex (3.1)

k=1

and I'f is given by Equation 2.7. Due to the ill posed inverse problem involving I' ™!, in the
event that convergence is considered for z € H, if z belongs to the dense subset where I'"?
is defined, then convergence will be achieved, otherwise the sum will diverge implying
that there won’t be a uniform limiting distribution. Because of the above mentioned
reasons therefore, convergence in distribution cannot be achieved. A thorough exposition
of the same fact can be found in Mas, [44] (proof of Theorem 3.2.2). It should also be
noted that the problem of non-convergence weakly is not limited to the dependent case,

as it is also observed in the i.i.d case, see Cardot et. al.[10].

Since convergence in distribution is very desirable in the sense that it allows for inference
concerning point estimators and their asymptotic confidence bands, asymptotic mean
and variances e.t.c, Theorem 3.2.1 (Theorem 3.1 of Mas, [44]) seeks to correct the above
mentioned convergence problem. They prove a modified version of the result, i.e. the
unknown operator W is replaced by \I/f[kn and with this random operator as the cen-
ter convergence in distribution is proved. They employ a sample consisting of n + 1
observations where the first n are used to estimate the parameter after which the esti-

mated parameter and X,, 1 are used to predict X, 5. For completeness, we include their
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assumptions Ag — A3 and state the Theorems below.

Assumption 3.1. ker T = 0, E|¢||?< oo, ||¥| < 1

Assumption 1 focuses on the existence of an inverse of the symmetric operator I', without
which boundedness of ¥ cannot be achieved. The norm of ¥ < 1 is required so as to
ensure that a unique, strictly stationary causal solution to the FAR(1) process exists i.e
Xn = 227209 (€n—j), and El|¢[|*< oo ensures finite variance. The proof for stationarity

and causality can be found in Bosq, [7].

Assumption 3.2. |[I~V/2¥|| < +oc0

Assumption 2 can be considered as a smoothness constraint of the unknown operator .
If U is a diagonal operator in a complete orthonormal system such that ¥ = diag [(;)i>1]
with p; > p;41, then the degree of smoothness of ¥ will be strictly determined by the rate
of decrease to zero of (|);>,. If we consider that W is symmetric and has the same basis
of eigenvectors as I, the assumption reduces to p;/ VA < 00, i € N. We are looking at
the rate at which the eigenvalues of ¥ decay to zero. When this rate is high, then ¥ can
be estimated well by a finite dimensional approximation based on the first p eigenvalues

and vice versa.

The Karhunen-Loéve expansion of X is given by
+o00o
X = ; V& (3.2)

where the &’s are centered real random variables such that E&éy = 1if [ = 1" and 0

otherwise.
Assumption 3.3. sup, E&} < M

This assumption is required since the definition of ¥ already contains second order mo-
ments and therefore in case of estimating for instance its variance the fourth moments

will be required.

Assumption 3.4. \; = A(j) for all j > jo, where the function A is convex.

Convexity of the eigenvalues is required since in projecting ¥ to a finite dimensional

space, it is normally highly desirable that only a few eigenvalues explain a high cumulative
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percentage of variance. Additionally, as seen in Assumption three above, the smoothness
of ¥ is linked to its eigenvalues, which convexity would guarantee to some extent. Further

details and explanations on the assumptions can be obtained from Mas, [44].

1/4
Theorem 3.2.1. When assumptions 3.1-3.4 hold and k, = o (ln >,
og n

B0 (X) = 9, (X)) 5 6 33)

where G 1s a H-valued Gaussian centered random variable with covariance operator T..

f[kn = Z?Zl 7; 1s the random projector onto the space spanned by the first k, eigenvectors

of the covariance operator I'y,, k, an increasing sequence tending to infinity.

The Theorem states that the projection of the operator onto a finite dimensional subspace

allows for the convergence in distribution of the operator. Now

\ijn (XnJrl) - \I]ﬂkn (Xn+1> = \ijn (Xn+1) - (Xn+1) + B, (3-4)
where B, = V¥ (] — ﬂkn> (Xn+1) can be considered as a bias term which will vanish when
the sample size increases. For the sake of completeness, we now state Theorem 3.2 of

Mas, [44].

Theorem 3.2.2. [t is impossible for U, — U to converge in distribution for the norm
topology on KC, where IC is the space of compact operators.

3.3 n-Step ahead Prediction of X

We show that Theorem 3.2.1 holds for X, and include some remarks for the case of
any given X. From the proof of Theorem 3.1 of Mas, [44] and from Equation 2.1 we have
I'=vI'v*+T.. Let S, = ZZ:1 Xi_1 ® €. From Lemma 10, we have

. . 1., . 1
W, — Ui, = —S,(I'1 = TT) + =8I (3.5)
n n

1 A
It is shown in Mas, [44] for X, ;1 that —S, (Il — I'T) is a vanishing term and that the
n
1 1
asymptotic distribution depends only on —S,I'f. Note that Mas includes the factor —
n n

into 5, but in the explicit definition, there, the factor is missing due to a misprint. We

show that the same holds for X,, 5 and in extension for n steps ahead.
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Using a combination of pertubation theory and functional calculus for bounded operators,
Mas [44] defines I'T and the projector onto the space spanned by the first k,, eigen values
of I' as

r:/ Yzl -T)~ dz_Z/ Yzl —=T) " dz

and

1 -1
II — I1-T1)"d
kn = 21 Cn (Z ) i

kn,

where C,, = |J B;, and B; is the oriented circle on the complex plane with center \; and
i=1

radius 6;/3 and 6; = min (|]\; — Ni—1|, |A\i — Aix1]) Their random counterparts are then

given by

R N1 kn N1
FL — / 21 (z] — Fn> dz = Z/ 2t (z] — Fn> dz
Cn =1 7B

and

A 1 L\ 1
M, = [ (s1-Ta) dz
Cn

" 271

respectively. From these we have
S, (f; _f ) (Xpso)
o\ -1
= / 27 1S, (z] - Fn> (Xpi2)dz — / 2718, (2 =) (Xpy0)dz (3.6)
Cn Cn

For the residual term (3.6); Lemma 5.6 and Proposition 5.1 of [44] are unaffected by the
change from X, 1 to X,,1o. This is because in the case of Lemma 5.6 what is proved is
that the random contour C, can be replaced by the non random one C,. In this case an
event A, is introduced which allows the consideration of ordered eigenvalues of I, which
are very close to those of I'. This effectively splits the set into two; sample eigenvalues
(the first k,,) very close to their true counterparts such that they can be considered to be
in the non random contour C, (A4,) and those that do not fulfill the requirements of the
event (AS). It is then shown that the probability of the complement set of the event goes
to zero in probability when the conditions of the lemma hold thus the random contour can

be replaced by the non random one. In the proof of the lemma, we are majorly concerned
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with the covariance operator which is constructed from the observations without taking
into account the observation to be predicted. This therefore implies that whether we

consider X,, 1 or X, where k > 2 the outcome of this lemma will not be affected.

When we consider Proposition 5.1 on the other hand this involves splitting X,, 5 into €,
and ¥(X,,1) and bounding the respective terms separately. In this case too considering
Xnik, k> 2 does not alter the results since among the properties considered in order to
bound both terms is identical distribution, which we have as a result of the assumption

of strict stationarity.
Thus in our case we have, under the assumptions of Theorem 3.2.1
= S(Ih, =TT (Xy2) = 0

The weakly convergent term, S, I'"(X,, ), should fully determine the asymptotics of the

predictor. Now

SnFT(Xn—l—Q) - <Xk—17 FT(Xn+2)> €k
k=1

S

= Zk,n
k=1

Note that X, 410 = €ppo + U(€np1) + ... + UH27F(ep) + UnH2=(E- (X, ). Decomposing

Zy n into three terms we have,

le:n - <FTX’€—17 €n42 + \Ij<€n+1) + ...+ \I’n+2_(k+1) (Ek+1)> €L
Z9 =TT X4, U2 () e

Zyo = (TTX, 020X 1)) e

The random sequences Zl;f , and Z;° remain Hilbert-valued martingale difference ar-
rays according to lemma 5.7 of [44] even when we replace X, .1 by X2, noting that
in this case X,fn = enro + V(engr) + .o + U200 (¢ 1), Indeed, E(Z,:n|fk_1) =

1n» We have;

E (Z,:n\}"k,l) = (E <FTXk,1,X,fn> ]E(ek\}"k,l)) where the Fj_; is a o-algebra gener-

E <<FTXk_1, X,fn> €k|./—"k_1> and since €, is independent from X#

ated by (Q)lgj-
Considering that both sequences are centered we then obtain E(Z,,,|Fr-1) = 0.

Next we show that weak convergence to the Gaussian limit depends only on the term
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We prove that S is a uniformly tight sequence and that finite distributions, when com-
puted on a sufficiently large set of functionals converge to Gaussian limits as in Proposi-
tion 5.2 of [44].

We first compute the covariance and cross covariance of Z;" , where

Zy, = (T X1, engr + W(entn) + o+ U2 (g ) e (3.7)

Lemma 3. If k < j, E(Z], ® Z,) =0 and

E (7}, ® 7)) = T« (ky — tr (THn—h 1D (@ )n k1))
The lemma is analogous to Lemma 5.8 of [44], and the proof is as follows

Z,®Zf, = <FTXk—17X;fn> <FTXJ'_1, X]#n> (er ® €;5)

X o= U EUXG ) e U)o+ W)
Splitting Z,/, ® ZJ,, into two terms, for j < k:
£ KFTX’H’ len> <FT (-1 + o+ P77 () 7an> (e ® Ej)] =0
since Xj_1 is centered and independent from the other terms. The second term
E KFTXk_l, X,jfn> <FT\IJj‘k(Xk_1), an> (6 ® ej)} —0

since ¢ is independent from all other terms and its expectation is zero.
Further,
2
2
(E <PTX,H, X,jfn> ) T,
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and
2 2
E(T' X, Xf,) = E (E (X, TiXE, ) |X,jfn)

_E ‘ r1/2FTX7jan2

2
- efre)
= u(T'rf,)

where the second last step follows from the underlying idea that It — T'=! thus I'/?I't ~

n—o0

F1/21‘\71 ~ F71/2 ~ FTl/Z7

rf, = E(xt,@xt,)
= D[ 4 UT U . 4 W=D (gr)nt2- (k)
— I — \Ifn_k+21"(\1!*)”_k+2

and
tr(TTE,) = tr (D'T) — o (D1 2r (g k)
= k,—tr (FT\I’"*’”QF(\II*)"*’“H)
which completes the proof of the lemma.

Lemma 4. With afx = E (e, $>2,

1 n
+ w 2
nk Z<Zk,n’x> =N (0,0¢,)
" k=1
This lemma aims at proving convergence of the finite dimensional distributions to a
Gaussian limit. To prove the lemma, we consider Theorem 2.3 of McLeish, [39] which
deals with convergence to Gaussian limits for martingale difference arrays and apply

it to the real valued martingale difference array <Z,j n,x>. It is enough to show that

Siytr (TTE, ) ~ ko e

ZZ:l tr <FTFk#,n) — ’)”Lkn - ZZ:l tr (FT\Pn_k+2F(\IJ*)n_k+2)

0

When this holds we have that the limiting covariance will be o7, as required in condition

(c) of the Theorem. From the cyclic property of the trace which implies that the trace
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is invariant under cyclic permutations, i.e. tr(ABCD) = tr(BCDA) = tr(DABC) for

A, B,C, D (square) matrices, we have

Itr (FT\I/n—k—I—QF(\I/*)n—lH-Q) | = |tr ((\I,*)n—k+2phpn—k+2p) |
SO (O S P La

— H(q]*)nkarl@*Fl/QFTrl/Qil\pnkarlHE‘tT,F’

< U T

Now [[¥"~*+1||< 1 which implies that its square is bounded as the next two terms. |trT| is
also finite dimensional since from the assumptions we have that I' is a symmetric compact
operator which allows the decomposition given in Equation 2.6 so that trI" =) ; Aj < oo.
Therefore as nk, — oco; Y ,_; (E <FTXk_1, X,fn>2> ~ nk, which ends the proof of the
Lemma. In order to complete the proof of convergence to Gaussian limits of S;", we need
to show that S is tight. Looking at Lemma 5.9 of [44], we have

limsupsup P (||(1— Pn) S| > €) =0

m—+4o0
where P, denotes the projector associated to the m first eigenvectors of the covariance
operator I'. of €;. The lemma proves that with a prescribed probability the sequence S;"
is concentrated in the e-neighbourhood of a finite dimensional space, (for some e > 0).
The probability above is bounded using Chebyshevs inequality, so that we have

1-P0) S;17)

2

E ([I(
P (|[(1=Pu) S| >€) < (

€

Expanding the right hand side of the equation and noting that X, ; and ¢, are not
correlated, it is possible to write the squared expectation as a product of two terms
which are non correlated and which can be shown to converge to zero. Now the results
of this lemma are not altered when X, ., k > 2 is considered since it is still possible to
separate the terms as in the case of X, ;. Thus the lemma holds in our case too and
since we have tightness and convergence in distribution to Gaussian limits we conclude

that the Theorem 3.2.1 holds for the case X, 1%, k> 2.

For the extension to all other x in H, we quickly note that, as before the inverse of the

covariance operator is not bounded and therefore, as in the i.i.d case, see Cardot et. al.,
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[10], this will only hold for those z on the dense vector space given by D(I'™!) = Im T =

2
reHM, >, (:1:,)\1/2p> < +oo}, see Mas, [44].
P

We finally show that the sequences Z;  and Z,gyn converge to zero in probability and thus
have no influence on the weak convergence in our case too. This follows from Lemma 5.10
of Mas. In their proof, they show that the squared expectations of the sequences which
serve as an upper bound converge to zero. The proof consists in bounding the terms
which involve € and X, separately, taking into account that due to strict stationarity the
Xy, are identically distributed as are the e. Finally the Karhunen-Loeve extension of X
is pulled in to complete the bounding of the terms. Although in the case X, o we have
some slight changes in the representation of the terms, this does not affect the results of
the lemma and thus we can also conclude that the lemma holds for the case X, 5. The

proof of the Theorem is therefore complete. 1

3.4 Random Projector

We check whether Theorem 3.2.1 holds when the random projector f[kn is replaced by
the non-random projector Il . Although in the case of the i.i.d data the same holds,
see Cardot et.al., [10], in the case of dependence the same holds under an additional
condition. This is because unlike in the i.i.d case, the dependence of the data introduces a
cross covariance term which does not vanish asymptotically unless an additional condition

is introduced. 1
Proposition 3.4.1. If — (log kn)* — 0 as n goes to infinity, then
n

NG

n ~

v (Hkn . Hkn) (Xpi1) — 0 (3.8)
n p

where 11 is the projector onto the eigenspace associated to the k,, first eigenvalues and
ﬂkn its empirical counterpart, i.e projector on the eigenspace associated to Xl, A}, cee )\;n

Before we state the proof, we state without proof some lemmas from Cardot et. al.[10]

which will be required together with those at the beginning of this Chapter.

Below is Lemma 1 of [10]
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Lemma 5. Consider two large enough positive integers j and k such that k > j. Then

A > kX and A — A > (1—%) by

Next we state Lemma 4 of the same paper
Lemma 6. Denoting

601 {Jr-m - s

1
<3 %€ B]} ,
the following holds

N —1
(2 —T)"/? (z[ . rn> (2 —T)/?

]15 )y < C, as.

where C' is some positive constant. Besides

)y < 4108
P(£5(2)) < NG

Proof. This proof follows closely that of Cardot ef. al. and seeks to extend it to the
dependent case. We consider another stationary process {X} which is independent of
{X,} and satisfies the same equation as {X,} i.e.

X, =UX, +e  6iidN(0,07) (3.9)

We use the process {X} to estimate ﬂkn\ll, after which we apply the operator to our
original process in which case the operator is independent from X,, 11, see Shibata, [51].
Now

(ﬂkn . Hkn> = = Z/ { B (zI—F)_l] dz

where

27”2/ zI )" r —r>(zf ) }d (3.11)
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and

R, = 2%” g /Bj [(z[ ! (fn - F) (21 —T)" (fn - r) <z[ - fn> 1} dz (3.12)

The second step (3.10) can be verified as

[(ZI - fn) - (fn - r) (2] — r)l] - (zf - fn>_l (fn — 2l + 2l — r) (2 —T)
- (zf - fn)fl ((z[ D) - (z] - rn)) (21 —T)™
- (zf - fn>_l (2 —T) (2] —T)~*

From the relation fIkn — Iy, =S, + R,, we have that —§,, + f[kn — I, = R,. Looking
at the term in R,, we have

{(21 ~0) By =) I =) (=) (21 =T, 1}
=— (I -T)" (fn . r) {(21 )t <z[ - fn) _11
= —(zl-T)" (fn - F) (21 —T)" — (21 — )" (r . fn) (u _ fn)_l

-1

——(I=D)" (P =T) (I =)' (21 = 1) = (21 =T)"

Thus f[kn — Iy, = S, +R,. Since the operator is estimated from a different process, we
have that S,, and R,, are both independent from X, 1, therefore

+o0
E VS, (Xn+1)||2 = E Z <\I/Sn(el)7 \I/Sn(el),> (Xnt1,ep) (Xnt1,er) (3.13)
LI'=1
+o0o
= EY U (e)] (Xuir ) (3.14)
=1
“+o0o
= D AE[US,(e)] (3.15)

=1

since B ((X,,41,e1) (Xni1, 7)) = 0if [ # I by the definition of the e; i.e orthonormality.
E (X1, el>2 = )\; follows from the Karhunen-Loe¢ve expansion of X, i.e.

X = Z \/lelel (3.16)
=1
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so that

N ifl=1

E Xn 9 X'n, y €)= . /

(Xns1, e1) (Xng1,€p) {O 141

Next
2
+oo
2

E (TS, (e)* =E | W(ey) (Suler), er) (3.17)

'=1

This follows from the fact that S,e; can be expressed as

o0

S,e = Z (Sner, €5) e;

j=1
From Cardot et. al. [10] the explicit computation of the operator S,, can be given by

ZLm' . [(z[—f‘)fl (fn —F) (z[—F)fl] dz =v; (fn—F> T+ 7 (fn —F) or

with v; = ) yy mﬂj/ where 7; is the projector on the eigenspace associated to
J

the jth eigenfunction of I We note that F,fn,vj,wj are self-adjoint operators and
that a linear combination of self adjoint transformations will result in a self adjoint
transformation. We can therefore write

(Sper,ep) = kz" [<(fn - F) Wjel,vjel/> + (fn - F) Ujel,ﬁjey] (3.18)

This gives rise to four different possibilities which we list below

1. I'>k,and >k,
In this case m;e; = 0 and 7jep = 0 since 1 < j < k,, and because of orthonormality
the terms will be zero.

2. ' <k, and l <k,
Here, for some 1 < [,I' < k, and keeping in mind that e; are orthonormal, the sum
3.18 reduces to

= <(fn — F) e, UZ€II> -+ (fn — F) Uy €, Ty €y

= <(fn — F) el,vlel/> + (fn — F) vyer, ey

I£1 =1 then viey = vye; = O from the definition of vy. 1f1 # I then (I = T') ef, ey )+
<fn - F) vy e, ey reduces to

= <<f‘n — F) e, ﬁﬂl/el/> + <(fn — F) ﬁmel, el/>
= s ) ee) s (B ) )
DY 1— Y <<F” - F) el’el’> DY 1— N <<f" N F) el’el’>

= 0
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3.1 >k, and | < k,
In this case 3.18 reduces to

<(fn — F) mey, vlel/> = <<fn — F) e, vlel/>
= <<fn — I‘) e, ﬁwl/el/>
(s

)\l/ - )\l

4. 1 <k, and | > k, 3.18 reduces to

. . 1
Fn—F>v/e,7T/e/> = <<Fn—F) 7T€,6/>
<( 1"CL el )\l_)\l’ 1€, ©
(G

M= Ay

Collecting all the cases together we then have that

(

0 if (I'<kyandl<k,) orif (I'>k,andl>k,)

Suerer) = 1 <<an; 1:))\6[17€l'> if (I'>k,andl<k,)

(D

)\l - )\l/

if (I'<k,andl>k,)

Considering the instance when [ > k,, and I < ky,,

. 2
E||‘1/Sn(el)||2 = E kzn\lf(el/)<<rn/\7f>>\jhel/>

where
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and R*

1, are centered and correlated random vectors, i.e.,

_ —]E Z\I/ X1’61><X1ael>

— Ay

n kn ,.el /.761/ ]’me ];,6/
26[5°5 5% e oy L) (o) )

k=2 j<k |' m=1

1 n
— R

Looking at the first term on the right hand side, and considering that our process is
strictly stationary, we have

2

Ay =N

By the Karhunen-Loeve expansion of X, this reduces to

A/ S A (€267 6,)
n Z () ¥ en)) 3R O — )

ml =1

Applying Cauchy-Schwarz twice to &’s yields

E (¢2¢2)

E (le 51’5m)

VAN VAN
52

Thus the first term on the right hand side is bounded by

2

ZRlln

kn
< % S () YA
I'=1

A=Ay

by using the Karhunen-Loeve expansion of X, assumption 3.3 and Lemma 5.1 of [44].
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Considering the second term on the right hand side, we have

EZZ Z (e), W(en) (X e) (X er) (Xpe) { Xy em)

AN — A AL — A
k2]<klm1 t ¥ t m

using the same arguments employed above of stationarity and Karhunen-Loeve expansion,

_ AVANARE (&€ Em)
= Z >3 e wiew) =) v — o)

k=2 j<k |’ ,m=1
The expectation term can be bounded as above so that

, 2 AV AE (67606
WP IUBRTONE CEree:

k=2 j<k ' m=1
2
2 Ny
<23 Y o2
k=2 j<k '=1

where the summand is independent of j and k.

Now
n k—1 n n—1
1= (k1) = k:"<”2_1)
k=2 j=1 k=2 k=1
Finally we have
i 2
M || ANy
Z 2 I PO b vy (3.19)
k
2M 1 = Ny
— | 1—- W (ep 3.20
+ n2 ( TL) l/z::l (el >)\l o )\l’ ( )
at vy |
< MY (er) ZA’Z (3.21)
=1 LA

Similar calculations for the case I’ > k,, and [ < k,, lead to

ZOO 0 )VM" (3.22)

€,
RO VEDPW

1n
E|- R

U'>kn+1

We see that Cardot et. al.’s, [10] method does not follow through for the case of depen-
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dence since the covariance term leads to

k +o00

1 M & VAN
k—IEH\IISn(XnH)HQ < N > \1/(6,)A _Al, (3.23)

n n lIan+1 l 1

i 2

M n N
=D N Z\P(el/))\ _lAl/ (3.24)

">k, ||U>1 ! !

n
whereas we are interested in k:_E WS, (X,11)|>. To overcome this problem, we introduce

a slightly stronger assumption on the \;’s. Cardot et. al. [10] have the condition that
for a sufficiently large 7, \;2 log @ < C'. We on the other hand consider the conditions

n(1+ k, log k) Z Aj—0,n—o00 and nk? Ak, — 0, n — oo.
j>kn4+/kn/logkn

If, e.g., \; = ba? for some b > 0, 0 < a < 1, then both conditions are satisfied if

log k,,

lim sup . < log —. Having this in mind we can then write the above equation as
n a
n 9 n kn +o0o /)\l)\l/ 2
—E||VS, (X, < —M A Ve, 3.25
kn || ( +1>|| — kn Z l Z (el )Al . Al’ ( )
=1 U >kn+1
T
i 2
n = \/ )\l>\ /
+k—MZ)\l Z\Il(el/))\ _A’/ (3.26)
" >kn U'>1 ! !
T

We need a minimal condition to bound I and II. Looking at I (3.25), we have by Lemma
5 and from ||V, < 1,

2 2
+o00 . )\l/\l’ B . +o00 /_)\l)\l’
Z <€II)A _)\/ - Z )\ _)\/el/
' >knt1 L= Usknd1 L O
/>\l +oo )\l)\l’
< — IR
B Z )\ _/\ /Z (/\l_)‘l')Z
U'>kn+1 U'>kn+1
+o0 )‘l’

< 2 W
pi (=)
as ey are an orthonormal basis. We therefore have for I:

ﬁMiA f U(ey) M <nM Z (3.27)
b = o ‘

U>kn+1 U>kn+1 (1 — l£>
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log k,
split the right-hand side into summation from k,, +h, +1 to oo and from k,, +1 to k, + h,,
and we use that for I’ > k, + h, and | < k,, , l'k,, > [ (k, + hy,), thus

Setting h,, =

where [z] denotes the largest integer smaller than [z]. We can

Loy ke h
I = kn+hn  kn+ by

nMi#lgnMZA< )2

2
U'>kn+hy (1 — l_') U'>kp4hn

< nM Y (L4 kylogh,) =0
U>kn+hn

by our assumption on n, ky, Aj, j > ky + hy,.
Analogously, we get for 1 <[ <k,

kn+hn
nM > < nM(kp 4+ 1A, 11 k0

[
U=kn+1 [ 1 — —
(1) r)

< nM(k, +1)?

) 0
log k., kn 7

Hence, the term II (3.26) also goes to zero using similar arguments as n — oo, and we
get

n
—E [0S, (X)) ||” = 0 (3.28)
The second part of the proof, i.e showing that
k2 log k

2
= i ( \/_k;”;/Q (log kn)Q) when ”Tn”%o

is quite similar to the first one and uses again the same kind of arguments as in Cardot
et. al., [10], so we do not give the details here. O

\I]R ( n+1)
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Chapter 4

Change Point Detection for
Functional Observations

In this chapter we consider the change point problem for functional observations and
an application to cognitive science data. We look at the possibility of a change point
in the mean first studied by Berkes et. al. [4] for independent identically distributed
(ii.d) observations. In [4], they applied the test to temperature data and made the
observation that apart from a change in level, change of shape of the curve can be
informative, for instance the summers may be warmer and winters colder. This serves
to show that functional methods incorporate a lot of data from which finer and more
accurate observations and inferences can be made. Horvath et. al. [26] consider a
change in mean for dependent observations, noting that the test for i.i.d. data fails to
account for the long run covariance and therefore may give false results. Aston and
Kirch [2] evaluate stationarity via change point with an application to resting state fMRI
(functional Magnetic Resonance Imaging) data. In this case too we have change point
detection for data with dependence. Horvath et. al. [26] develop a test for the stability
of the FAR(1) model. In all the situations considered, we see that failure to account for
a change when one exists will lead to erroneous results and inferences. In [4], [26] and
[25], the tests developed are based on the CUSUM method, and as rightly noted in Aue
et. al., [3], a lot of open questions still remain, for instance applicability of MOSUM test

in the functional case, sequential change points for functional data among others.

The chapter is divided into two sections considering a change in mean and stability of
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the functional autoregressive process. In each case we give a brief introduction, overview
of the test procedure and application of the procedure on a real data set consisting of
stimulus response data of cells from the animal physiology group at the University of
Kaiserslautern and the results obtained under asymptotic considerations. This chapter
is an application of the methods developed in Berkes et. al. [4], Horvath et. al. [26] and
Hormann and Kokoszka, [25]. For completeness we include the technical assumptions

used for developing the test statistics.

4.1 Change Point in the Mean

When considering observations, although for theoretical purposes it is easier to consider
observations with mean zero, in reality, this is not the case. A suitable assumption would
be X; = pu+ Y; where EY; = 0. When working with data, various procedures con-
sider mean adjusted variables for instance the dimension reduction Functional Principal

Components v, are those of X — p, with the following L? expansion,
Xi(t) = p(t) + > &awa(t), 1<i< N (4.1)
k=1

This simply means that if there is a change in the mean function at some point, then the

results of the (Functional Principal Component Analysis) FPCA will no longer be valid.

As noted in Berkes et. al. [4], detecting a change point of the mean does not necessarily
mean an abrupt change from one curve to the next but that the assumption of a constant
mean for the whole series is not acceptable. We consider possibility of a change in the
mean while assuming that the data are independent and identically distributed (i.i.d.) in
one case and dependent in the other. This is to ensure that the possibility of spurious

dependence is ruled out.

4.1.1 Assumptions and Detection Procedure for i.i.d. Observa-
tions

In the case of independent observations, we test the null hypothesis
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against the alternative of a single or more change points.
Under the null hypothesis each functional observation is represented as
Xi(t) = pu(t) +Yi(t), EY;(t) =0 (4.3)

where X; € L2

Assumptions

Assumption 4.1. The mean yu(.) is in L. The errors Y;(.) are i.i.d. mean zero random
elements of L? which satisfy

EIYiIP= [ EY2(0)it < o0 (4.4

The assumption above implies that the covariance function
clt, s) = E[Yi()Yi(s)] .5 € [0,1] (4.5)
is square integrable, and consequently the expansions

c(t,s) = > Mevi(t)ur(s) (4.6)

1<k<oco

and

Vi = 3 &) (4.7)

1<l<0

where & ; = (Y;, 1) are implied.
The estimated eigenelements are defined by
/é(t, $)o(s)ds = Niy(t), 1=1,2,- - (4.8)

where
c(t, s) = %219‘31\7 (Xz‘(t) - XN(t)) (Xi(s) - XN(S)) and Xy(t) = %21@31\/ Xi(t)

The next two assumptions together with Lemmas 1 and 2 in chapter 2 control the distance

between the population and estimated (empirical) eigenelements.
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Assumption 4.2. The eigenvalues \; satisfy, for some d > 0

)\1>)\2>"'>)\d>)\d+1

Assumption 4.3. The Y; in Assumption 4.1 satisfy

E|Y;||*= /EY;‘*(t)dt < 00. (4.9)

Considering a single change point alternative:

Assumption 4.4. The observations follow the model

Xi(t) = {“l(t) +Yi(t), 1<i<hs
/IJQ(t) +Y;(t), kx <i< N

where Y; satisfy 4.1, py, po are in L*(T) and k* = [nf)] for some 0 < 6 < 1.
Detection Procedure

Under the specified technical assumptions, we denote

LX), )= e S X (410

1<1<k k<i<N
If the mean is constant, the difference Ag(t) = fix(t) — fix(t) is small for all 1 <k < N
and all ¢t € [0,1]. To account for effects of chance variability when & is close to 1 or N,
we consider the weighted differences

=D Xi(t) - Z Xi(t NN £) [ (t) — fux ()] (4.11)

1<i<k 1<Z<N

in which the variability at the end points is attenuated by a parabolic weight function.

Since the functions are infinite dimensional, we project them onto the first say p principal
components which explain most of the variability. The population eigenelements are also
replaced by those from the sample so that we have

1<i<Nz 1<i<N 1<i<Nz 1<i<N

To derive the test, consider the statistic

P 2
w):%;&‘l( > bi—x ) él,i) (4.13)

1<i<Nz 1<i<N
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where \; estimates the eigen values of the covariance operator of the observations (see

for instance (4.6)) and By(.), - -, By(.) denote independent standard Brownian bridges.
Theorem 4.1.1. Suppose Assumptions 4.1, 4.2, 4.3 hold. Then, under Hy

T(z) %5 Y BXz), 0<z<1 (4.14)

1<i<p

in the Skorokhod topology of D[0, 1].
The proof of Theorem 4.1.1 can be found in [28].

By Theorem 4.1.1, U(Tx) LU <Zl§l§p BZZ()) for any continuous functional U : D0, 1] —
R. Considering the Cramér -von-Mises functional, we look at the convergence

/1 Ty(z)dz A 1 Z B} (z)dx

0 0 1<i<p
which can be rewritten as
1 & N k ’ 1
o - - d
Snp = WZ)\Z >y ( S b ~ > gl,i> %/ > Bi(x)da. (4.15)
=1 k=1 \1<i<k 1<i<N 0 1<i<p

The distribution of the random variable

1
K,= [ > Bl(x)dx (4.16)
0 1<i<p

was derived by Kiefer [27]. The test rejects the null hypothesis if Sy, > ¢,(a), where

¢p(@) is the (1 — a)th quantile of K.

Results on the consistency of the test and the behaviour of the test statistic under the

alternative can be found in [28].

To estimate the change point, provided the test detects one, the estimator

On = inf{az :Tn(z) = sup TN(y)} (4.17)

0<y<1

is employed, the weak consistency of which can be found in Proposition 6.1 of [28].

4.1.2 Assumptions and Detection Procedure for Dependent Ob-
servations

In this subsection we consider the test to be employed when the observations are depen-
dent. The null hypothesis is the same as that in (4.2). Under the null hypothesis, each

functional observation can be represented as (4.3).
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To establish convergence of the test statistic under Hy, some assumptions are required,

which we include here for completeness.

Assumption 4.5. The mean u is in H. The error functions Y; € L3 are L* —m —
approximable mean zero random elements such that the eigenvalues of their covariance
operator satisfy Assumption 4.2 above.

L* — m — approximability is a technical condition which implies that the Y; are weakly
dependent with v4(Y;) < oo (finite fourth moment). A detailed definition of the condition
can be obtained from Hérmann and Kokoszka, [25]. In this case, the covariance function

(4.5) is square integrable, i.e is in L? ([0, 1] x [0, 1]).

In the case of a single change point;

Assumption 4.6. The observations follow the model

Xi(t) = {Ml(t) +Y(t), 1<u S kx
pa(t) + Yi(t), kx<i< N

where Y; satisfy 4.5, py, po are in L? and k* = [NO] for some 0 < 0 < 1.

The testing procedure follows from that of the i.i.d. observations with the challenge of
how to accommodate the dependence. The main difference lies in the fact that when
the data has dependence we consider the long run variance which accommodates the

dependence between observations as opposed to the sample variance.

To obtain the new test statistic, we first define the partial sums

[ Nz)

SN($7€) = Z En? S [Oa 1]
n=1

and the bridge process

Ly(z,€) = Sy(z,€) — 2Sn(1,€) (4.18)

where & = (§,,n > 1) is a generic R%valued stochastic process. We denote by (&) the

long run variance of the sequence &, and by 2(5) its kernel estimator, where

o0

S= 3 E[(6—EE (6 — K]

h=—00

and



The test statistic is then given by

Tu(d) = + / L (2, )7 S(7) 'Ly (z, #)dz (4.19)

with the scores 7;; given by

i = / (Xa(t) — Xn(@) o(t)dt, 1 <1< d (4.20)

Theorem 4.1.2. Suppose Hy and Assumption 4.5 hold. If the estimator 3 () is con-
sistent, then

Tn(p) 5> /0 B} (x)d, (4.21)

where By(z),z € [0,1],1 <1 < p, are independent Brownian bridges.

We quickly note that the asymptotic distribution of the test statistic under the null
hypothesis is the same as that for the independent case since the long-run variance soaks

up the dependence.

Results to prove the consistency of the test statistic under a single change point alter-
native and consistency of the kernel estimator for the long run covariance can be found
in Horvath and Kokoszka [28]. Hoérmann and Kokoszka [25] give more details on the
notions of L, — approzimability and results for dealing with dependence in functional

observations.

4.1.3 Application to Stimulus Response Data

In this section we report the results of analysing stimulus response data of cells from
the animal physiology group at the University of Kaiserslautern. The data is obtained
from experiments in which a stimulus is repeatedly given to a cell at a certain speed

(1,2,5,10,50Hz) and the reaction of the cell is recorded.

In order to attain stationarity and constant mean, the data is differenced as a first step
to some of the analyses. Figure 4.1 shows a subsection of the data (original and its
differenced counterpart) series for the frequency 10Hz. The subsection is taken from the

first part of the data, curves (responses) 10-24.

49



Figure 4.1: Original stimulus data
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It is clear that the differenced series in Figure 4.1 (lower panel) looks more like a stationary
time series as compared to the original series in the top panel of the same figure. At the
beginning of each response there is a noticeable sharp spike (circled in red) in Figure 4.2.
This is an artifact which represents the direct effect of the stimulus onto the measuring
device, but not the response of the cell. The cell reacts to the stimulus after a short delay
and therefore it is safe to remove a few data points after the stimulus is given as these
are not part of the cells reaction. We therefore cut the data points in the circle and form
a vector consisting of the first and last part of the observations. Once the adjustment
has been made, the local random noise in the differenced data can be seen more clearly
as in Figure 4.4 bottom panel. We also include the adjusted and differenced plots of

subsections of the 1,2,5 and 50Hz frequencies in Figures 4.3, 4.4 and 4.5 respectively.

Once the truncation has been done, we have 68, 73, 78, 73, 73 points per curve in the
case of 1, 2, 5, 10 and 50Hz frequencies respectively, which are then smoothed to form

curves.

Since all the tests include projection of the curves from an infinite dimensional space
to the finite dimensional space of the first p principal components, we include a figure

of the scree plot which is used in selecting the number of principal components p to be
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Figure 4.2: Artifact
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Table 4.1: Test for change in the mean function (i.i.d. Test)
a = 0.05, p=4, Asymptotic crit. value=1.239675
1Hz 2Hz 5Hz 10Hz 50Hz
N 60 120 300 600 3000
Test statistic  2.0872 3.8249 8.5994 54.7244 212.0775

employed. The idea of the scree plot is that we visually select the number of principal
components at which the curve dies off. Another method that can be used for this purpose
is the cumulative percentage of variance in which we consider the number of principal
components for which the cumulative percentage of variance explained is greater than
say 85%. In this case the number of principal components selected was p = 4 which has a

cumulative percentage of variance of approximately 96%. Figure 4.6 gives the scree plot.

Assuming the data is independent and identically distributed, Table 4.1 reports the results

obtained. The data used is adjusted to remove the artificial artifact but not differenced.

Against the asymptotic critical value, in all cases we reject the null hypothesis of constant
mean. In Table 4.2 we list the change points in order of significance for the 1,2,5 and 10Hz
frequencies. These will be used for comparison with the change points in the dependent
case. A test for change in mean was then carried out but in this case the data was first
differenced. Once the data was differenced, under all frequencies no change point was

observed which implies that the data did not have a trend. Note that the change points
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Figure 4.3: Adjusted Responses (left) and their Differenced Counterparts 1,2 Hz
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Table 4.2: Change points in order of significance (i.i.d. Test)

Frequency

Change Points

1Hz
2Hz
5Hz
10Hz

20

70 100
155 85
361

164 62 10 472 396 547

refer to the number of stimulus-response and not to time, i.e. the units on the horizontal

axes of the fugures. The figures only show a small part of the total sample of curves.

Since the iid test for the change in mean is known to give wrong results when the data has
some dependency, we carried out a Portmanteau test of independence, see Gabrys et. al.
[21] for details of the test. The main assumptions required are that the fourth moment
of the observations exists and that the eigenvalues are in decreasing order. When these

assumptions hold then the test statistic converges to a chi-square distribution under the

null hypothesis.

The results of the test are given in Table 4.3. The main idea of the Portmanteau test is

to test the null hypothesis of independent identical distributions against an open ended

alternative of lack of independence or identicality. We test the null hypothesis

Hy: the X,,(.) are independent and identically distributed (i.i.d)
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Figure 4.4: Adjusted responses (left) and their differenced counterparts 5, 10 Hz
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Table 4.3: Portmanteau Test
a = 0.05, p=4, Asymptotic crit. value=67.5050
1Hz 2Hz 5Hz 10Hz 50Hz
N 59 119 299 599

Test statistic 176.3522 313.8736 334.5219 552.3081 2574.5181

versus
H,4: Hy does not hold.
The data was differenced as a first step to the analysis. In all cases the assumption of

independence is rejected.

Next we investigated whether there was a change in mean while dropping the assumption
of independence of the data. In this case we consider that the data are dependent and
follow the work of Hormann and Kokoszka. The results of the test are reported in Table

4.4, where we have a change point in the mean in all cases. As in the iid case, when the

Table 4.4: Test for change in the mean function (Dependent Test)
a = 0.05, p=4, Asymptotic crit. value=1.239675
1Hz 2Hz 5Hz 10Hz  50Hz
N 60 120 300 600 3000 6000
Test statistic 1.5847 2.0715 3.6859 8.6769 32.6208
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Figure 4.5: Adjusted responses (top) and their differenced counterparts 50 Hz
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Table 4.5: Change points in order of significance (Dependent Test)

Frequency Change Points
1hz 20
2Hz 74
5Hz 155
10Hz 359 163 62 472 389

50Hz

2067 1213 679 288 182 542 358 987 1081
1787 1632 1924 2459 2330 2748 2591 2830

data is differenced then there is no change in mean observed.

In Table 4.5, we give the change points in their order of significance for the dependent
test. Comparing the two test we see that the iid test gives many false change points as a
result of failure to account for the long run variance. Also, it is noticeable as expected,
that with increasing frequency of the stimulus there are more change points. This can
be attributed to the fact that at high frequency the cell does not have enough time to

go back to its resting state before the next stimulus is given and this is what is observed

through the many changes in mean.

o4



Figure 4.6: Scree Plot
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4.2 Change Point Detection in the Functional Au-
toregressive Model (FAR(1))

Our aim is to test (through the linear operator W) whether the stochastic structure of the
model changes, so that we need a different model (operator) to represent the data. The
first subsection gives a brief introduction of the change point problem for FAR(1) model
which is based on the paper by Horvath et. al. [26]. Subsection 2 gives an overview of
the test procedure while the third subsection deals with the application of the test to the

Stimulus response data.

Given the observations X, (t), t € [0,1],n = 1,..., N, we are concerned with testing the

hypothesis
Hof\lflz\:[fgz"':\:[/]\]:\ll
versus
Hy:thereis 1 <ks <N : V= =V £Vpiy=---=Uy

The structure of the observations under the null hypothesis can be formalised by As-

sumption 2.1 of Horvath et. al. [26], which we include here for completion.
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Assumption 4.7. The functional observations X,, € L? satisfy
X1 = VX, + e, n=01,--,N—1 (4.22)

where W is an integral operator with the kernel ¥ (t,s) satisfying

/ / V2(t, s)dsdt < 1 (4.23)

and the iid mean zero innovations €, € L? satisfy

E e = E U ei(t)dtr < o0 (4.24)

4.2.1 Test Procedure

Here we include an overview of the test but complete details can be obtained from Horvath

et al. [26].

Since the observations are infinite dimensional, they are first projected onto a finite
dimensional space before the test is carried out. The test is applied to check whether the
action of ¥ on the span of the p most important principal components of the observations

changes at some unknown time point i.

Under Hy, (Wv;, 1) = X;' (Crj,u) where Ca = B [(X,, 2) X,,41] is the lag-1 autocovari-
ance operator. From this representation it is obvious that a change in the operator W
can be reflected by a change in (Cv;,1), 1 < j,1 < p. Looking at the representation
(Cvj,v) = A\j (Yv;, 1), we note that a change in (Vv;, ;) may be obscured by a change
in );, thus potentially reducing power, but the test developed is nevertheless effective in

practice.

A test against the alternative of a change point involves estimating the above scalar
products from observations X, Xs, -+, X and X1, Xpi9, -+, Xy and comparing the
estimates. Moreover, defining the p x p lag-1 autocovariance matrices:
_1 X, 1 X[ A X, 1 X[
Rk—EZ i—1R ka—mz i—1X
2<i<k k<i<N
where X; = ((X;,11), -+, (X;,1,))". By the ergodic theorem, as k — oo,

. 1 a.s
Ri(j.1) = > (Xis ) (X m) B E(X1,v) (X, m) = (Cuj,m)

2<i<k
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Since the matrices Ry and R} _, approximate the matrix [(Cv;,v) j,l=1,2,---,p]
based on observations before and after time k, basing the test on their difference is a

good choice.

Test Statistic

Define Y;(j,1) = (Xi—1,v;) (Xi, v) and }Afi(j, ) = (Xi—1,7) (X;, ) and consider the col-
umn vectors of length p*:
Yi = [Yxl’ 1)7 e >Y;<1ap)> Y;(Qa 1)7 e ,Y;(Q,p), e ,Y;(p, 1)7 T v}/;(p>p)]T§

N “ “ “ “ ~ ~ T
Yi = [}/Z(la 1)7 e 7K<1ap)7}/z(2a ]-)a e 7}2(2’]))7 o '7}/(pa 1)7 e 7}/l<pap)

Since X; follow a functional AR(1) model, vectors Y; form a weakly dependent stationary

sequence, and as k — 00,

1 d
vk [% > Y, —EY;| 5N (0,D) (4.25)

2<i<k

where D is the p? x p? long run covariance matrix defined by
D-E [(YO “EYy) (Yo — EYO)T} +2 Y E [(Y0 —EY) (Y, — EYh)T] (4.26)
1<h<0

A quick introduction for the central limit theorem for weakly dependent stationary se-
quences can be found for instance in Yao et. al., [58], Ibragimov and Linnik, [29]. Define

further Zy = > 5, Y; and Zy_, = >, _,.y Y, and their sample counterparts with
Zy = Zng’gk Y;and Zy_;, = Zk@gz\/ Y.

Now if the autoregressive operator ¥ is constant, then the difference

should be small for all 2 < k < N. However this difference may be large due to chance
variability if k£ is close to 2 or N. To circumvent this, a parabolic weight function is
employed instead so that the difference is large only when there is a change point. The

new representation is as in equation 4.27.
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Denoting by {Wp(t),t > 0} a p*-dimensional Brownian motion with covariance matrix

D and from equation 4.25 we have that

Z, — kEY Ny =~ N (0,kD) =~ Wp(k),

Z5 . — (N —K)EYy ~ N (0,(N — k)D) ~ Wp(N) — Wp(k)

Under H, we have,

1 1 N k
—Zy — Z, Wp(k) — =Wp(N
VB e B g | Weth) - e Wa)]
Denoting
KN — k) (1 o
Un(k) = N <Ezk - msz) (4.27)

and comparing covariances, we have

1 k T k
_ - - - — < k<
& [Wot - Ewow] Do L W - Ewaw] . 1<ksx
has the same distribution as
> BL(k/N), 1<k<N (4.28)

1<m<p?

where the B,,(.) are independent standard Brownian bridges on [0, 1]. Thus any functional

of

Gr(k) = %UN(k)TDlUN(k), | <k<N (4.29)

can be approximated in distribution by 4.28.

To implement the test, the long run covariance matrix D is estimated by the Bartlett
estimator. The lag h p? x p? autocovariance matrix for the first & observations is given

by

=Ly (Yi—% 5 Y> (mh—% 5 Y>

1<i<k—h 1<i<k 1<i<k

and its corresponding Bartlett estimator is

D= (1 - q%) An(k) (4.30)
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The same steps are employed to obtain the Bartlett estimator for the last N — k obser-

vations. The sequence Gy (k) is approximated by its sample counterpart

R k - k\ ax
NUN(k:)T [NDk + (1 - N) DN_k] Uy(k), 1<k<N (4.31)

For the test statistic, a Cramér-von-Mises type functional K2 := fol D l<m<p? B2 (u)du,u €
[0, 1] is employed, although asymptotic theory exists for maximal selected statistics and

weighted sums. Defining the critical value ¢ (o, p?) by P (K,2 > ¢ (a,p*)) = a, and

~

Iy =~ Gn(k) (4.32)

N
k=1

1
N
the test rejects if Iy > ¢ (a, p?).

We quickly note that the constancy or lack thereof of (Vv;, 1) is investigated for the
first p principal components after which any change that may occur is assumed to be
negligible since the amount of variability explained by the first p principal components is

assumed to be sufficiently large.

4.2.2 Application to Stimulus Response Data

In order to attain stationarity and constant mean, the data is differenced as a first step
to the analysis. Once we have evidence that the data are not i.i.d (Portmanteau test
above), we test for the nullity of the operator ¥, (goodness of fit test). In this case
we acknowledge that although the data are dependent, the FAR(1) model (or a linear
representation) may not be a good way to represent the data. This is an extension of the
work of Kokoszka et. al., [32] and a brief overview together with the test statistic can be
obtained from Section 4.2 of this thesis. We quickly note that for change point detection,
although the FAR(1) model may not be the best to represent the functional time series,
this does not matter since a change in a FAR(1) model fitted to the data still signifies
a change in the dependence structure of the functional time series even if it is not well

approximated by a FAR(1) scheme.

We test the hypothesis
Hy: U =0 wersus Hs:WV #0.
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Table 4.6: Goodness of Fit
a = 0.05, p=4, Asymptotic crit. value=26.296
1Hz 2Hz 5Hz 10Hz 50Hz
N 59 119 299 599 2999
Test statistic 76.0413 147.4256 255.1255 509.0306 2520.8195

Table 4.7: Change Point
a = 0.05, p=4, d=p"2=16, Asymptotic crit. value=3.740248
1Hz 2Hz 5Hz 10Hz  50Hz
N 59 119 299 599 2999
Test statistic -12.5624 -9.6 -30.6264 2.8461 11.7638

In this case we check whether the relationship between the curves is linear, and once we
have a confirmation that W # 0 we fit a functional autoregressive model of order one
(FAR(1)) to the data and proceed to investigate whether there is a change point. For
each stimulus frequency we have a different data set. The results of the goodness of fit
test are given in Table 4.6. Note that the value of the test statistic grows with N as in

the Portmanteau test of independence.

Once we establish that a linear relationship exists between the observations, we test for
a change in the linear operator W. The results are recorded in Table 4.7. From Table 4.7,
we see that for the 50Hz frequency a change point exists. This implies that modelling the
data with the same linear operator W, will give erroneous results. In this case the change
point can be estimated and the data modelled in segments with a uniform parameter

within and different parameters between.

In all cases here we used the asymptotic critical values which are justified since the samples
are quite large. However, in practice, frequently, there are small samples, in which case
asymptotic values are not quite representative. In such cases then the bootstrap would be
useful as it would provide better approximations of the distribution of the test statistics.
We use this as a motivation for studying bootstrap techniques for functional data in the

rest of the thesis.
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Chapter 5

Bootstrap for FAR - Preliminaries

In this chapter the bootstrap methodology is introduced. A general description is given
in the first two sections. Then, we consider a simple toy example of a FAR(1) process
which allows to prove that the residual-based or naive bootstrap holds for the estimate

of the autoregressive operator.

5.1 The bootstrap procedure

The bootstrap is a computer intensive resampling method which can be employed as a
cheaper alternative to obtain the asymptotics of a given estimator especially when there
exists no theoretical formula or when the theoretical formula exists but is highly complex
or in the event that the sample available is too small and therefore it is impossible
to obtain reasonable approximations of asymptotics. Among its advantages is that it
can be employed even in the case of small or moderate sample size as is frequently
the case in practice, with reasonable results. Highly desirable also is its ability to give
satisfactory results under minimum assumptions, if any, as opposed to normal asymptotic
approximations which require that certain assumptions be specified and fulfilled, failure

of which results in wrong or suboptimal conclusions.

The idea of the bootstrap revolves around generating a pseudosample from the existing
sample in such a way that the pseudosample shares the characteristics or features of the

original sample. That is necessary in order to lead to a consistent bootstrap estimator
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of some distributional characteristics of some functions of the data, for example of an
estimate 6 of a parameter 6. Given a sample X, ..., X,, with joint distribution Fj,, we
construct an estimate F¥ which should be as close as possible to F,, and from it generate
a bootstrap sample X7, ..., X*. Once we have the bootstrap sample, we compute a boot-
strap estimate 0% in the same way we compute the original estimator é, only this time
we use the bootstrap sample. We resample from the original sample a large number of
times, each time computing the bootstrap estimator. From the resulting Monte Carlo
sample of realizations of é*, we may approximate distributional characteristics of o by
averaging. If the bootstrap is valid, they provide approximations of the corresponding

characteristics of the distribution of 6.

It should quickly be noted that not only the data generation process is at stake here
but also the statistic or parameter of interest. This means that if in order to estimate
the statistic of interest we need only the first two moments which completely define
the asymptotic distribution, then it is sufficient to generate a bootstrap pseudosample
that is similar to the underlying process up to the second moment. An example of this
is if we are interested in proving the Central Limit Theorem for means, in this case,
asymptotically we need the mean and covariance of the process to fully describe the
asymptotic normal distribution. This is advantageous since in the dependent data case
the relationships between the variables of the underlying process can be very complex and
therefore almost impossible or very expensive to mimic [33]. The disadvantage obviously
is that if the underlying process is not fully mimicked the results may not be as good as
in the case when it is fully mimicked, unless the estimator being estimated is robust to

this situation.

The bootstrap can be implemented in different ways. The unknown distribution func-
tion can be estimated using the parametric bootstrap or the empirical (nonparametric)
bootstrap depending on how much information we have about the underlying sample.
When the distribution of the underlying sample is known, the parametric bootstrap is
appropriate as it is best suited to give the most fitting results. Employing the nonpara-
metric bootstrap in the case of a known parametric model that generates the underlying

data can only work in the event that the asymptotics of the (parametric) model are
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not sensitive to a change in model which is rare. On the other hand, if the underlying
parametric model is not known, then the nonparametric bootstrap is highly advisable.
Paparoditis and Sapatinas [46] propose a novel bootstrap-based functional testing proce-
dure which is applicable for different testing problems, different test statistics and more
than two populations. The main idea behind their method is that the pseudo sampling
is done in such a way as to satisfy the null hypothesis of interest. They applied their
method to test statistics proposed in literature for comparison of means and covariance
functions. It is evident from their simulations that the bootstrap is robust as compared
to asymptotic approximations to departures from Gaussianity. Also since no theoretical
approximations are required for the bootstrap, Berkes et. al. [4] employ it to assess the
empirical size and power of their test for changes in means of functional observations.
This is especially advantageous since in practical settings the distribution of the random

variables is normally unknown.

Depending on the nature of the underlying data, several bootstrap procedures exist. We
have bootstrap procedures for i.i.d data and those for data with dependence. In all
cases it is highly important to mimic the stochastic properties of the underlying data
set. Since we are dealing with time series data, we focus mainly on those methods that
maintain the dependence structure. These include the nonparametric naive or residual-
based bootstrap (algorithm below), the block bootstrap which has several variations,
see for instance Lahiri, [36], who gives the description of several bootstrap resampling
methods including the different forms of the block bootstrap for scalar observations,
Kiinsch, [35], who extended the bootstrap method of estimating standard errors to the
case of stationary observations in the scalar case, the autoregressive (AR )-sieve bootstrap,
the Markovian bootstrap, the wild bootstrap among others. These majorly are found in
the time domain but it should be noted that bootstrap methods for the frequency domain
such as the local and hybrid bootstrap procedures exist. We focus on bootstrap methods

in the time domain.

Considering the functional case, Politis and Romano, [47] were the first to develop weak
convergence results for approximate sums of weakly dependent variables in the Hilbert

space and in a triangular array setting. They applied their results to estimators obtained
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under the stationary bootstrap resampling method and in particular prove a bootstrap
central limit theorem for the stationary bootstrap. We discuss their approach a bit
more in detail in section 2. Dehling et. al., [15], develop weak convergence results for
Hilbert space valued random variables. The random variables are assumed to be weakly
dependent in the sense of near epoch dependence. They also show that the nonoverlapping
block bootstrap is consistent. In terms of application of the bootstrap in the functional
case, we have for instance De Castro et. al. [12] who employ the bootstrap for predicting
Sulfur Dioxide levels, Aston and Kirch [2] in checking for stationarity in resting state

fMRI data, Besse et. al. among others.

Since its introduction by Efron [17], the bootstrap methodology has been documented
extensively. [54], [56], [40] give introductory notions on the bootstrap methodology and
some applications. Several papers have also been devoted to the topic with some giving
reviews of the topic for instance the introductory paper by [17], reviews by [9] and [33],

[34] among others.

As summarised in Cuevas et. al., [13], the goal is to show that the distribution of
a,(T(F,) — T(F)) is close to that of its corresponding bootstrap version a,(T(Fy) —
T(F,)), where a, is an increasing sequence tending to infinity, F' is the unknown pop-
ulation distribution function, F;, is the sample distribution function computed from the
sample, F¥ is based on the bootstrap pseudosample and therefore the distribution of the
centered and scaled bootstrap estimator consistently estimates the corresponding distri-
bution of the true estimator. The increasing sequence a,, of nonnegative real numbers
is chosen so that the sequence of distributions converges to a nondegenerate limit. This
can be done by showing that a suitable distance between the sampling distributions of
both sequences tends almost surely to zero or that both sequences converge weakly to the
same limit distribution asymptotically. The bootstrap technique, as used in the latter
context provides an approximate distribution of the unknown underlying distribution.
This approximate distribution is required when checking the accuracy of the empirical
estimator as compared to the true parameter, through for instance, confidence intervals

and also for constructing tests of hypotheses.
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5.1.1 Nonparametric residual (Naive) bootstrap

As mentioned in the previous section, the bootstrap was originally developed for i.i.d
observations. However, Singh, [53] in his seminal paper showed that in the event that
the data had some dependence then the i.i.d. bootstrap would fail. He proved this
for the case where the parameter of interest was the sample mean and showed that
even though both the bootstrap and empirical distributions converge asymptotically to a
normal distibution, they do so with different asymptotic variances. This led to a need for

developing methods that could take into account the dependence structure in the data.

This method of resampling tries to retain the original bootstrap idea of resampling from
i.i.d. random variables. Since the data has some dependence, in this method resampling
is done of the residuals obtained from an optimal predictor of the observations. For
a given sample (Xo, X1, ..., Xy), the standard residual bootstrap algorithm is given by
Algorithm 1 where resampling is done for the centered residuals. We quickly note that
lack of centering of residuals may introduce a bias which is random, in which case the
bootstrap would fail. An example of the same problem for the regression scenario can be

found for instance in Freedman, [19].

For the algorithm, we need an estimate U of the operator ¥, which, of course has to satisfy
some assumptions for the bootstrap to work. Here, as usual, pr* denotes the conditional
probability given the original data X, X1, ..., X. The naive bootstrap works quite well
if the model assumptions hold true for the data. If the model is only an approximation,
or if no good model is known in advance at all, model-free resampling is advisable as

discussed in the following section.

Algorithm 1 Naive Bootstrap Algorithm
Loéppi =X —U(X,),n=0,..,N-1,& =6 -+ &.

2. Draw randomly from {éi, ..., €y} new bootstrap residuals €}, ..., €}, with probability
pr (e = &) = %,k =1,...,N.

A

3. Generate bootstrap data X | = W (X)) + €, X5 = Xo.

4. Calculate ¥* from X§, ..., Xy in the same manner as ¥ from Xp, ..., Xn.
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5.1.2 Block bootstrap

When Efron [17] introduced the bootstrap it was mainly focused on independent and
identically distributed observations. The bootstrap provides under relatively few con-
ditions approximations to distributions of statistics and confidence intervals which for
sample sizes available in practice are more accurate than those from first-order asymp-
totic theory, see [24]. In this case resampling is done randomly with replacement from
the empirical distribution or from a parametric model which includes the distribution of

the data.

In practice however, many data have some form of dependence which should be taken
into consideration when doing any form of estimation. The dependence structure of
the observations cannot be ignored without adverse effects in most cases. In order to
overcome this challenge, block bootstrap methods were introduced and they consider the
dependence structure between the observations when resampling, see for instance Kiinsch,
[35], Carlstein, [11] who were among the first to introduce block bootstrap methods
and the monograph by Lahiri, [36] who gives an insightful description of the different
bootstrapping methods, their advantages and disadvantages when applied to different
situations. Several other monographs exist together with review papers some of which
were already mentioned in the previous section. In the functional data situation, Politis
and Romano, [47] prove the asymptotic validity of the stationary resampling algorithm

while Dehling et. al. show the consistency of the non overlapping block bootstrap.

There are several types of block bootstrap methods which can mainly be differentiated on
whether the blocks are overlapping or not and also on whether the block length is fixed
or increasing. The overall idea however involves partitioning the sample into blocks and
then resampling independently from these blocks. The idea is that after a certain lag, the
observations are almost independent and therefore the observations in a block retain the
dependency while the different blocks are almost independent of each other. A slightly
different but almost similar idea is the block of blocks bootstrap. Here, the sample is
split into blocks first, which may overlap, and then subblocks of those blocks are drawn

randomly. From [24] we have that the finite sample performance of the block of blocks
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bootstrap is better (more accurate) as compared to that of the normal block bootstrap
in certain situations. Once the blocks have been resampled they are ordered from end to
end to form a new sample which should retain some if not all of the characteristics of the

underlying distribution.

It should also be noted from [24] that although there exist several methods to tackle
the problem of dependence of observations, the relative accuracy of the block bootstrap
as well as first-order approximations is poorer as compared to i.i.d data. Estimation
errors are also larger for the block bootstrap since partitioning the sample into blocks
before resampling the blocks independently distorts the dependence structure of the data.
Another reason is that partitioning into blocks has the effect of reducing the effective
sample size and therefore increasing sample variation, see [24]. As noted in [24], choice
of block length affects the accuracy of the bootstrap, therefore care should be taken in

order to ensure accurate results.

The algorithm for the non overlapping block bootstrap is given below. It should be noted

Algorithm 2 Block Bootstrap Algorithm
1. Given the sample X7, .-, X,,, using a suitable rule choose the fixed block length(l)
and partition the sample into B blocks each of the given length /.

2. Draw randomly with replacement from the resulting blocks and order the drawn
blocks from end to end to form a new bootstrap sample X7, -, X*.

3. Compute the statistic of interest in the same way as in the true case.

that although overlapping block bootstrap is preferred in practice, the numerical results
from overlapping and nonoverlapping block bootstrap are very close, provided the over-
lap is short compared to the block length, and theoretical arguments are simpler with
the nonoverlapping block bootstrap [33]. Since we assume that our data has the depen-
dence structure of a functional autoregressive model, we carry out further theoretical

investigation and simulation considering the naive bootstrap.
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5.2 Triangular arrays of Hilbert-space valued ran-
dom variables

Here we summarise results from the technical report by Politis and Romano [47] which
we use in the next chapter for studying the asymptotics of the error of estimating ¥. The
authors develop convergence results for approximate sums of weakly dependent station-
ary Hilbert space valued random variables in a triangular array setting. They consider
random variables in a separable Hilbert space with inner product (.,.) and norm ||.||. We

consider Theorems 2.1 and 4.2 of this technical report which are given below.

Theorem 5.2.1. Let X,, 1, ..., X, ,, be H-valued, stationary, mean zero random variables
such that E (]| X,.||*) < co. Assume, for any integer k > 1, (X1, ..., Xn1), regarded as a
random element of H*, converges in distribution to say (X1, ..., Xx). Moreover, assume,
E[(Xn1, Xok)] = E[(X1, Xi)] as n — oo and

JE&ZE«XM,XH,Q) =Y E((X;, X)) < oo (5.1)

k=1

Let Z, =n~Y23"  X,;. Then, Z, is weakly compact.

Theorem 4.2 of the same technical report shows that this kind of asymptotics may be

used to show that the bootstrap works for independent data.

Theorem 5.2.2. Suppose X1, Xo, ... are independent and identically distributed H valued
random variables with common distribution p such that E|| X1||?< co. Conditional on
Xi,.., X, let X7, ..., X} be independent and identically distributed according to fi,,, where
fun is the empirical measure: fi,(E) =n"'>"  1(X; € E). Let

B 1 n B 1 n
X, =- X; dX'=— X 5.2
L and X = 13X 52
Then, along almost all sample sequences X1, Xo, ..., given (X1, ..., X,), the conditional

distribution of n'/? ()_(; — Xn) converges weakly to the normal distribution on H having
mean 0 and covariance operator S, where S is the covariance operator of X — m when
X has distribution p.

Unfortunately, the technique applied for proving this result may not be extended to de-
pendent data. We may show that the quantities of interest converge in distribution in

the real and in the bootstrap world, but it is not possible to prove that the asymptotic
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distributions coincide. The main problem is that mixing properties of {X;} which guar-

antee asymptotic normality in real world do not necessarily hold for {X;}.

5.3 A first look at the bootstrap theory

Our aim, as already stated, is to prove that the distribution of the bootstrap estimation
error provides a consistent estimator of the estimation error for the real data. The key
to that result is that the distribution of the innovations ¢; is well approximated by the
distribution of the bootstrap innovations. In the next section 5.4 we prove such a result
for a special case. In this section, however, we discuss a toy example where we unrealisti-
cally assume that the eigenfunctions of I (and C') are known. This reduces the functional
setting essentially to a scalar one (for the individual eigenvalues) and circumvents a fun-
damental difficulty of bootstrapping FAR data. On the other hand, some of the basic

features of the FAR bootstrap problem can already be studied at that simple example.

We start with describing the special case to be considered in the next section 5.4 as it is
the basis for the toy example, too. We study a FAR(1) process with covariance and lag
1 autocovariance operators I' and C' respectively. Let );, v; denote the eigenvalues and
eigenvectors of the symmetric, positive definite operator I'. We assume that C' is also

symmetric, compact with the singular value decomposition

S:  C(z) = Z%‘ (z,v;) v; (5.3)

i.e. it has the same eigenbasis as I'!

In general, I'; C' may be estimated by the sample versions

Baa) = 37 (% - Kpa) (X, - )
and
Cule) = =3 (Xey = X ) (X, - Xo) (5.4)
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— 1 _ A
where X,, = — ?:01 X;. We assume Xo, - - -, X, to be given, but we use X,, only in C,,(z)
n

to simplify notation.
Assuming EX; = 0, we have ' = EX; ® X;, C = EX; ® X341,

A= NllylP=< N, vy >=<T(v;),v; >

= <EX,®Xi(v)),v; >=E(< Xp,v; > Xp,vj) = E < X, 05 >2

and analogously

Y = E(< Xt, v; >< Xt+1, V; >)

Under suitable assumptions, \/n (C’n — C) and \/n <f’n — F) are asymptotically Gaus-
sian, see Theorem 3 of Mas and Pumo, [42]. Let 5\3-, 4; denote the eigenvalues of L,
respectively C,. From the asymptotic normality of L,, C,, we get a corresponding
asymptotic normality of the eigenvalue estimates from Theorem 2.2 of Mas and Men-
neteau, [43], provided that the multiplicity of the eigenvalues is 1. By their Remark 2.1,

the same rate of convergence also holds for eigenvalues with larger multiplicity.

5.3.1 A toy example

For a simpler presentation of the arguments, we make an additional restrictive assumption

like, e.g., in section 2 of Guillas, [22]:

T.1: The common eigenvectors v; of I' respectively C' are known.
Moreover, just to simplify notation, we also assume

T.2: EX; =0 is known.

Then, we can estimate A;,7; by

2 1 “ 1 -
2 n z : X
)\j = _n tgl < X INZI T n =1 < A1 Vj < Xt7yj >,

and, similar as in [22], we set in this subsection
kn kn
Cn:Z’%‘I/j(@I/j, Fn:Z)\jijbyj.
j=1 j=1
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We denote as usual by T’ I the inverse of I, on the linear hull Vi, of v1,... 1, L€
Fn 4
FL = Z A—Vj ® I/j,

j=1 "\

and, finally, we estimate WU by

1
F”_Z)‘j’/]@)%» Il = YVj@VJ
7=1 7=1 J
Lemma 7. II;, = T, f = f‘Lf‘n, \i/nﬂkn =0,
Proof.
bn Fn
I, (2) = Z)\j <Tl(x),v; > v = Z)\ <z, Th) >v = Z 2 <zv >y =10, (z),
j=1 j=1 j=1 "\

using the selfadjointness of fL I, = fon follows analogously. Finally,

v, = C.If(x)= <Z<qu>A ) Z%<xuj>yj
j 31/\1
k:’"/

\iankn = @n<z<x,uj>uj> Z<xuj>\ll y] Z<xV]>A
j=1 ’

7j=1

We consider the coefficients of the projections of the innovations ¢; and of their sample

analogues ¢; = X; — \ifn(Xt,l) onto v, for some fixed m,

e = <€t, Vm> ) ﬁt = <€t, Vm>
Then,

Zy = <Xt7 Vm> = <\I’ (Xt—l) + €, Vm> = <\I’ (Xt—l) ) Vm> + Ny
Zt = <‘i’n (Xio1) + €, Vm> = <\ijn (Xio1), Vm> + 7
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As C = VI, we have

Yl = C (V) =V (T (V) = AV (Vi) (5.5)

Therefore, as A\; > 0 for all j, setting v, = Vi /Am,

(U (Xy 1), ) = <qf (Z<Xt_1,yj>yj>,ym>

J=1
o]

= Z (Xi—1,v5) (U (¥5)  Vim)

J=1

= o (Xt 1,Vm) (5.6)

Analogously, assuming k, > m,

A ~

Wy () = O (P (0) = cn( ! ym>

and

(0 (Xe1) V) = o (X1, )
Hence, we have

W =2 —amZi_1, m=2— mZiq

where 7, are i.i.d. zero mean real random variables, and Z; corresponds to a stationary
AR(1) process as we have |a,,| < 1, as otherwise, ||V (v,)|| > 1 in contradiction to our

general assumption ||¥| . < 1.

1
Let 7y = 7y — — > _,_, Tk be the centered sample residuals. Then we can apply the same
n
arguments as in Theorem 3.1 of Kreiss and Franke [20] to get that the distribution F' of
7; and the empirical distribution E, of M, -, N, converge to each other in the Mallows

metric dy (compare, e.g., Bickel and Freedman [6]).

Proposition 5.3.1. Let Xy, -+, X, be a sample from a stationary FAR (1)-process sat-
wsfying T.1 and T.2 and

i) Elle|" < oo, Ee, =0, € ii.d.

w) ¥, <1
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iii) C has the singular value decomposition S with the eigenfunctions v; of I'.

Then, ds (Fn,F> 50 for n — .

Proof. First, we note that from i), ii) and Theorem 3 of Mas and Pumo, [42], the asymp-
totic normality of \/n (f‘n - F) and \/n (é‘n — C) follows, as exhibited in Example 16.1

of Horvath and Kokoszka, [28], the FAR(1)-process satisfies the assumptions of said the-
orem. From Mas and Menneteau, [43], Theorem 2.2, we then get v/n (3, — vm) and

Vn <S\m — )\m) are asymptotically normal, where here S\m, m denote the eigenvalues of

the usual nontruncated sample covariance and autocovariance operators ', C,,. They
coincide with A, ¥,, from above as

< . 1 & 1 & <
Am =< D(Um), Vi >=< - D X1 @ X1 (), i >= - > < X1 v >= A

t=1 t=1
and analogously for 4, = Y.

By Slutsky’s Lemma we also have,

Vi G =) _ V7 (S =)

n(éd— o) = -
\/_( ) A AmAm,

is asymptotically normal too, and in particular
Vi (G — 0) = O,(1) (5.8)

Let F,, denote the empirical distribution function of ny,---,n,. From Bickel and Freed-
man, [6], Lemma 8.4, we have

dy (F,, F) %% 0 (5.9)

1
Next, let J be Laplace distributed on 1,--- n, ie. pr(J =t) = —, 1 <t <n. We define
n

random variables
0o="ns, Vo=1J 0 j
k=1
with distribution F,, respectively F),. By definition of the Mallows metric

2 A — . . 2 < - 2 .
e (Fn Fn) nfE (U - V)’ <E (U - Vo) (5.10)
2
L. IR
= > (nj—m’—Eme) (5.11)
j=1 k=1
6 3 (< ’
- > (0 —n)* + 2 (Z 77k:> (5.12)
j=1 k=1
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As ny = (€, V) are i.i.d. with finite variance and En, = 0, the second term on the

1
right hand side is of order — by the central limit theorem. Therefore, plugging in 7; =

n
Zj—aZi_yand 1)y = Z; — &nZj_1, we have

n

d; (Fn, Fn) < gz (6 — @)’ Z2_, + O, (%) ~0, (%)

J=1

1

as, by our assumption above, n (4, — @)’ = O, (1) and Q = — S Z3 1 = O, (1) too,
n

from EQ = EZ? < oo and Markov’s inequality. O

5.3.2 Bootstrapping the eigenvalue estimates

We are mainly interested in the bootstrap for the estimation error of the autoregressive
operator ¥, again projected to a one-dimensional subspace. First, let us remark, that we
do not consider ¥,, — ¥ but, analogously to Mas [44], we compare U, to WII, where II;,
is the orthogonal projection onto the linear hull of 14, -, 1, . Note that Il replaces
I, from Mas [44], as in this subsection, we assume the eigenvectors vj to be known. As
a first step towards the bootstrap for U, — WII;, we first show that the bootstrap works
for an auxiliary operator S,, which dominates the asymptotics of 0, — UIl,, and, then,
that the bootstrap works for the error of eigenvalue estimates 5\j — A;j. We start with the

introduction of S,,.

A 1 A
Lemma 8. ¥, — VII; = —SRFIZ with
n

S, = i i (X1, v5) (e, vg) (v @ v5) = n<é" B \Dfn)

t=1 j=1

Proof. Using Lemma 7, we have

A

0, — UII,, = (On - \I/fn) Pt
Note that
fy.
V(v @) =V (v, 7)) = /\—j (v, 2) v
J
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as ¥ (v;) = %VJ‘, i.e. we have Vv; ® v; = %Vj ® v;. Therefore,
J J
kn
Comly = > (B -A0)w ey,
j=1

kn {
) Aj
= (%’ - %’y) Vi ® Vj
j=1 J

Now, we plug in the definition of 5\]-, 7, and get

) \j 1O i
5= = 5 (Peen s = 2 (i) (i)
J

t=1 J

1 — ,
= - Z <Xt—1>Vj> <Xt - %Xt—la Vj>
L J
1 n
= - > (Xia,v) (e vy)
t=1

A . 1
Hence, C,, — VI',, = —5,,. ]
n

Corollary 5.3.1. With Z, = (Xy,vm), m = (€, Vm), we have for m < k,
. . 1 <&
CL) <Cn - \Ilrn (y) y Vm> — ﬁ Z Zt—lnt <y7 Vm>

b) <x1/ — WL, ( > Zzt m,, (, U

. . A 1
b) Follows from a) with y = I'l (z) and <FIL (x) 7Vm> = <x, It (l/m)> =T (x,vp). O
Proposition 5.3.2. Under the assumptions of Proposition 5.3.1, we have for n — oo
n d <<Cn b, (W), v > <C* b, (W),ym>>

_ %d% ((Sa(W), vm) (S5 (W), ) = 0

p

where W is an arbitrary L*-valued random variable independent of {X,},{X;}.

Note that, due to the fact that the Mallows metric is a distance between distributions and
that the distribution of {X;} is conditional on Xy, ..., X,, the independence assumption
on W has to be interpreted in the right manner: W is independent of the data in the
real world used to calculate S,, which may be Xj,..., X,, or an independent realization

of it. Moreover, W has to be conditionally independent of S} given Xy, ..., X,,.
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Proof. We follow essentially the line of arguments of the proof of Theorem 4.1 of Franke
and Kreiss, [20]. Therefore, we consider a particular realisation of the two time series
{X;} and {X/} with a specific kind of dependence. Let the pairs of innovations (€}, €})
be iid. and that for n = (€, vm), n° = (€5, vn) we have L(n)) = F, L(n) = F, and

E (g, — ;) = d> (F, Fn) — 0 for n — oo by Proposition 5.3.1. Of course, we do all the
p

calculations conditional on X, - - -, X,, such that F), is treated as given, but — relates to
p

its randomness.

Let X{ be independent of (¢},€;), t > 1, and L (X{) = L (Xp), and set recursively with
X; = X;

X =V (X/_)+e, X =V (X)) +e, t>1.

Writing again Z, = (X/, v,), we have as previously Z, = a,,Z,_; + m; and, with Z =
(X[, Vm), we analogously have Z = &,,Zf | + n} as

<\iln (Xt*_l) ,l/m> = <é’anL (Z <Xt*_1, l/k> Vk> ,vm>
= Z<Xt* 1,1/k> (Vky V)

= Qn <Xt_1, ym> = @mZt_l

a) First, we show the following analogue relationship to (4.18) of Franke and Kreiss [20].
We have with probability converging to 1

E {(Zt’ — 7| Xy, - - 7Xn} < D(EZj+E (n{)Z) (Q — i)’
+Dd? (F Fn)

for some generic constant D. Using the autoregressive form of Zj, Z; respectively, we
get recursively

Zy = omZi_+n =0l 2+ iy ), =
-1
= o Z)+ > akml
k=0

* /
and, as Xj = X,
t—1
*x At ! ~k o %
A E Qi
k=0
A k—1—j

Note that |af, — &k | = |ow, — i) ‘Z] o @k

From Lemma 7 and the preceding remarks, we know that |a,| < 1. Moreover, from
the remarks in the first paragraph of the proof of Proposition 5.3.1, we have \,, =
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1 1
>\m+0p (%) and ’?m :7m+(9p <ﬁ

choose 1 > & > |y, | such that pr <|(34m] < 5) — 1. If |G| < 6, we have

>, which implies &,, — «,,. Therefore, we can
p

k-1 J Sk—1 Sk
D h—1— SL o 0 )
of ahmIl < gkt < — _
« _
j=0 =0 0 1— |2 ||
0

and with probability converging to 1:

5k
af, = o | < o, — dunl 5—||

Hence, with probability converging to 1, writing short hand E for E {-| X,---, X,,}

t—1 t—1 2
E(Z - 2;) = E ((afn — ) Zh+ > ok (=) + Y (ak, —ak) n:_k>
k=0 k=0
t—1 t—1

< BE(Z) (al, —ab)* 3D aZE (n_ — )"+ 3 (ak, — ah) E ()
k=0 k=0

using that (n;,,n;) are i.i.d. with mean 0. Hence,

SQt t—1
E(Z - 2;) < 3 E(Zé)2A—+E* mQZ (i — um)”
(5 — |am|> k=0 <5 — |am|>
, R
+3— a2 &2 (F Fn>

IN

m (8%1[-«: (Z0) + B (n; )2) (O — Gin)” + 7 —3a3n & (F B ">

b) From Corollary 5.3.1 a), we have

nd (G WD, (W) )y (G = 0L (W) 1))
g—E (W, v 2E<ZZ£ 17— ZZt* 177t>

n

%EWVWm) E(Z(Z£1 Zt*l /> +E(ZZ:1 t>

t=1

IN

t=1 t=1

2 n n
= EE (W, Vm>2 { E (Zzgfl - Zi'll)QEnf + ZE* (Zt*fl)QE (m; — 77:)2}
{ G — Q) + 2 (FFn)} 0

P

7



where all the calculations are conditional w.r.t. Xg,---,X,, and D is some generic
1
constant. We use, e.g., E* (f)* = = 321 72 < 2En? and
n
E*(Z})? =E(Z; — Z| + Z))* < 2B (Z — Z))* + 2BZ;*> < 6EZ?
with probability converging to 1. O]

We mainly are interested in the autoregressive operator and its approximation by the
bootstrap, in particular, for predictions, in <\ifn — U, (W) ,Vm> for some random vari-
able W. By Corollary 5.3.1, this is a ratio of the quantity studied in Proposition 5.3.2

and ;\m Therefore, we next show that the bootstrap works for ;\m

Proposition 5.3.3. Under the assumptions of Proposition 5.5.1, we have for n — oo

nd? (&m A N Xm) —0

Proof. Recall that EZ? = \,, (compare with the remarks preceding Lemma 7) such that

A = A = %Z(ZE—EZE)
t=1

a) First we show that Am coincides with E*S\fn up to asymptotically negligible terms. We
have from the representation of Z; in the proof of Proposition 5.3.2

t—1 2 t—1
* * * N ~ * N ! N * * 2
() - (s Yook ) - ke + 3 akE G
k=0 k=0

as Zy,mi,---,n; are i.i.d. in the bootstrap world. Moreover,

2
e~ ., 1&(. 1K,

=) - oL 3= 1Y (- 13 a)
t=1 k=1

t=1

2
1 & X 1 & X
= ﬁ ; (Zt — QL1 — E Z (Zk - OémZk—l)>

k=1
1 — ] — ?
= - ; (Zy — o Zy1)” — <E ; (Z), — amzk1)>

1 — 1 — 1 —
- Zi—amZi 1) = =N Z22-24,~- Z, .7, +a2 =N 72

_ 3 l 2 72\ 9A o~ A2 3
= A\n+ - (Zn ZO) 20 Ym + G Am,
= (- (22— 2
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as QpYm = dfnS\m. As {Z;} is a stationary AR(1) process, we have (compare, e.g.,
Brockwell and Davis, [8], p.219),

—Z — amZi1) = (1 — am) O, (%)

as EZ; = 0 and the sample mean is asymptotically normal. More precisely, the asymptotic
rate also holds in the L?-sense, not only in probability, as

[y
[y

t—

n—1 2 ~ 2n
< 1 o E(Z)"1-a2 E*(n;) ~ 2k
E* A = — E* (7 = B
m n Z ( t—l) T Gm

n 1—-a2 n
t=0 t=0 k=0
_ B’ 1-an B ()1 Afn
- _ A2 )
n 1—az, — 2
R 122_22 1 2 1_A2n
— )\m_l__n—AO - m m
nl—a2 /n —az n 1—a2

As with probability converging to 1, |am| < 8 < 1 for § > |an|, we get

.1
E*\% = A + — Ry

3

with ER? uniformly bounded for all large enough n. Note that here and in the following,
expectations are conditional on X, ---, X,,.

b) We now choose Z{, (n;,n;) as in the proof of Proposition 5.3.2. Then, from a),
) 2
d; ()\m = A Ay — >\m> < E {— > [(z;)2 ~E (z;ﬂ —=> (2 -E(Z)"] + ﬁRn}

(2 —E(Z;)] }

1
The remainder term is of order — such that it remains to show that
n

%E(i[(zy ~E(Z) - {(Z) —E<Z*>}})2

t=1

— LS B[y -B@) - @ @) (20 - B @) - @) B

s,t=1

1 « 1
= > EAA =0, (5)

s,t=1
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Again, we use the representation of Z}, Z} in terms of Z;, n;,n; from the proof of Propo-
sition 5.3.2 such that

t—1 2 t—1 2
Z2_E(Z)? = (afnzg +y afnn;k) —E (afnZé +> ozfimék>

k=1 k=1
t—1
= o |(Z) —E(Z)°| + 205,20 okl
k=1
t—1
+ Z i i — B ()]
k=1

= o [(Z(g) —E(Z)) ]+2a Zgzat e+ Z a2kl

k#£l=1
+Za2<t’f[ F —E )’

using that Zj,7,,---7n, iid. with mean 0. With the same decomposition for (Z;)* —
E* (Z¢), we have
At :at+2bt+ct+dt

with, using Zj = Z;

a = (a%—”t) [k —E(Z’ﬂ

t—1
by = o Z(’)Zat kn,’f—éz &f;kn}:
k:l
e = Z g — Z ey
75 k#l=1
_ t—1
2 2 ~2(t— * * *
dy = 0435 ) [(nﬁc) —E(n}) } = &2 () —EF ()]
k=1 k=1

So, we have to show

Z E (a: + 2by + ¢ + di) (as + 2bs + ¢5s + ds) = 0p(n)

s,t=1

with probability converging to 1 (w.r.t. the randomness of Xy, --, X,,). We only consider
some of the 16 products where the others can be dealt with in exactly the same manner.
We repeatedly use

af, — &k | < el — | 0F (5.13)
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with probability converging to 1 with some |o,,| < & < 1 and ¢ > 0, (compare with the
proof of Proposition 5.3.2).

Z Raa, = 3 (a2 —a%) (% —6%)E [(Z(f ~E <Zéﬂ 2

A
M
Y
ff
N
1=
Q

(AN
o
£}
3
|
3
Y
—
|
[@9N
(&)
3
N—
no
=
N
|
=
N
no

using 5.8.

n n t—1 s—1
Z Ecic, = Z Z Z EBji;

sit=1 sit=1 k#l=1i#j=1

with By = (ofi™ e — 034 tniot) (o — 63

As (m,mp), k= 1 ,n are ii. i.d. with mean 0,and as k # [, i # j, EBy,,,; = 0 except
for k=14, 1= and k; = j, | = 1. In particular, kK + 1 = ¢ + 7, and hence, By = Brux
and

EBuw = EBug
2
— OéistJrsfkfl) (]E (n1)2> + &%tﬁefkfl) (E*( *)2)2

oG () B () - oA ) ()
= a2 ) { (0BT - aB T E ) L an (B0 —E () }
+aZ B ()P { (A% — a2 B () + a2 (B i)’ - E )

Using 5.13, ||, |am| < 8, E* (n)? < ¢ for some constant ¢ with probability converging
to 1, we get for some constant D

|EBju| < DHtts=k= {|am — | + |E (771)2 - E (UT)Q‘}
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As k=i, l=jor k=j [ =1isonly possible if k,I < min(s,t) — 1, we get

s—1
Z]Ectcs < 2 Z Z (|EByi| + |EBgux|)

1<s<t<n k#l=1

s—1

< ap 3 S B oy, — |+ [E @)’ - E (7))}
1<s<t<n k£l=1
s—1

= 4D 33 B flag, — |+ [B ()’ — B ()]}

1<s<t<n k;ﬁl—l

4D 22252@ s){]am—amH‘E ) —E* (n;)?

J

4D "1—5% X N2 s
S e

= 0p(n)

IN

1

as |y, — G| = O, (T) and E* (n1)> — E (n})? for n — oo by Proposition 5.3.1 and
n P

Lemma 8.3 of Bickel and Freedman, [6].

n n -1 s—1
DOTES D ILTY
s,t=1 s,t=1 k=1 j=1

with, abbreviating S, = (77,;)2 —E (7],2,)2 , Sp = (77;)2 — E* (7]7;)2
Bij = (ap"05), — a20R S5) (a2 ) — a2em7) )

Note that ES;, = E*S; = 0 such that from the independence of (S;, S;), k=1,---,n, EBy; =
0 for k& # j. Moreover,

EB,, = a%t—i—s—?lﬁ)ESQ Qt+s—2 R (S*)2
a2tk g E(S Si) — 2R A2ERE (5, 67)
_ 047275 {( 2(3 a2 k)ESZ a2k (ES,%— (SK50)) )
+ﬁ$>ﬂz““ 20V B (57)° + 060 (B (50~ E(5.59) )
As (Sk, Sf) are 1.i.d., we get again, as E* (S5%)* < C for some constant C' from part c) of
the proof below, and hence by Cauchy-Schwarz

1/2

[B*S; (S — Sk)| < C{E* (Sp — Sp)*}

for some constant C,

EBk‘k S D(§2(t+872k) {‘am - OAfm’ + [E* (Sl _ ST)Q] 1/2}
52(t+s—2k’)0p<1)
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as &, — a,, and from part c¢) below. Remarking again that & = j is only possible for
p

k < min(t,s) — 1, we have

n s—1
Y Edd| < 2 Y > [EB

s,t=1 1<s<t<n k=1

s—1
- 9 Z ZSZ(t-l—s—Qk)Op(l)

1<s<t<n k=1

s—1
- 9 Z ZSQ(t_S+2l)Op(1>

1<s<t<n [=1

n t
DI BN

t=1 s=1

IN

= 0y(n)

c) It remains to show that

E(S;—Si)? =0 (5.14)
p

First we note that this implies that E* (S )2 < (' with probability converging to 1 for
all large enough C, as, writing ||S%||> = E* (S)® for the usual L?-norm of real random
variables,

Sull = ST < [1Sy = ST
implying
ST < min {[[Sy][, 15y = ST}
which is asymptotically bounded if ||S; — S7|| — 0 and ||Si|| < oco. The latter follows
P

from our assumption E ||e;||* < oo, which implies
Ent = E (1, vm)* <E|le]|*|[vm||* < co. Now

E(5 - 57 < E(0) - )
= E(g; — )" (f +m)°

ASE (gt — 1)) = d2 (Fn, F) - 0 by Proposition 5.3.1, we have (nF — 1})° - 0, and 5.14

follows from a dominated convergence argument if we can show that there is a random
variable U with

2
(00 = ) <2 |+ )] < 2 o) + 07
and, as E (1)) = E (n1)* < 0o, we have EU* < co. Let J be a Laplace random variable
1
in{1,---,n}, ie pr(J=k) = o 1 <k <n, and we set

1< 1 <&
E;Za’ EZZj

j=1
83

U =|nj| + |om — G| | Z5-1| + + |G|




Then, EU* < oo (recall that all expectations in this proof are conditional on Xy, - -, X,,),
as, by the law of large numbers,

115~
En;|" = 52% <C
7j=1
for any C' > En{ with probability converging to 1, and
il o
E|Z;|' = EZZH <C
j=1

for any C > EZ{ analogously. O

5.3.3 Bootstrapping the estimate of the autoregressive operator

Finally, we can consider ¥, — UIl,, which represents the additional forecasting error
caused by using U, instead of ¥. Note that, by Theorems 3.1 and 3.2 of Mas, [44],
we have to consider WII; instead of W. Let us assume that we use \iln to forecast an
independent realisation {X;} of the FAR(1)-process {X;}. More precisely, we predict
X, .o by 0, (XfL +1) like in Theorem 3.1 of Mas, [44]. The following result shows that the
bootstrap works for approximating the distribution of 0, — Uy, (X,‘j +1) projected onto

Vpn.

Proposition 5.3.4. Under the assumptions of Proposition 5.53.1, we have for n — oo
that

\/ﬁ<¢1n - \IIHkn (X;;H) 7Vm> and \/ﬁ <¢’Z - \ijnnkn (XZJrl) 7Vm>
converge in distribution to the same limit.

Proof. The result follows from Proposition 5.3.2 and 5.3.3 by the delta method for the
bootstrap (Theorem 23.5 of van der Vaart, [55]), as

. 1 1
\/ﬁ<\1’n—‘PHkn (XZ+1)7Vm> = %;Zt—lﬁt <X3+17Vm>z

= Vo (G = W (X21) v ) D)

by Corollary 5.3.1 where ¢(u,v) is continuously differentiable for all u and for all v in a
neighbourhood of A,, > 0. O
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5.4 Approximation of the innovations by the boot-
strap innovations for a special case

We now drop the assumption that the eigenvectors v, are known, and we have to estimate
them by the eigenvectors 7, of I,,. Under suitable assumptions (compare, e.g., Theorem
16.2 of Horvath and Kokoszka, [28]), we have

lim sup nE ||&;7; — v4]|* < oo
n—oo

i.e. by Markov’s inequality

1
A A 2
eyl = 0, (+).

Here, ¢; = sgn (7, v;) has to be added to the relationship due to the inherent nonidentifi-

ability of the eigenbasis (compare the discussion in Section 2.5 of Horvath and Kokoszka,

[28]).

Our arguments remain unchanged, except that now we no longer have \ifn (Vm) = GV
The corresponding relationship with 7, instead of v, does not hold either, as the co-
incidence of eigenvectors of I' and C' does not imply that I, and C, have the same
eigenvectors. Nevertheless, we get that the distribution of the centered sample residuals
€; projected onto v, converges to the distribution of the corresponding quantity involving

the true residuals ¢;.

Theorem 5.4.1. Let Xy, -, X, be a sample from a stationary FAR(1) process satisfying
i) Elle|" < oo, Ee, =0, € i.i.d.

i) W], <1

iii) C has the singular value decomposition S with the eigenfunctions v; of T'.

w) The eigenvalues Ay > Xy > -+ of I have multiplicity 1 and satisfy \j — Xj41 > ba’
for some 0 <a<1,0>0 and all j > 1.

ojv/2loglogn

v) Sup;<p, T — 0 for n — oo, where 05 = ([(1 - R~ Al (vy), Vj>2 with

I the identity in the space of Hilbert-Schmidt operators on L?, R a linear operator
on that space given by R(S) = WSU* and A the Hilbert-Schmidt operator given by
A(z) = (¥ (Xo),x)e1+(e1,2) ¥V (Xo)+ (€1, ) 1 — Cc (z), C, denoting the covariance
operator of the innovations €
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Then, dsy (Fn, F> — 0 forn — oo if k, — oo such that

k 1
lim "<
n—oo lOg n

4log b

a
Assumption iv) is a regularity condition which could be enforced by regularizing the
eigenvalue estimators like in Guillas [22]. Assumption v) states that the law of the
iterated logarithm which holds for ):j by Theorem 4 of Menneteau [45], holds uniformly
in j < k,. Note that in the definition of R we could use ¥* = ¥ which follows from iii),

but we prefer to stick to the notation of Menneteau.

Proof. The proof coincides with that of proposition 5.3.1 until we start to evaluate
(; —n;)°. Now, we have for ¢t > 1

(0 — ﬁt)z = <<‘i’n (Xi1), Vm> — (U (X;-q), Vm))Q (5.15)
()t et o))
4o <O (f; - r—l) (X,_1) ,um>2

IN

2 H (On - O) P (X1)

using the Cauchy-Schwarz inequality and ||| = 1 for the first term.

a) We first consider the first term on the right hand side of (5.15). From the definition
of the operator norm ||-||z we immediately have the well known inequality

C,—C

[(en-c) i < £ ()|

2
c
From Theorem 16.1 of Horvath and Kokoszka, [28] we have, as the Hilbert-Schmidt norm
always dominates the operator norm, i.e. ||-||s> |||z, that

N 2
nE‘ o —CHE —0(1)

and hence, by Markov’s inequality, C,—C

2 1
L= O, <—) Note that, under our assump-
n

tions i), ii), the FAR(1)-process is L*-m-approximable (see Example 16.1 of Horvdth and
Kokoszka, [28]).

Now, as 1y, iy, - - - are orthonormal,
A 2
N 2 1 o
x| = > = Ko i (5.16)
j=1 )\j
Fn
— ZA_2<Xt_17ﬁj>2 (5.17)
M\
Jj=17"7
Fn
< S IXel? (518
Jj=1 "
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Moreover, by stationarity,
1 n
E(ﬁZNXHW>—EW%W<m
t=1

1
ie. =" IXi® = O, (1) by Markov’s inequality. Therefore, we finally have
n

IN

.- o)X 5o

k
1 ~ 1
- o ()5
j=1 "\

b) Now, we consider the second term on the right hand side of 5.15. From (5.6), we
have (U (X; 1) ,vm) = (CT7H(X;1),vm) = am (Xi_1,Vm). Moreover, from 5.3, C' is
selfadjoint and

<CFIL (Xt—l) 7Vm> = <zn: Ai <Xt—1a 79]> ﬁj70(ym)>

j—l J

= 'sz Xt 17V] VJ>Vm>

From assumptions i), ii) and iv) the assumptions of Theorem 16.2 of Horvath and
Kokoszka, [28] are satisfied, and we have in particular from the inequalities preceding
said Theorem in [28],

2
A A 2 N
nE ey —wll* < <o [y - x| <D
where D stands for some generic constant independent of j, n. As |¢;| = 1, we have,
i = Im
using o, = N
kn 1
(CT] (Xim1) = CT7H(Xem1) V) = Y D " (Xi-1,6;05) (€05, Vm)
j=1, j#m
1 A 1
+’ym 5\ <Xt—17 Cme> <Cme, Vm> - )\_ <Xt—1a Vm>

For j # m, we have, by Cauchy-Schwarz,
D

E (¢;7;, Vm>2 =E(¢0; — v, Vm> <E|év; - Vjuz na®

Analogously, for j =m
D

nCLZm

E (i, Vm) — 1)° <
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Therefore, we have again by Markov’s inequality

A 1
(60, Um) = (Vj, Vm) + Op (m)

uniformly in j. Therefore, we get for the average of the second term of 5.15.

n n kn
et = 255 s ba
t=1 j

VAN
[\
= |3
(] -
— |7

t=1
1 2
. X* AmAm_ m
—i—)\m( i1, Cm, v )}
n k
2’77271kn . 1 A A2
< ZZ 2j;\2 <Xt*1’cjyj>
t=1 j=1 @A
1 1\ 1 <
+47;(A —A—) L Sie
m m t=1
4%%11 - R 2
)\_25 Z <thl> CmVm Vm>

where we use Jensen’s inequality for the last inequality.

Now, again by Cauchy-Schwarz and stationarity of X}

1 & 1 &
EZ<Xt—laémﬁm_Vm>2 S EZHXt—lHQHémﬁm _VmH2
t=1 t=1

IN

1
as — S0 | Xi1]” = 0, (1) as discussed above. As ||émim|| = 1,
n

1 — a2 1 & 2
EZ<Xt_1’Cme> S ﬁZ”Xt—lu - OP (1)
t=1 t=1

and

n  kn
1

1 & ) 1 1
- X a0, — )| =0, —
n;n il (nm) (nm

)

1 . l 1
EZZGTS\?<Xt_1’CjVj>2_Z 2])\2712” il Z e O, (1)

t=1 j=1 J J
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such that

LS (e (f ) ) = Yo, (1
n — n t—1)+9“m n — a2j;\2- p n
= 1= J
1 1\? 1
+4’772n (5\ _)\_) Op(1)+0p (nazm)

c) As the next step, we have to investigate

Sl _ATA
N AN

>/>| —_

From assumption iv) we in particular have \; > a’. As all eigenvalues have multiplicity
1, we have from Theorem 4 of Mas and Menneteau, [43], a law of the iterated logarithm

stating that S — <;\J — )\j) is relatively compact with limit set [—o;,0,]. In
2 loglog n

particular, for all large enough n and some 6 > 0,

. 2 logl
A= Aj| < (o +0) \/w a.s,
n
. 1
We choose n large enough such that |\; — A;| < 5/\j a.s. for all j < k,, using assumption
v), i.e.
1 1 1 2
— = - < ~ < —as
AN <Aj—>\j) A=A =l A
Therefore, using \; > a,
k k k ken—1
D) D H T DR S (Y
j=1 J j=1 J j=1 j=0
Ak, 1 - atkn 4k,
Coatkn 1 — 4 (1 — a*) an
Analogously,
SE 4
12 = (1 — g2) g2kn
= A2 (1—-a?)a
Finally,
. 2 . 2
o1y () 40— X
— - — ] = < < =0, | —
Am Am A2 N2 A n

. 2
as nk ()\m — )\m) < D by the remark after Theorem 16.1 of Horvath and Kokoszka,
28].
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d) Combining a), b), ¢), we have

1 & o 1 kn 1
o = o) 0 () -0}

kn
= (’)p<—)£>0forn—>oo

na4kn

Under our assumptions on the rate of k,, — oo. It follows d% (Fn, F’n) 2 0 with the same

rate and finally d3 <F’n, F > %0, which ends the proof. O

We do not consider this special case further. It already shows one of the main difficulties
of the general case, which is due to the fact that I, and fIL do not have the same eigen-
vectors in contrast to the toy example of the previous section. This has nothing to do
with the special form of C. Therefore, we immediately study general FAR(1)-processes

in the next chapter.
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Chapter 6

Bootstrap for FAR - Some Theory

In this chapter we consider the bootstrap for the general FAR(1)-model. We start with
some auxiliary results, then prove an analogue of the weak convergence result of Mas [44]
for the simpler case of fixed k,, = p using the results of [47] on triangular arrays of Hilbert
space-valued random variables. Then, we show that the bootstrap innovations approx-
imate the true innovations in Mallows metric. In the next two sections, we show that
the bootstrap principle holds for the sample mean and the sample covariance operator.
Finally we discuss the problems of bootstrapping the estimate of the autoregressive op-
erator ¥ when it is projected onto a finite random subspace with fixed dimension &k, = p

which is independent of the sample size n.

6.1 Some auxiliary results

We start with introducing some notation and properties which we shall need in the
rest of this chapter. We consider data Xy,..., X, from a stationary FAR(1)-process
with autoregressive operator W, covariance operator I' = EX; ® X, and lag-1-covariance
operator C' = EX; ® X;,1. We use f‘n, C,, for the sample versions of I', C. A; resp. v; are

the eigenvalues resp. eigenfunctions of I', and ;\j, U their estimates. Then,



is the estimate of ¥, where p may be fixed or depend on n depending on the circumstances.

p

p
Hp:ZVj®Vj, ﬁp:Zl}](@l}]
j=1

=1

denote the projections onto the span of the first p eigenfunctions resp. empirical eigen-

functions. ) o o o A
Lemma 9. II, = FnFL = FLFn, v, I, =¥,

Proof.

j=1
p A~
= > (7,2) ¥ ()
j=1
p 1.
= > (,2) =Ca()
j=1 A]
as I'T () = AiAj. O

~

A ~ 1 A ~
Lemma 10. W, — WIT, = ~,[, with S, = S0, Xo 1 @ ¢ =n (G, — WIY,)
n
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Proof. From Lemma 9, we have \iln — \Ifﬂp = (é’n — \I/fn) IA”IL

n(én—\l’fn> () = ZXt 1@ X (@ (ZXt 1@ X (2 ))

t=1
n

= S (X)X Z U ((X;1,2) Xi1)

= Z (Xio1,z) (X — U (Xiq) ZXt 1 ® € (

t=1

]

Both Lemmas are essentially used already by Mas, [44]. We give their proofs here for the

sake of completeness.

Lemma 11. Let {X,} be a L?-valued time series with E||X,||* < co, which is L* — m-
approximable. Let the eigenvalues \j, j > 1 of I' satisfy \i > Ay > ... > A\pyq and all
have multiplicity 1. Then, for any L?-valued random variable Y with ||Y||2 < 00, which
1s independent of Xo, ..., X,_1, we have for some constant D

5|

. 2 "1
p
I, (V) — 11, (V)| < DEYP2Y"

where ay = )\1 - )\27 a; = min (/\j—l - /\ja)‘j - /\j+1)7 j = 27 .., pP

Proof. Let ¢; = sgn (U, v;), where 1vq,...,v,, 1,...,0, are the first p eigenvectors of I
respectively I',,. Then,

E (Y, &;05) &0 — (Y, v5) vy 2F ||(Y, &;05) (6,05 — vy)||* + 2E (Y, &5 — vy) vj)?

<
< AE (Y l1¢;25 — v5]°)

using Cauchy-Schwarz and ||7;]| = ||v;|| = 1. Hence,
R 2 p p 2
E’Hp V) =1L, = E|D _Vém)en - YVy)y
j=1 j=1
P
24 - 2
< d4p)y E(IYI* ez —vill?)
=1

p
1
2
< DpE|Y|*) oy
i J

by the remarks following Theorem 16.1 of Horvath and Kokoszka, [28]. O
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Corollary 6.1.1. If, under the assumptions of Lemma 11, \j — Xjy1 > a’b for some
O<a<landallj=2,...,p4+1, and some constant b > 0, then

P 1
na?r 1 — a?

1, (v) - 11, ()| < DE v

Proof. We have a; > a’b, and

~1 _ 11-a¥_1 1
Dom T ml i S

=

6.2 Weak convergence for fixed p

We consider the FAR(1) model given by
X1 = VX; + €41

Regarding Lemma 10 we have

A

. 1 .
— T
v, — VI, = ES”FP’
where again S,,(z) = > " | X;_1 ® (), and we are interested in showing that for fixed p
Jn (xpn - \Ifﬂp> N N (6.1)
where S, is Gaussian and
p
1
FL = Z Yl/j & vj.
j=1""
Note that this is the analogue of Theorem 3.1 of Mas, [44], who considers p = k,, increasing
with n. However, the proof is different and simpler for the simpler kind of asymptotics
with fixed p. We investigate S,, and f; separately and then apply an argument like

Slutsky’s Lemma to conclude the proof. We first compute the mean and covariance

1
operator of —.5,,. Note that
n

vn

Sulz) =) Yi(x)  with Y,=X, @e(z) =< X;_1,2 > ¢
j=1
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As ¢ is independent of X; ; and has mean 0, the Y;(x) are white noise, i.e. pairwise

uncorrelated, with mean 0. From this we get

1 n
%]ESn(z) = %;En(z)zo

LE(S(n) @ Si@)}(2) = B (Si(x),2) Sule)

1 < 1 ¢
= E<%;<th,x>et,z>%;<)(k1,x>ek
_ % SR (X, 1,3) (Xe1,2) €0 ® e (2)
it
= E(X1,2)°Ee; @6y (2) = E(Xy,2)° T (2) (6.2)

with ['. denoting the covariance operator of the innovations, using stationarity of X; and

independence of the ¢’s for k # .

We have from our assumptions that Xg,...,X,, are from a strictly stationary process
with zero mean and finite second moment. We therefore can conclude that E (X, x>2 <
||z||*E[| X1]]? is bounded. We now want to check the assumptions of Theorem 5.2.1. First,
we note that S, (z) is the sum of the pairwise uncorrelated random variables Y;(x), which
are, moreover, strictly stationary by stationarity of X;. As the Y; are pairwise uncorre-
lated, E < Yi(z),Yi(x) >=0for t > 1 and E < Y;(z),Yi(z) >= E < Xo,x >2 El||e1| %,
i.e. the long-run variance exists and is just E < X; 1,z >? E||¢]|?>. Therefore, condition
(2.1) of [47] is trivially satisfied, and we conclude from their Theorem 2.1 that %Sn (x)
is weakly compact, and a subsequence converges in distribution to a limit with mean 0

and covariance given by (6.2).

To get Gaussianity of the limit, we assume a mixing condition like in Theorem 2.3 of [47]

or Theorem 2.17 of [7]. We combine these results in the following proposition.

Proposition 6.2.1. Let Xy,..., X, be a sample from a stationary FAR(1) process with
i.i.d. innovations €, having mean 0 and covariance operator I'.. Assume E||X;||>< oc.

i) %Sn(x) 5 Soo()

where S () has mean 0 and covariance operator E (X, x)* T.

i) If E||X,||>*°< oo for some § > 0, and if the time series X, —00 < t < 00 is strongly
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mizing with mizing coefficients o, j > 1, satisfying Zj|aj]5/(2+5)< 00, then Sy (x) is
Gaussian.

1
Proof. i) We have already calculated the mean and the covariance operator of —5S,,(x)
n

above which both do not depend on n. The assertion then follows from Theorem 5.2.1,
which is Theorem 2.1 of Politis and Romano, [47] for the conditions of said result are
fulfilled as we have discussed above.

ii) The assertion follows from Theorem 2.3 of [47] as, due to independence of the ¢
E[[Y;(2)|[*°= E|< Xio1, 0 > PPE[e] P < B PF|2]Elel*
by Cauchy-Schwarz, and
Elletl[**'= BIIX: — U(Xe-0)|P7< (BIIX = U(Xem)|) 72 < B X
for some constant ¢, using Holder’s inequality and ||W(X;_1)||< ||¥]|z||X¢—1||- Moreover,
Yi(z) =< Xi1, 2 > (Xy — W(Xi-1))
is a measurable function of finitely many X; and, hence, has the same mixing rate as

X;. [l

Let us remark that, in the mixing case, we would get ii) with a somewhat weaker condi-
tion on the quantile function of ||X;|| from Theorem 2.17 of Bosq, [7]. Alternatively to

assuming mixing, we could use that due to the independence of ¢; from X; 1, X; o, ...
]E{}/t(x)lXt—b Xt—27 . } = 07

i.e. the Yj(x) are martingale differences. Then, under some additional assumptions,
TSn(x) is also asymptotically normal from Theorem 2.16 of [7].

n
From an argument similar to Slutsky’s Lemma, we can conclude our main result of this

1 A
section, the asymptotic normality of —=S,I'f (z), from the following auxiliary result.
n

VG

Proposition 6.2.2. Under the assumptions of Theorem 6.53.1 below, we have uniformly
m

E||I (2) — T} (2)|[*= \\3«"!!2(9(%)

Proof. Note first that from the proof of Theorem 6.3.1 below and by our assumption on
the rate of the eigenvalues we have, as p is fixed,
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for all large enough n. Then, with ¢; = sgn ((7;,v;)),

2

. 2 P10 ) 1
L@ -T@| = B < e e - Y+ o)y,
iy = A
J= J=
(11 ’
< 3E Z ()\— - )\—]> (D), @) D
7=1 J

p
L. . -
+3E | 1 (Gt @) (&0 — v;)

2

The first term on the right-hand side is bounded by, using (¢;,z)* < |jz||* by Cauchy-
Schwarz,

E (Y- A )
35— i lel? = el 0
by the remarks after Theorem 16.1 of Horvath and Kokoszka, [28]. The third term on
the right-hand side is bounded by, again using Cauchy-Schwarz

P p
1 N 21112 11 2 2 1
32 gty — vl el < D3 g Il = ol 0 ( 5
j= =

from the same remarks of Horvath and Kokoszka, [28] for some constant D. Finally, the
second term is bounded by

+ (605, 2) (605 — v))

2 p
1 2m (1A A 2 2 1
<Y g Il Bt~ = el 0 (1)
J:
by the same argument. O
Combining the two propositions, we get
Theorem 6.2.1. Under the assumptions of Theorem 6.5.1 we have for fizved p

i) With Ss as in Proposition 6.2.1,

VB, — WIL,)(2) = —=S,T () % STh(2)

vn
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it) If additionally the mizing and moment conditions of Proposition 6.2.1, ii) are satisfied,
we have that SsT'1(2) is Gaussian with mean 0 and covariance operator E (X1, FL(2)>2 ..

Proof. With = T}(z), we have immediately from Proposition 6.2.1 the results for
SnIl(2) instead of S,I'f(2). So, it suffices to show that S,I'f(z) — S, Tl (2) = 0,(v/n).
We have, recalling ||.S,||z= O,(v/n) from the proof of Theorem 6.3.1

[18a(Th(2) = TN [[Sallz I (2) = Th(2)[1= Op(1) = 0,(vn)

applying Proposition 6.2.2. O

6.3 Approximation of the innovation distribution by
the empirical measure of sample residuals

The basis for residual-based bootstrapping in scalar regression and autoregression models
is the approximability of the innovations by the bootstrap innovations where the latter
are drawn from the centered sample residuals. This is stated in the following theorem in
terms of the Mallows metric. Note that now we have to allow k,, to increase as, otherwise,
¥, would not be a consistent estimate of U and we could not expect the sample residuals

to mimic the distribution of the true innovations.

Theorem 6.3.1. Let Xy, ..., X, be a sample from a stationary FAR(1) process satisfying
i) Elle||* < oo, Eep =0, {e} iid.
i) U is a Hilbert-Schmidt operator with ||V, <1

i) The eigenvalues Ay > Ay > ... of I’ have multiplicity 1 and satisfy N\j — \j41 > ba?
for some 0 < a <1 and some b >0 for all j > 1.

Let F, E, be the distribution of €; respectively the empirical distribution of €, ..., €, with
ejzej—ﬁ;ek, =X, -V, (X;21), j=1,...,n

Then,

do (Fn,F> — 0, n— o0
p

if kn < log n.

1
4log —
a
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Proof. Let F,, denote the empirical distribution of €;,...,¢,. Then, again from Lemma
8.4 of Bickel and Freedman, [6], we have ds (F,,, F') — 0. Hence it suffices to show that

do (Fn, Fn) — 0. As in the proof of Proposition 5.3.1, let J be Laplace distributed on
p

1
{1,...,n}, ie. pr(J=t) = —, 1 <t <mn, and consider the random variables
n
. I .
Uy = €y, %ZGJZEJ_Eijlej

with distributions F), respectively E,. As in the proof of Theorem 3.1 of Franke and
Kreiss, [20], we have from the definition of the Mallows metric

n

1 . 1 .
EHUo—VOHQZEZ Gk—Ek—EZEj

k=1 7j=1

6 — 3 || — ’
~ 2
w2l el + 2510 o
k=1 7=1

IN

&2 (Fn Fn>

IN

From the law of large numbers for i.i.d. random variables we have

1 n
—ZEj%EEjZO, n — oo
n/jzl V4

such that the second term on the right-hand side vanishes for n — co. For the first term,
we show in the following

e — ell® < N1Xemall? Ro + 3|, (Xemr) — Xoa ||

where R,, does not depend on ¢, and R, — 0. Il denotes the projection on the eigen-
p

vectors vy, ..., v, of the covariance operator I' of {X;} as in Lemma 11. Hence,

1N, 1 < 1 <
- dlle—al® < - D Xl Ry + 3 D M, (Xi1) = Xia?
t=1 t=1 t=1

— 0, n — oo,
P

1
as —y HXt—1H2 —E ||X1H2 < o0, and, by stationarity of {X;}
n
1 ) oo )
E (5; ML, (Xe1) — Xo ) =E ;1 (X1, 0,)2 = 0
- J=Fkn

for k, — oo, using a monotone convergence argument and E 2 (X, v\ =E| X,
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a) By definition of €;, €, we have

N 2
lee — & = || X0 — ¥ (Xo1) — X+ 0, (Xoy)

= ||(% - 9) (xi)

— (\Ifn - \Ifﬁkn> (Xy )+ 0 (Hkn — Hkn) (Xi—1) + 0 (M, (Xi-1) — Xi1)

2

2

. . 2 . 2
< 3|(@n - wity, ) (|| + 8| (e, = T, ) (Koo + 31, (X0) = X
using ||¥]|, < 1, where II, is defined as in Lemma 11. We now show that the first and
the second terms are bounded in the required manner.
b) We split (ﬂkn - Hkn> (X;—1) into two terms

kn
<Hk‘n - Hkn) (Xt—l) = Xt—17 V] Z Xt 1, V]

>
S

kn,
= X, 405) (&0 —vy) + > (X, 405 —vj) v
i=1
where, again, ¢; = sgn (Uj,v;). As v1,1,, ... are orthonormal, we have for the second
term
kn 2 kn
N R 2
> (X, &p—vyl| = D> (X, &5 — )
=1 j=1

k’VL

2 A n 2

< Xl Y lees — vl
j=1

where the right hand side converges to 0 in probability, as, from the remarks after The-
orem 16.1 of Horvath and Kokoszka, [28],

D D 1—a*» D’
EZHCJVJ_VJH Zagj = < —0

na%kn 1 — a2 na2kn

for n — oo under the condition on the rate of k,.

For the first term, we have, as ||¢;7;|| = 1,
kn 2 kn
D X, &0p) (G0 — )| < ka > (Xion, &05)7 1655 — vy
j=1 j=1

IN

o

2 A A 2

X1 1 Fn > N16555 — vl
j=1
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where again the right hand side converges to 0 in probability as, from above,

kD

nazkn

n
Eknznéjﬁj—yj”z < — 0
=1

for n — oo under the condition on the rate of k,.

c¢) Using Lemma 10, we have

2

~ ~ 2 1 ~
H(xpn—qfnkn) X)) = {|=Sal (Xi)
17 e 2
< [=Sal| |ITE (Xemn)
nole
1| a1
< =S| 1Xeal®D =
olle j=1 )‘32'

as in the proof, part a), of Theorem 5.4.1. Moreover, as C' = VT,

2

1 ~ ~ |2 ~ 2 ~ 2
as| = lew- vt <2fcn - 42w (r-r.)
n r L L
A 2 A 2
< QHCH—C +off, =T
L L

as ||V||, < 1. From the remarks after Theorem 16.1 of Horvath and Kokoszka, [28], we

N 2 1
have E‘ r, — F‘ L= @ (—), and from Theorem 3 of Mas and Pumo, [42], analogously
n
~ 2 1
E C’n—C’H :(’)(—>. Hence
c n
1,7 1
no . n

From assumption iii) and the rate condition on k,, we have, as a < 1,

L< 1 <—n1/4
e, bak» — b

—_

From Theorem 4.1 of Bosq, [7], we then have, as ||-||, < ||||s,

1

N

A

F"_FH — 0 for n —» o0

/4 ‘
L a.s.

1
b

=
L

Therefore, we have for all large enough n,

- 1
r,-T )z: < 5)\kn a.s. and, as in the proof of Theorem 8.7 of Bosq, [7],

S\kn > Ny, — ’

. 1
T, — FH > — Ak, @.S.
£ 2
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~

A=\ <

using sup,~; . Therefore, for large enough n,
= c

2 kn 2 kn
1 1 1
Z—z < 4=S) D 5
=1 ] Lj=1"17
2 kn
= b2a23
41 . 1 1 1

Let us remark that the logarithmic rate for £, in case of exponentially bounded A\; — ;11

like in assumption iii) also appears in the convergence rate results of Guillas, [22].

6.4 Bootstrap for S, and the sample mean

We have seen in section 6.2 that the asymptotic behaviour of 0, is mainly determined
by the behaviour of S,, = n(é’n - \I!f‘n) In this section we show that the bootstrap works
for S,,. The proof of this result can be easily modified to show that the bootstrap works
for the sample mean. We start with stating that the well-known strong consistency of

A

¥, as an estimate of W in particular holds under our set of assumptions.

Lemma 12. Under the conditions of Theorem 6.3.1, we have

n— oo

Las

Proof. The result is a slight modification of Theorem 8.7 of Bosq, [7], taking into account
that Bosq considers \If = Hk \I/n instead of \I/ as an estimate of ¥. From the discussion
in the proof of Theorem 6.3.1, the conditions of that theorem of Bosq are satisfied. In
our notation,

A
L

o (e, = ) e, — o]
L L L

From the proof of Theorem 8.7 of Bosq, [7], in particular (8.92), (8.93), the second and
third terms converge to 0 a.s.
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For the first term, we have in our notation for every z,

k k
. . <1 NN ~ 1
<\Ifn - \I/Hkn> () = C, (Z " (x,¢;05) cjvj> -C (Z x (x,vj) Vj)
j=1 "\ j=1"17
(e~ (1 1
= Cn (Z (5\_ - )\_> (z,¢05) &5
j=1 J J
(S
+Ch (ZY((%%W) (z, VJ>)CJVJ>
j=1""
(S
+Cn ( N (z,v;) (&0 VJ))
j=1""
G|
+ <C’n — C’) ( " (z,v;) l/]>
j=1""

= an1(z) + ana2(z) + ans3(z) + ana(z)

with Ap; = sup| ;<1 @ni(®), 1 < i <4, we have

v, — Uy, ” < Zle A,; and, from the
c

proof of Theorem 8.7 of Bosq, [7], (8.84), (8.86), (8.88) and (8.90), we have A,; — 0 for

i=1,....4. O

Proposition 6.4.1. Under the assumptions of Theorem 6.3.1, we have for n — oo
A . A PN 1

nd3 (G = WEL(W), G = 0,15 (0) ) = =d3 (S,(). S;(W)) = 0

p

where W is an arbitrary L*-valued random variable independent of X}, €}, ... €., €i,... €

’ T n? n-

Proof. Again, we follow essentially the proof of Theorem 4.1 of Franke and Kreiss, [20]. As
in the proof of Proposition 5.3.2 we choose (€}, €;) i.i.d. such that L (¢}) = F, L* (¢}) = F,

9 ~ . . .
and E ||e}, — € ||” = d3 (F ) Fn> Moreover, we choose X§ = X{ in the recursive definition

of X/, and we assume (¢}, €;), t > 1, independent of X||. Then, we have
X, =V (X)) +e, Xp=U, (X7 ,)+e, t>1 (6.3)

a) First, we show the following analogue relationship to (4.18) of Franke and Kreiss, [20]:

2
/ * (12 2 * * T
E{IX/ = ;1P| Xo.-... Xa} < D(EIXGIP+E i)?) | w - 0]

+Dd? (F Fn>

for some generic constant D, for all n large enough.

We use the recursive definition 6.3 to get

t—1 t—1
X[ =W (X)) + > Uk (e ), X7 =W, (X0 +> Uk ()
k=0 k=0
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First, we note that

From Lemma 12, we get for | W], < < 1

.

< |+ |, - w]| <
L L

for large enough n and

k—1 o ‘ k—1 ‘ . ' k—1 h h—1—j
Swwkl < S| ek < X e,
j=0 r j=0 J=0

<

k—1 J Sk—1 k
Y (||‘Ij||) <90 __9
=\ 0 L e —

~

>

i.e. we have for large enough n

A~

519

o s (L
£ 0 — ||

H\Dk_@k

L

Now, writing E as an abbreviation of E{-| X, ..., X,,} and using
t—1 t—1
Xp = X = (0 0L (X) + 3 (6 - )+ (80 ()
k=0 k=0
we get, as X{, (¢}, ¢;) are independent and || U*|| < o)

E|X; - X/ < 3o -9,

9 t—1
VRN 43D I E ey — e
k=0

2
CE[l|f

t—1
+3) prk —yk
k=0

) 52t Qt—l 52k .
3| BN ——5 +E 6?5 | [ - ¥
(6 Iwl) = (0wl

1 ~
32 (F Fn)
L — [

2

IN

L

< 3
C ()

3 ~
b2 P2 <F Fn)
1—|lw|?
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b) From the definition of S, in Lemma 10, we have

nd (C — WD (W), G — B, D5W)) = S (S,(00). 5;07))

n
2
1 n n
< E DX W=D (X W)e
t=1 t=1
n 2
< ZE|Y (XL - X W)
, t:ln ,
+EE Z <Xtt1a W> (62 - 6:)
t=1

2 n
= EZE<X£_1 _X:_17W>2]E”E:f||2

t=1

+— ZE<Xt LW IE‘EHGt_EtH

IN

; ZE X/, — X P EIWIPE |||

+= ZE(X;l, (FF)

using the independence of (¢}, €;) from X, |, X; ;, W and Ee¢, = E*¢f = 0, and Cauchy-
Schwarz. From a), we have for some constant D

RS .12 2
S EIX - X < D(EIGIP+E 617)|

2 .
A+ a2 <F Fn>
c
— 0
p
from Theorem 6.3.1 and Lemma 12, as
(12 — 1 e E 2
lex]l” =~ >Nl — Ellel
t=1

from Theorem 6.3.1 and Lemma 8.3 of Bickel and Freedman, [6].

Moreover,

n n—1 n—1
1 . 2 2 2 .
" Y E(X; W) < E[W)° - S EIX{|I* +E (W) - Y E|X - X;|°
= t=0 t=0
= 2E[[W["E|X:]* + 0, (1)

such that the assertion of the proposition follows from d3 (F ) Fn> — 0 by Theorem
P
6.3.1. 0

105



Checking the proof carefully and using E < Y, W >2< O(E||Y]|?) for bounded random
variables W instead of E < Y, W >2?= E||Y||2E||W|? for independent Y, W we get also

Corollary 6.4.1. Proposition 6.4.1 continues to hold if the independence assumption on
W is replaced by the assumption that W s a bounded random variable.

6.4.1 Bootstrapping the sample mean

In this subsection we do still assume without loss of generality that EX; = 0, but we do

no longer assume that it is known, but that we have to estimate it by the sample mean

|
—

n

Xn - Xt-

S|

t

I
o

Note that EX,, = 0, and that we also have the bootstrap analogue E*X* = 0 as, with X}
in the proof of Proposition 6.4.1,
t
E*X; =E* (\IIZ(X()) + Z \Di_k(e’,;)) =0
k=1
due to linearity, EX; = EX; = 0 and, by definition, E*¢; = 0. Therefore, we have to

compare X,, and X* without additional centering.

Theorem 6.4.1. Under the assumptions of Theorem 6.5.1, we have for n — oo

nd; (X, X;;) — 0

p

Proof. a) We choose X/, X;,0 <t <n— 1, as in the proof of Proposition 6.4.1. Then,
1 n—1
nd (X, X;) < nE||X, - X;l[P= = 3B < X/ - X{, X - X! >
n
t,s=0

As in the proof of Proposition 6.4.1, part a), we have X| — X = a; + b, + ¢; with
t t
X xp = (W= 0L) (X + DU (e — )+ D (W= ) () = at b+
k=1 k=1

So, we have to study

n—1
Z]E<at+bt+ct,as+bs+cs>.

t,s=0

1

n
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We show in the following two parts of the proof that the dominant terms
1 n—1 1 n—1
— E<b,bs > and — E<c¢,cs >

are of order o,(1). The remaining terms can be handled analogously, and the assertion
follows.

b) As (¢, €;),k =1,...,n, are independent with mean 0, we have for s <t

t s
E<b,bs > = ZZ<\I’t_k(e§§—62),\lls_l(e;—ef) >

k=1 I=1

= Y E<U (G- ), (¢ ) >
k=1

< O U [0 LB, — el
k=1

S th—l-s—de%(F’ Fn)
k=1

= Y PR By = 80 (F F)O()
k=1

where § < 1 is as in the proof of Proposition 6.4.1. We conclude

t

n—1 n—1
1 2 ~ A N
— E < — =s2(F, F 1) =d*(F. F 1) = 1
- E < by, by >< " ;:0 E 0 dy(F, F)O(1) = dy(F) F,) O(1) = 0p(1)

t,s=0 s=0

by Theorem 6.3.1.

c) As ¢;,k =1,...,n, are independent, we have for s < ¢ and some generic constant D

t s
E<ciee > = Z ZE < <\I/t_k — \i/fl_k> (€x), <\I/8_l - \i/fl_l> () >

k=1 l=1

= Y E< (W) (), (vt - 0 (@) >
k=1
DY 8w — b [2E e

k=1
s

= 017 I = [20,(1) = 600 - W] [20,(1)
k=1

IN

using the bounds on || — Wt ||, and E*||¢;||? from the proof of Proposition 6.4.1. We
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conclude

n—1 n—1 t
1 2 S . .
- Y E<a,e>< - Z 0 W = W[ [20p(1) = [|W — W[ [20,(1) = 0,(1)
t,5=0 t=0 s=0
by Lemma 12. O]

6.5 Bootstrapping the covariance operator

In this section, we show that the bootstrap works for the covariance operator estimate
[,. It is obvious from the proof that a similar result would also hold for the lag 1-
autocovariance operator estimate C.,, at least under the condition that C'is a symmetric
operator, which is automatically satisfied for I'. [, is an unbiased estimate of I'. We
need that this is asymptotically true for the bootstrap analogue too which we formulate

as an own result.

Lemma 13. E*T* =T, + O, (—) of H‘I’ - ‘I’H
L a.s.

Proof. From the representation of X, in terms of X = X and €},..., € (compare the
proof of Theorem 6.3.1), we have

e

t—
Xi =W, (X5) + ) 0" (6)

1

?

As E*e;, = 0 and as X is independent of Xy, ..., X,, with mean 0, we know, using linearity
of \Ilﬁl, [ > 1, that we have E* X} = 0 such that we consider

1 n—1
=-) X;®X;
n
t=0

as the version of the covariance operator estimate in the bootstrap world to simplify
notation. Plugging in the recursive definition of X}, we get

n—1

A 1 N A
F;:EZ<\I/2(X{))®\V +Z\1ﬂf ) @ Wik (er)
t=0

t (6.4)
+ UL () @ L (Xp) + Z Uk () @ Wl <eZ‘)>
k=1

k=1

As E*U (¢) = 0 due to linearity and as €, . .. X, are independent, we get

7’n,7

n—1 t
. 1 . R 3 -
EF, =~ (Em; (X0) @ WL (X0) + > E W (ep) @ W (6?2))
t=0



As in the bootstrap world, \ifﬁl are fixed, and as for any linear operator A and y € L?, we
have A(y) @ A(y) = Ay @ yAT, with AT denoting the adjoint of A, we have to investigate
mainly E*e; ® €5, as we know already EX{ ® Xj =EX,® X, =T

n n n
1

1 1 — _ _ _
E*GZ@)EZZEZQ@Q:ﬁZ(ét—gn)@)(ét—én):Ezét@)ét—én@én

t=1 t=1 t=1

_ 1 ~
with gn = — ZZ:l €k As ék = Xk - \Ifn (Xk71)7
n

%iét ®R€ = —Z (Xt n (Xi- 1)) ® (Xt — 0, (Xt—l))

A

1
=TI, +n(X ® X, — Xo® Xo) — U, (Xoo1) @ Xy

3I>—‘
M:

1< . A
- Y X @0, (X)) + 0,0

t=1

Bl

As for the linear operator A and y, z € L?, we have A(y)®z = (y ® z) AT and y ® A(2)
A(y ® z) from the definition of ®, the second and third terms are C, U7 and ¥,
respectively, such that, as C,=U,I,

A

T
n

1 <& . A 1
— E €GRE = Fn—\I/nFn\IIT+E(Xn®Xn—XO®XO)
n

Similarly, we have

- 1

~ ~ ]- ~ ~ a - -~
€n ® €p = ﬁ Z €L ® € = ﬁ Z (Xk — \I/n (Xk,1)> ® (Xl — \I’n (Xl,1)>

k=1 k=1
= Xl:n @ Xl:n - \ijn (Xlzn @ XO:(n—l)) - (XO:(n—l) ® Xl:n) \ilg
\:A[/n (XO:(n—l) o2y XO:(n—l)) \II;I;

where X1.,, Xo. (n—1) denote the sample means of X, ..., X, respectively Xo,..., X, _;.
- - 1

As ‘ v, — \I/‘ L 0,(1), and as Xo.(n—1), X1., are O, (%) from

the law of large numbers of FAR(1)-processes (compare Theorem 3.7 of Bosq, [7]), we

—>0wehave‘ n

- - 1
immediately get that €, ® €, = O, (—) So we get
n

|
E¢®e =0, -V, 1,0 + -R,

n
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with R, = O,(1). Hence, we have for the dominant term in E*T%

b, . T . . . . T 1 . T
B 0t @ (q/f;k) = S (rn—\pnrn\p;f) (qff;’f> +Y WikoR, (xl/f;k)
n
k=1 =

k=1 k=1
=1 T 1
S (\Iﬂ—k> AN e (\Iz;—l> +0, (-)
k=1 =0 n

where we have used that R, = O,(1), < 4! for some 6 < 1 and large

l
L

T
‘an

<o

enough n as in the proof of Proposition 6.4.1 and 2221 §2=h) < Finally,

1—62

E*ln_l t\ijt—k;* . \ilt—kT e Pyt @tT o 1
o uted (i) = T3 (R wn (®)) ro.(7)

t=0 k=1 t=0
A 1
=I.,+0, -
as, using again the above argument that H\iffl z: <4
n—1 o ) T n—1 . . 1 .
S WLT, (q;;) <S8t < —= |t =0,
£ 1— 42 c
t=0 L t=0
1
Analogously, the expectation of the first term in 6.4 is O, (—) m
n

0, — \DH — 0 holds by Lemma 12.

Note that under our standard assumption,
L a.s.

The following result just states a rule of calculation needed in the proof of the following

main result.

Lemma 14. [f (U, U*), (V,V*) are i.i.d. L*-valued random variables such that d3 (U, U*) =
E||U — U*||*; then

E|UeV -U @V ()|*<2E|U|*+E|U*|?) d3 (U,U*) |||
for any x in L?.

Proof. Using independence of (U,U*) and (V, V™)

E[(URV —U*@ V@) = E|(U-U)e V() +U* @ (V -V ()|
2(EU - U 2)’E|V|?+EU*2)°E|V - V*|?)
2d3 (U, U*) ||lz|* (E|U|* + E||U*||*)
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sE|V-VP=E|U-U"|* and E||V|* =E||U|

Theorem 6.5.1. Under the assumptions of Theorem 6.3.1, we have uniformly in x € L?
forn — oo

1 . : .
s (Tal@) = (@) [ (a) = Tuw)) 0
T P
Proof. As in the proof of Proposition 6.4.1 we choose (€, ¢€r) i.i.d. such that £ (e) =
E,, L(€)=FandE|¢ — ¢ = d (F, Fn) Moreover, we choose X = X{ independent
of (€, er), k>1,and £ (X}) = L (X,). Due to stationarity of {X;},El, =T, and from

. . 1 1
Lemmas 12 and 13 we have E*I'; =T',+ O, | — ). Hence, up to terms of order —, which
n n

we denote by ~ to simplify notation:

n—1

A o 1

F;_p_@t_pn) ~ S (Xe X -E(XGeX) - (X e X[ - E(X] © X))
t=0

1n71
— E;At

*

Replacing X7, X; by their representation in terms of X, €], ..., €, respectively €7, ..., €},
ie.

t t
X{ =W (XG) + Do W), X =0 () + Y ()
k=1 k=1

we have A; = a; + by + b + ¢; + d; with
~ “ T
a = WXG X —E(X) 0 Xp)] (¥) - ¥ ® X~ E (g @ Xp)] ()

t

~ ~ T
o= Y [qﬂ—’f (@ Xp) (0) = i7" (e @ X7) (9 }
k=1
t

~ ~ T
(= 2 Ut e ) - g e ) (1)
k#l=1
! A ~ T
d = Z[qﬁ—k (@) —E(e, @) (U — U (@) +E (6 @ ¢)) (xp;—k) }
k=1

where we have used that (¢}, €}) are i.i.d. with mean 0 to get, e.g., Ee, ® ¢; = 0 for k # 1.

As we are interested in

gt o (-]




we have to study terms like

E Y0 (@), ba(@) , XL (@), e(a) s EXLL (dio), dofa)).
a) We start with 30,10 E (ci(w), e,(@)) = X0 ko Xohoscs Xhsyms EBLG) (@) where
By (@) = <q, (@) (1) ()~ (@) (87) (),
V(@) (U) (2) — U (6 @ €) (\D)T (a;)>

As k # [, we have Ee;, @ €)(z) = E (¢}, 2) ¢, = E (€., 2) Ee; = 0 and, analogously, E*e; ®
€/ (z) =0 for all z. Moreover, if e.g. j # k,l, we have

E<‘Ilt—k (6, ®@¢€) (2), ¥ (eé@e}) (y)) = E({e,z) (U Fep, Wi '> €, y)
= (E{(e,2) (€, y) ¥~ ke}E\Ifsz'>—0

as EWs—i L= i (Eeg) Analogously, the expectations of the other terms are vanishing,

such that for k # 1,7 # j, EB,EZ?(Z‘) =0except fork=i#1l=jork=7j#1=1 To

get the expectations of the remaining terms, we decompose
. . T
v G od) (U - G o) ()
. . . T
= (v - W) (@) () (G @) (v - 0
. . T
+\ijz_k (52; ® 62 -G ®q) (\Iﬂ;—l> = B1y + Boy + Bsy

and using |||, < || ¥ < 7 for some § < 1.

Bre@l < | e =& e @l []e Dl

< DAkl ‘

o[l @l
for some generic constant D from the proof of Proposition 6.4.1. Analogously,

D(§2t_k_l

IN

B2 ()
1Bse@)] < * @6 — G @6l lll

o|| ek @ lll Nz

J N
< ¢ for large enough n again from the proof

where we use H\Iﬂ < ||¥, || and ’
c

of Proposition 6.4.1. Using HU V|, < HU|| |V||, which follows from the definition of
the operator norm and of ® and from the Cauchy-Schwarz inequality, we have

1@ < D3|

of| el el ], @ =1,2
c
For B3, we use

||(€§c 6k)®€lHL+HEk ( 51)”5
e, — erll legll + [lexll e — €1

lex® & —e @€l

VANVAN
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to get .
185 (@) || < o2 * ]| {[le]l] ek, — exll + Negll ler — €11}
Now, as k # [,

EBGD@)| < El(Bu(e) + Balw) + Bule), Bisl@) + Baule) + Bus(a))
< 4D22irs—hl) H\I, 0,

2 2 21 112
LEHE%H E [l fl|]

2 *
; {E lell” E ([|e; ]l e, — exll)

* * 2

+E (lepll llex D) E (llerll leg — e [1)} ]
N s—k— * * *]11 2 2
+07H DR {|ef]| e, — el + llegll le; — €71} 1=l

14D +s—k=D)

’qf—xifn

Note that the expectation in the last term may be written as

2 ny * * * * || x |12 px * (|2
E 6} E e, — I + 2 (e I — i ) E e 1h — i) + B g E* [ — <]
2 * * * * n
< (B141 + 2RI VE 161 + B 161 o (. )

<2 (Ell4I° +E* ) d3 (F, )

due to our particular choice of (€, €;). Analogously, we get for the term involving expec-
tation in the second to last term that it is bounded by, using that €], €} are identically
distributed,

2 ~ N A
E | E 6% (F, B) + E 12y E I VE s (P )

~El1° (VEI4I + VB 16IF) & (7. 5)

From Theorem 6.3.1, we have d> (F, Fn> = 0,(1) and, using Lemma 8.3 of Bickel and

Freedman, [6], E* ||¢}|? - E |le|, i.e. E*||€}]|* = O,(1). From Lemma 12, || ¥ — ¥, .o
0. So, we have with some generic constant D

B (@)| < DEH 0 [z 0,(1)

uniformly in k,[, s,t and z. Analogously, we have the same upper bound for EB,Sl’k) (x)‘

too. Finally, we conclude, using that £ = ¢,l = j or k = j,l = i is only possible for
k,l < min(s,t)

n—1 min(s,t)

< Y Y FUEID |z 0,(1)

5,t=0 kAl=1

S B (erf0), o)

s,t=0

= [lz* 05(n)

as the first factor is O(n) by the same kind of calculations as in the proof of Proposition
5.3.3, part b).
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b) As the next term, we consider

n—1 n—1 t S
STE (di(x), do(2)) = > DS EB (2)
s,t=0 s,t=0 k=1 [=1

where

N ~ T
B/E;?t) () = < [\I/t_k (€, ® €, — Eep, ® €},) (\I/t_k)T — Uk (e @ et —Erel @ €) (\112"“) ] (x),
N N T
G- B () i e d - B ed) (1) |©)

Due to independence of (¢}, €;), (€], €) and linearity of the operators involved, we have

EB,S’t) = 0 for k # l. For the remaining case, as in a), we decompose the left factor of
the scalar product into 3 terms, where now

B = (V) (o —Bg@d) (vt

A ~ T
Bu = VG @ —Ed@d) (V- UiH)

A ~ T
By = WH (G0 B e - @+ Eeq ) ()

such that
B;(i’t) () = (Bre(x) + Bar(x) + Ba(x), Prs() + Pas(x) + F3s(x))

For the first two terms, we use

lep@ e —E(g @)l < lle@ell,+Eleg e,

<
2 2
< [lell” + Eflex

and we conclude as in a), with EO,(1) = O(1) uniformly in k.t
1Be(@)| < 0,3 |w — b,
For the third term, we abbreviate Ay = €, ® €}, — € ® €} such that

|Bas(@)]| < 3¢H) | A — EA |l
Using Cauchy-Schwarz, we have for some generic constant D

x|, i =1,2.
c

EBG @) < El(Bu(@) + Bu(@) + Bu(w), Bus(w) + Baslw) + Bo(2))]

~ ~ 2
< 4D52(t+s—2k) H\IJ . \I/n ||ZL'||2
L

+4D82(t+8—2k‘) H\Ij . \ijn

CENA: —EA [l
+32(t+5—2k)E ||Ak — EAkHi ||17||2

— 0, and as, from Lemma 15 below

As H\IJ — \iln
L a.s.

E[|Ax — EAle < /B[ Ak — EA and E [ Ax —~ EALZ < E A% - 0
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uniformly in % as (€}, €;) are identically distributed, we have
BB ()] < D Jla]* 82620, (1)

uniformly in k, s,t, . Hence, as for k = [, we have k < min(s, t)

n—1 n—1 min(s,t)
D E(di(x),di(z))| < > 2TRD ? 0,(1)
s,t=0 st=0 k=1

= ||zlI* 0p(n)

as the first factor is O(n) by the same calculations as in the proof of Proposition 5.3.3,
part b).

c) We consider a third case in detail below. The other components of ZZ;O E (Ai(x), As(z))

can be shown to be of order ||z|* 0,(n) in the same manner, and we finally conclude, as

L 1
ET: =T, + 0, (—)
n

nE||F ()~ D)~ [Fro) - @]~ - 3 (o), AuGe)

uniformly in x and our assertion follows.

As the final case, we study

n—1 n—1 s
YT E(a(@) by(2) =Y Y EBI(x)
s,t=0 5,t=0 k=1

where

A . T

W (6 ) (1) () - 7 (G X) (8) )

we decompose the left factor of the scalar product into vi¢(z) + 72 (z) with & = X ®
X — EX) ® X,

() = (¥ =) 6 (¥)" (@)
ey = (1) g (v -0) (@)
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Analogously, the second factor is Bi5(x) + Bos(x) + B3s(z) with

Bule) = (07— ¥iF) (6 © X5) (9) ()
furle) = B (G Xp) (8- 0) (@)

A ~ T ~ R T
Bro(a) = Wit (o X -0 X0 (92) (@) =05 (e, - ) @ X(] (8) (@)

As in part a) and b) of the proof, we have for some constant D

(@)l < D& || || lgole llzl, i = 1,2
1Bu@)ll < D& e - lld® Xl llel, i = 1,2
[Bs@) < (e — ) @ Xyl o]

We use

2 2
1€oll 2 < 11X @ Xl + E (1 Xo @ Xgll o < [ Xoll™ + E || Xl
e ® Xollz < [lekll 1 X
(el — €r) @ Xollz < lley — ell 1 Xoll

Using Cauchy-Schwarz, we have for some suitable constant D, as, due to independence
of X{ and (e}, €;)

Elélc e ® Xille < B (I +EIXE) Nl 153
E ¢, ]| 2E 1 x5)1° < oo

E ol ek — il X6 = Elle = kI E 16l X

&, (F. F,) 2| X

IN

So that

EBCO@)| < Eltnle) +vle), Brole) + Bas(w) + Byo(2))]

4D82(t+8)—k qu . \ijn

IN

2
2

"l

2§tk H\If ¥ ds (F Fn) |||

= 307K 2] 0, (1)
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uniformly in ¢, s, k, z. Therefore,

n—1 n—1 s
SE (), b(z)) < G ]2 0, (1)
5,t=0 s,t=0 k=1
1 n—1
< — 3 )P o,(1)
1_55,15:0
1 1 )
< — ]l 0,(1)

(1—5)21—52

Hence, this term is of even smaller order ||z||” 0,(1) compared to ||z 0,(n) of the terms
considered in a) and b). O

Lemma 15. Let (¢}, €¢f), t =1,...,n, be defined as in the proof of Theorem 6.5.1. Then,
under the assumptions of that theorem

E||6;€®6;—62®62Hi—>0, n — 00
p

Proof. As in the proof of Theorem 6.5.1, part a), we have (for k=I here)
ek ® €, — €. @ €l < lle, — €ll” (llex] + ekl
Similar to the proof of Proposition 5.3.3, part ¢), we use that ||e}, — €}|| — 0, which follows
p

from d3 (F ) Fn> —E||¢, — €;]|* — 0 and a dominated convergence argument i.e. we have
P

to find a real random variable W with EW* < oo and ||€, — €x||> (||e;] + [|ex]))* < W
As |le, — €;|| < |l€,]| + |l€t ]|, we choose W = ||€,|| + U for some U > 0 with EU* < oo and
|ef|| < U. Note that we have E||é,||* = E ||| < oo by assumption. Recall that €} can

1
be written as é; with J being a Laplace variable in {1,...,n}, ie. pr(J=k)=—, k=
n
1,...,n. Hence,

S : 1< 1~ -
ek:EJZEJ_ﬁzek:XJ_\Ijn(XJ—l)_EZXk‘f'EZ\I}n(Xk—l)
k=1 k=1 k=1

< 6 for large enough n from the proof of Proposition 6.4.1,

£ BPA P [ pp
k=1 k=1

We have EU? < oo (recall that all expectations are conditional w.r.t. Xo,..., X, if
considering (€}, €7)), as, e.g.,

and using H\ifn

lell < 1261+ 11X | + +6 =U

1 n
E | X" = - Z X, < C
j=1

for any C' > E|X,||"* and all large enough n by the strong law of large numbers for
strictly stationary real time series. O
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Corollary 6.5.1. Under the assumptions of Theorem 6.5.1, we have for any random
variable W independent of Xo, €1,. .., €,

i (R0) = PO, B ) < £,07)) 0

uniformly in B ||W ||

Proof. The result follows from replacing x by W in the proof of Proposition 6.2.2 and
using that, due to independence, E ||IW||* shows up as a factor instead of E ||z|*. O

6.6 Some remarks on bootstrapping the autoregres-
sive operator

We would like to show that the bootstrap holds for the estimate of the autoregressive
parameter V. In view of the asymptotic results of Mas, [44], we can only expect that the
prediction error restricted to the subspace generated by (4, ..., I}, ) can be approximated

by the bootstrap, e.g. that
Vi (i~ wit ) () and Vi (3 11 ) ()

asymptotically have the same distribution. Similar to the approach of Shibata, [51],
for investigating the prediction performance of autoregressive models with data-adaptive
order, we consider the prediction error of predicting )N(Hl from X, for an independent
realisation of the time series {X;}, i.e. we separate estimation based on Xy, ..., X, and

prediction which is done for {X;}. Now, from Lemma 10,
Vi (i) (%) = s (%)
Vi (9 - w01 ) (%)

|
N
*
}1
*
VS
S
S

However, showing that the bootstrap approximation holds for these terms, we cannot
just combine the arguments leading to Propositions 6.2.2 and 6.4.1. The main issue is
that

Do) = 3200, Ay (a, 0) 0 = % o Xi @ X,

has an explicit representation in terms of the data whereas we do not have an easy similar

property for
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. 1
kn N
I (z) =300, T (z,05) U
J
or even for the eigenvectors ;. In proving his asymptotic Theorem 3.1, Mas [44] uses

pertubation theory of operators to get representations like

1 1
o= [ (2I-1,) d
21 Je,

where C,, is the boundary of an open subset of C containing A, but no other eigen-
value, e.g. the boundary of a small circle with center A\,. This leads to a corresponding
representation

A ko rq !

=3[ (1) e

=17¢ *

of the truncated inverse of I',, in terms of I',,. Under appropriate assumptions Mas shows

as his Proposition 5.1

k

1 i 1

S, (PL - FT) (Xpat) = O with I = > v @ 15
j=1""

nk,
It is easy to check, that this result also holds with Xt replacing X,,11.

1
Note that in the definition of S,, on p.1242 of Mas, [44], a factor — is missing. Otherwise,
n
equation (13) of Mas would not hold - compare also our Lemma 10. ASEY " | X; 1 ®
1
e(r) =0and B30, X, 1 ®@¢|? = E(X,2)*E e, we have to scale with —=, not

vn
with y/n as in the proposition 5.1 of Mas.

A

If we consider a fixed k, = p, writing I V¥, ,» etc. to make this visible, we even have,

n,p’
as this is just a special case
Lo (pt _pt TN
=5 (EL, = Tf) (Xos) > 0 with T = > WA (6.5)
j=1

To use this result we need the additional assumptions 3.1-3.4 of Mas, [44], from our
section 3.2 above. Assumption 3.1 is part of our usual assumptions in this chapter. It is
easily checked that it holds for the bootstrap process X; too for all large enough n, i.e.

<1 a.s.

ker (f’n) =0 a.s.,E* ||ef||” < C < oo uniformly in n and H‘i/n
c

However, the other assumptions and, in particular 3.3 about the Karhunen-Loéve ex-

pansion, are hard to check for X; such that we do not easily have the analogue of 6.5
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in the bootstrap world, though, in view of Propositions 6.2.1 and 6.2.2 it is likely true
too. If we assume this property, then we can show immediately that the bootstrap works
for the predictor \T/n’p, for fixed k, = p. Note, that for constructing the bootstrap data
we still use the estimate U, with increasing k,, as, otherwise, the residuals ¢, would not

approximate the innovations ¢;.

Proposition 6.6.1. Under the conditions of Theorem 6.3.1 and assuming additionally

3.2-3.4 and
%S;; (£af, - 1p) (%) =0 (6.6)

we have for {X,} from an independent realisation of {X,}

a) \/n (@n,p — \Ifﬂp> (X’t> - SOOFL(X}), for n — oo, where SOO,F}D are as in Theorem
6.2.1.

b) \/n (\i/;"w — \f/nﬂ;> (Xt> — SOOFL(Xt), for n — o0, too, i.e. the bootstrap approxima-
tion holds. ’

Proof. a) follows from Theorem 6.2.1. As in the proofs of Propositions 6.2.1 and 6.2.2,
we choose X, (€, ¢;), t = 1,...,n, where Xj,..., X, are treated as given. Then,

vn <\i/;hp — @ﬂ;) <)~(t) has the same distribution as /n (‘i/n,p — \I/ﬁp> (f(t) From
Lemma 10,

T t Ty * T 7T+ * Tt
Vi (¥, - it = \/_s;F;p, Vi (0, = 00L) = TSnan

We decompose, writing here ~ for equal distribution for n — oo
Lot (%) = g (T (% L (i —1i) (%
\/— nt n,p t - \/_ﬁ n P t + % n np - p t

~ 7 (1 (%))

as the second term on the right-hand side of the first line converges to 0 in probability
from Proposition 5.1 of Mas, [44].

From assumption 6.6 we have the analogue for the bootstrap data

St (%) ~ s (1 ()

Then, from Proposition 6.4.1

(5 (0 (0). s (13 (5) o

such that b) follows from a) and Lemma 8.3 of Bickel and Freedman, [6]. [
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Chapter 7

Simulation Studies and Results

In this chapter results for the simulations carried out are reported. The goal of the
simulation study is to assess the theoretical results obtained in the previous chapter. In
particular, we carry out a simulation to test the goodness of fit of the model in which case
the critical value is obtained by bootstrap technique. We also carry out a simulation to
estimate the model parameter using the bootstrap technique and also to check whether
the distribution obtained by bootstrapping is close to that obtained asymptotically i.e.

to investigate numerically the weak convergence of the predictions.

7.1 Weak Convergence of the FAR(1) Process

The FAR(1) series is generated according to the model

Xpir(t) = /O W(t, )X (5)ds + ensa(£) (7.1)

The sample consists of 252 curves X, (t), including a burn-in phase of 50 observations
which we do not use for estimation, each curve with 100 data points between [0,1] which
are generated from an initial observation Xy of zeros. Residuals (¢) are generated from a
Wiener process, chosen for its simplicity, randomness and constant mean zero.

The Gaussian kernel is chosen for the process and numerical integration employed to
estimate the value of the constant C such that | ¥[= 0.5 or ||¥| = 0.8. It should be
quickly noted that the constant C' is required and chosen so as to ensure the observed

process will have a stationary solution. This follows directly from the scalar autoregressive
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process where to attain stationarity the condition ¢ < 1 should be fulfilled. The Gaussian

kernel is given by

U(t,s) = Cexp{—(t* + 5*)/2} (7.2)

The constant kernel ¢(t, s) = C and the sloping kernel ¢ (¢, s) = Ct were also considered

and their constants too were chosen such that the condition ||¥| = 0.5 was fulfilled.
A summary of the simulation process is given below;
1. Start with X, = 0.

2. Generate a sample X1, ..., X,,12. Allow a burn-in period of 50 observations, such that
the actual sample size used for estimation is N = 200. The first N functions are used

A

in the estimation of W,, which is then used to predict Xn+2 ie Xn+2 =V, (Xp11).

. N 1 - 1
3. From the relationship ¥, = VI, + NSHFT we calculate NSnFIL and subtract

n’

this value from \iln to obtain \I/fIkN. SanL is defined as

Salh(@) =) > > N (wé) (X-r.@) {ené5) ¢ (7.3)

k=11<kn j<kn

4. Finally we obtain

% (@n(xnﬂ) . (X,M)) (7.4)

5. For the bootstrap process, we obtain the residuals by subtracting \i/(XnH) from

UI,, (X,) and center them.

6. We generate B bootstrap samples X | = \iln(X:;) +¢€, 1 from a fixed starting point

say X§ = X, and as above allow for a burn-in of 50 observations.

7. \il;: is calculated in the same manner as above for each bootstrap sample and we

use the average for prediction.

8. Finally we compute the quantity

A

= (#20600) - BalX) (7.5
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Figure 7.1: Sample of functional observations

9. The whole process is repeated M=1000 times and the distances between the boot-

strap and empirical approximations are compared.

A sample of six consecutive curves computed using the Gaussian kernel with || ¥||= 0.5
can be seen in Figure 7.1. As already mentioned in the preceding Chapters, due to an ill
posed inverse problem, we employ a truncated version of the population parameter. We
illustrate the effect of this truncation diagrammatically in Figure 7.2. The figures were

computed using B = 200 replications, and a Gaussian kernel with ||¥||= 0.5.

It is obvious from Figure 7.2 that the bootstrap estimator of the function is very close
to the empirical predictor, a feature that is highly desirable since we aim at employing
the bootstrap predictor in place of the empirical predictor in the event that the sample
size is small so that we cannot rely on asymptotic estimations. Another feature that is
noticeable is the fact that both the bootstrap and empirical estimates of the observation
are smoother (shorter). This is obviously due to the fact that the empirical and bootstrap
estimators are projected onto the first p principal components that represent most of the
variability. However, although the graphical features are not quite satisfactory, P, still
retains its position as the best estimator of the unknown underlying linear operator, see

Kokoszka, [28] for more details on the comparison of the estimators of W.
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Figure 7.2: Sample of functional observations with their empirical and bootstrap predic-
tions

Figure 7.3 shows the observation together with its bootstrap and empirical estimators of
the second curve in Figure 7.2 on the left while on the right, with a different scale, we
have only the empirical and bootstrap predictions. This is to have a clearer picture of

their form.

As noted in Mas, [44], the linear operator ¥, does not converge in distribution to W and
a truncation is necessary in order to ensure convergence. Due to this truncation, we have
that the corresponding truncated observations are smooth in appearance as compared
to the true observations and they therefore are closer to the empirical and bootstrap
observations in terms of graphical appearance. An illustration of this is given in Figure
7.4. The Figure 7.4 shows six consecutive randomly chosen truncated observations (blue)
together with their empirical (red) and bootstrap (green) predictions. The bootstrap
observations were generated from a naive bootstrap procedure with 200 observations and

Gaussian kernel with ||¥|= 0.5.

We seek to compare the sequences 7.4 and 7.5. When the sequences are close, then we can
infer that the bootstrap predictions are close to the empirical predictions. This in turn
implies that in the event that we have a small sample then we can employ the bootstrap

for estimating the operator and carrying out predictions. Apart from this, using the
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Figure 7.3: Empirical and bootstrap predictions

0.7 7=v 0.05 0
0.6 0 o1
0.5
-0.04 | -0.2
0.4 /
0.3 -0.4(\ /, -0.3
0.2 -0.19 -0.4
0 100 200 0O 100 200 0 100 200
0.4 0.2 0
03 0
0.2 0.2
0.1 -0.4
0 -0.6 -0.4
0 100 200 O 100 200 0 100 200

Figure 7.4: Truncated observations, Empirical and bootstrap predictions
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Table 7.1: Prediction errors; Brownian motion innovations, Gaussian kernel ||[¥||= 0.8,
Naive bootstrap

B=1000 E, R, BE, BR,
Average | 0.0766 | 0.0658 | 0.0760 | 0.0657

Table 7.2: Prediction errors; Brownian motion innovations, Gaussian kernel [|¥||= 0.8,
Block bootstrap

B=1000 E, R, BE, BR,
Average | 0.0873 | 0.0745 | 0.0708 | 0.06886

bootstrap to estimate the asymptotic distribution of the parameter of interest (operator
), will also enable to compute other statistics of interest for instance confidence bands
or to carry out hypothesis tests among other things. We compare the sequences in two
ways, the distance between the predictions FE, and R, which are defined below and
diagrammatically by projecting the differences between the curves into the most relevant

directions (further details below) as in Ferraty et. al., [18].

To estimate the prediction error at time n, we consider the quantities F,, and R, from

Didericksen et. al., [16], which are defined as

E, —\// (t)>2dt and Rn:/ol

Their bootstrap counterparts are given by

BE" = \// *())th and BR;:/O1

The quantities above allow us to assess the distance between the empirical and bootstrap

Xo(t) — Xn@)‘ dt (7.6)

~

Xo(t) — ;(t)‘ dt

approximations of the predictions. A summary of the prediction errors for the real and

bootstrap cases is given in Tables 7.1 and 7.2.

To obtain a graphical comparison, we consider the method employed by Ferraty et.

al. which involves comparing the density of the componentwise bootstrapped error
<@Z(X) — \ifn(X),ﬂj>, with that of the true error <\ifn(X) - \IJﬂkN(Xn+1),ﬁj>, j =

1,,,4. v; is the jth orthonormal eigenfunction of
1 A .
Caio = = 2 (Bnl(X0), ) (X)) (7.7)
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Projection onto the 1st Principal Component (Naive Bootstrap)
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Figure 7.5: Empirical and Naive bootstrap predictions

These particular eigenfunctions are chosen because they are relevant directions for the
variable \i/n(X ), and the method in general helps in checking whether we have asymptotic

normality in the relevant directions, i.e the first p most important principal components.

The Bspline basis of order four is used over the interval [0,1]. Figures ?? and ?? give
the projections onto the first principal component for the naive and block (length=25)
bootstrap cases. It is evident that the naive bootstrap gives a better approximation
as far as the graph is concerned. In terms of the distances F, and R, we observe the
same behaviour with the naive bootstrap posting slightly better results. We quickly
note however that with better tuning of the block length the performance of the block
bootstrap may be improved. In this case the results obtained may not be so reliable since
a block of length 25 ensures that there are only 10 blocks to resample from which may

be considered too small.

We do not consider the 2nd, 3rd and 4th principal components, as for this model the
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Figure 7.6: Empirical and Block bootstrap predictions

projection onto the 1st principle component already explains approximately 95% of vari-

ability.

7.2 Goodness of Fit

To test the goodness of fit of the FAR(1) model, we test the null hypothesis
Hy: V¥ =0 versus Hy:V #0 (7.8)
where VU is as defined in Equation 2.1.

From the relation C' = UT', (see equations 2.4 for a definition) it is evident that when
¥ =0, then C' = 0 too. The test statistic employed is therefore of the form
p P
Tn(p,p) =N D DY NN HC @), 9)° (7.9)
i=1 j=1
where (C () ,0;) = ﬁ 2711\/:—11 (Xo, 03) (Xp41,7;) and we reject or fail to reject the
null hypothesis by comparing the value of the test statistic (kernel) for fixed p with the
critical value obtained by bootstrapping. This test statistic has been chosen since it is
clear that if Hy fails then W(7;) # 0 for some j € 1, ...p, since we are projecting onto the

subspace consisting of the first p principle components. If ¥(7;) # 0, then from the test
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statistics definition we have that the power goes to 1 as n — oo, thus the test is consistent.
The same test statistic was also employed for a scalar response model (functional linear
model) and it was found to give good results, see [50]. It is also employed by [7] for the
FAR(p) of which the FAR(1) is a special case. A summary of the testing procedure is

given below.

Under the null hypothesis, we simulate M = 1000 time series X;.1 = ¢;11. For each

mel, ... M,

1. Perform functional principal component analysis and compute the value of the test

statistic Tly. Estimate the kernel operator U,,.
2. Compute the residuals €,,1 = X, 11 — \il(Xn) and center them.

3. Using the centered residuals generate B = 1000 bootstrap samples each time com-
puting the test statistic 7%. Compute the critical value C*, which is the 95%
quantile of 7;,b =1, ..., B.

p = #{b: T, > C*
4. Reject Hy it T) > C* and compute the probability value b= % b }

Under the alternative, we simulate M = 1000 time series X;1; = V(X;) + ¢41. We
considered three kernels 1), namely Gaussian, sloping kernel and the constant kernel. For

eachm € 1,..., M, steps 1, ..., 4 above were repeated.

7.2.1 Results

When the Gaussian kernel with p = 4 and B = M = 1000 was employed, the probability-
value (p-value) under the null hypothesis was 0.044 compared to the nominal level0.05
while under the alternative hypothesis we obtained 1. This can be tied to the fact that
for functional data each curve contains a lot of information and therefore it is simpler to
differentiate between white noise and an FAR(1) process. The same results were obtained
for the sloping and constant kernels, whose constants C', like that in the Gaussian case

were chosen so as to fulfill the condition || ¥||= 0.55.
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7.3 Kernel estimation using the bootstrap

Following Didericksen et. al. [16], we compare the kernel estimated by means of the
bootstrap with that estimated from the sample. The main aim of this work is to establish
whether the bootstrap estimated kernel is close to the empirically estimated kernel as is

desired.

To check the accuracy of the estimation, we compute the root mean squared error(RMSE)

and the Averaged Distance (AD), defined as

RMSE = \//1 /1 (z&(t,s)—q/;(t,s))zdsdt (7.10)

AD = /01/01 ‘Qﬂ(t,s)—zb(t,s)‘dsdt (7.11)

As in [16], we compare different kernels to see whether significant differences can arise as

a result of the kernel employed in generating the data. Kernels considered include
1. Gaussian: 9(t,s) = Cexp{—0.5 (t* + s?)}
2. Identity: 9(t,s) = C
3. Sloping plane (t): ¥(t, s) = Ct

where the constant C' is chosen such that [|[V|| = 0.5 and || V| = 0.8.

We consider the first 4 principal components which should explain most of the variability
in the sample. The value 85% is the cumulative percentage of variability that is considered
standard and is the acceptable value in most studies, see for instance [28]. It is evident
from [16] that the distances decrease with increasing N. The estimated kernel 1) however
has peculiar behaviour in that its mean squared error or mean absolute error increase
with increasing number of principal components which is counter intuitive considering
the opposite should occur. This can be attributed to the fact that the values of A; are
very small and therefore a small error in their estimation leads to a larger error in their

mverse.

Our aim is to compute the bootstrap estimate of the kernel and the distances between

the bootstrap estimates &*(t, s) and the estimator of the true kernel &(t, s). Two types
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of bootstrap were employed; the block bootstrap and the naive bootstrap which differ
in the manner of resampling. For the innovations we consider the Brownian bridge and

Brownian motion.
When considering the block bootstrap, the resampling procedure is as follows;

1. Generate a FAR(1) series according to equation 2.1. In this case the Gaussian

kernel was employed and for the error we employed the Brownian bridge defined as
BB(t) = W(t) —tW (1) (7.12)

where W (.) is the standard Wiener process. A burn-in period of 50 observations is

allowed. ©(t, s) is estimated as

~

Up(t,s) = ﬁ Z Uatn(t)n(s) (7.13)
k=1

where ¥;; = A7HN — 1) SN X 0 (X, 7).

2. For each sample generated, a block bootstrap with B=50 was carried out each
time computing zﬂl’,“ (t,s), b=1,---,B. The bootstrap kernel estimators are added

together before being averaged to produce the final bootstrap estimate.

3. The root mean squared error (RMSE) and averaged distance (AD) are then com-

puted.
The procedure is repeated 50 times.

Although we tried several different block lengths, in all cases the perfomance of the block
bootstrap was not very good. It is observed that the distance between the bootstrap and

empirical kernels decreases with increasing N and increases with increasing p.
The resampling procedure for the naive bootstrap is given as

1. Generate a FAR(1) series according to equation 2.1 with given kernel (Gaussian,

identity or sloping) and innovation (Brownian motion or Brownian Bridge).

2. Estimate the kernel @/;(t, s) and X, the predictions obtained by using the operator

estimated from the sample.
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3. Compute the residuals which are given by ¢, = X,, — X,, and center them to obtain

€.

4. Resample the residuals with replacement and generate an FAR (1) process with the

kernel operator estimated in Step 2 above.

5. Estimate the bootstrap kernels 1[1,;" (t,s), b=1,---, B and compute their average to

obtain the estimate to be used in comparing distances.
6. Repeat the whole procedure M times.
As in the block bootstrap above, we used M = 50 replications.

In the naive bootstrap case, we have that the distance between the bootstrap and true
estimator also reduces with increasing sample size N. We notice too that 50 bootstrap
replications are enough to provide a good estimate and increasing the number of bootstrap

replications does not improve the estimates.

The naive bootstrap proved to be better at estimating the distance between the bootstrap
and empirical kernels as compared to the block bootstrap. As in the empirical case, [16],
the distances reduced with increasing N but as observed in the true case increasing p
from p = 2 to p = 4 instead of reducing the distance increased it. The same reason
is given for the bootstrap case i.e the eigenvalues estimated decrease with increasing p
and therefore a small error in their estimation results in a large error when they are
inverted. Didericksen et. al., [16] suggest remedying this situation by adding a baseline
b to Ai, © > 2, where b=15 (5\1 + 5\2) This ensures that the MSE and AD do not
increase with p. In the bootstrap case we do not employ this remedy, we simply note

that the bootstrap kernel is very close to the empirical kernel which was our main aim.

Results of simulations are given in Tables [7.3-7.14]. CPV is an abbreviation for cumu-
lative percentage of variance which is a method that is employed inorder to decide the
number of principal components to be included in the estimation. A CPV of 85% and
above is considered sufficient in most cases in literature. The performance improves with

increasing sample size.
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Table 7.3: Kernel estimation errors; Brownian bridge innovations, Gaussian kernel || ¥||=

0.5, Naive bootstrap

MSE AD
-9 Y= -9 Y=
N =50
p= 0.3880 (0.0204) | 0.0998 (0.0055) | 0.3321 (0.0166) | 0.0830 (0.0043)
CPV 76.9% 77.73% 76.9% 77.73%
p= 0.5651 (0.0268) | 0.1560 (0.0207) | 0.4538 (0.0075) | 0.1243 (0.0057)
CPV 83.87% 84.85% 83.87% 84.85%
p=4 | 0.8522 (0.0386) | 0.2596 (0.0308) | 0.6686 (0.0139) | 0.2025 (0.0107)
CPV 88.79% 90.56% 88.79% 90.56%
N =100
p= 0.3328 (0.0109) | 0.0706 (0.0096) | 0.2860 (0.0039) | 0.0595 (0.0032)
CPV 77.15% 77.57% 77.15% 77.57%
p=3 | 0.3879 (0.0141) | 0.0964 (0.0112) | 0.3209 (0.0036) | 0.0784 (0.0029)
CPV 83.87% 84.34% 83.87% 84.34%
p= 0.5968 (0.0232) | 0.1580 (0.0078) | 0.4741 (0.0175) | 0.1251 (0.0057)
CPV 87.38% 87.97% 87.38% 87.97%
N =200
p=2 | 0.2884 (0.0090) | 0.0611 (0.0079) | 0.2511 (0.0022) | 0.0515 (0.0019)
CPV 76.51% 76.91% 76.51% 76.91%
p= 0.3108 (0.0158) | 0.0745 (0.0129) | 0.2566 (0.0028) | 0.0600 (0.0021)
CPV 84.98% 85.84% 84.98% 85.84%
p=4 | 0.4563 (0.0231) | 0.1072 (0.0179) | 0.3676 (0.0079) | 0.0859 (0.0062)
CPV 87% 87.39% 87% 87.39%
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Table 7.4: Kernel estimation errors; Brownian bridge innovations, Gaussian kernel || ¥||=

0.8, Naive bootstrap

MSE AD
Y- V- Y- Y-
N =50
p= 0.3661 (0.0186) | 0.1561 (0.0157) | 0.3062 (0.0067) | 0.1315 (0.0055)
CPV 81.53% 81.33% 81.53% 81.33%
p= 0.5219 (0.0255) | 0.1551 (0.0072) | 0.4175 (0.0200) | 0.1257 (0.0060)
CPV 87.88% 87.7% 87.88% 87.7%
p=4 | 0.8037 (0.0366) | 0.2720 (0.0162) | 0.6275 (0.0286) | 0.2118 (0.0127)
CPV 90.68% 90.87% 90.68% 90.87%
N = 100
p= 0.2774 (0.0118) | 0.1293 (0.0102) | 0.2344 (0.0035) | 0.1091 (0.0030)
CPV 83.2% 83.1% 83.2% 83.1%
p=3 | 0.3524 (0.0152) | 0.1036 (0.0031) | 0.2877 (0.0122) | 0.0831 (0.0025)
CPV 88.97% 88.66% 88.97% 88.66%
p= 0.5457 (0.0236) | 0.1473 (0.0058) | 0.4309 (0.0184) | 0.1178 (0.0046)
CPV 91.37% 91.30% 01.37% 91.30%
N = 200
p=2 |0.2343 (0.0105) | 0.1203 (0.0092) | 0.1999 (0.0025) | 0.1023 (0.0022)
CPV 83.33% 83.62% 83.33% 83.62%
p= 0.2625 (0.0146) | 0.0772 (0.0117) | 0.2152 (0.0021) | 0.0613 (0.0016)
CPV 89.16% 89.09% 83.33% 83.62%
p=4 | 0.4279 (0.0221) | 0.1027 (0.0172) | 0.3384 (0.0047) | 0.0828 (0.0036)
CPV 91.43% 91.44% 01.43% 91.44%
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Table 7.5: Kernel estimation errors; Brownian bridge innovations, Identity kernel || ¥||=

0.5, Naive bootstrap

MSE AD
Y- V- Y- Y-
N =50
p= 0.4006 (0.0210) | 0.1005 (0.0173) | 0.3484 (0.0052) | 0.0842 (0.0041)
CPV 76.62% 77.49% 76.62% 81.33%
p= 0.5625 (0.0267) | 0.1564 (0.0210) | 0.4554 (0.0073) | 0.1252 (0.0055)
CPV 83.79% 84.78% 83.79% 84.78%
p=4 | 0.8542 (0.0374) | 0.2627 (0.0140) | 0.6733 (0.0296) | 0.2054 (0.0106)
CPV 87.54% 88.67% 87.54% 88.67%
N =100
p= 0.3483 (0.0109) | 0.0711 (0.0095) | 0.3041 (0.0039) | 0.0602 (0.0031)
CPV 76.9% 77.36% 76.9% 77.36%
p=3 | 0.3898 (0.0140) | 0.0978 (0.0112) | 0.3257 (0.0035) | 0.0803 (0.0029)
CPV 83.77% 84.27% 83.77% 84.27%
p= 0.5957 (0.0225) | 0.1579 (0.0169) | 0.4755 (0.0075) | 0.1263 (0.0057)
CPV 87.28% 87.90% 87.28% 87.90%
N = 200
p=2 | 0.3038 (0.0086) | 0.0593 (0.0077) | 0.2679 (0.0019) | 0.0508 (0.0017)
CPV 76.21% 76.64% 76.21% 76.64%
p= 0.3149 (0.0162) | 0.0781 (0.0134) | 0.2625 (0.0029) | 0.0634 (0.0023)
CPV 83.46% 83.82% 83.46% 83.82%
p=4 | 0.4596 (0.0202) | 0.1086 (0.0153) | 0.3718 (0.0051) | 0.0873 (0.0039)
CPV 86.88% 87.30% 86.88% 87.30%
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Table 7.6: Kernel estimation errors; Brownian bridge innovations, Identity kernel || ¥||=

0.8, Naive bootstrap

MSE AD
-9 Y= -9 Y=

N =50

p= 0.3706 (0.0183) | 0.1536 (0.0155) | 0.3151 (0.0043) | 0.1306 (0.0037)
CPV 81% 80.97% 81% 80.97%
p= 0.5155 (0.0255) | 0.1539 (0.0203) | 0.4171 (0.0071) | 0.1251 (0.0051)
CPV 83.79% 84.78% 83.79% 84.78%
p=4 | 0.8100 (0.0349) | 0.2702 (0.0269) | 0.6342 (0.0125) | 0.2093 (0.0093)
CPV 90.63% 90.8% 90.63% 90.8%

N =100

p= 0.3002 (0.0117) | 0.1370 (0.0105) | 0.2554 (0.0036) | 0.1164 (0.0031)
CPV 82.64% 82.65% 82.64% 82.65%
p=3 | 0.3503 (0.0157) | 0.1038 (0.0030) | 0.2874 (0.0126) | 0.0840 (0.0025)
CPV 88.86% 88.57% 88.86% 88.57%
p= 0.5385 (0.0232) | 0.1485 (0.0058) | 0.4260 (0.0180) | 0.1194 (0.0047)
CPV 91.26% 91.22% 01.26% 91.22%

N =200

p=2 |0.2535 (0.0101) | 0.1325 (0.0091) | 0.2181 (0.0033) | 0.1142 (0.0030)
CPV 82.7% 83.18% 82.7% 83.18%
p= 0.2632 (0.0146) | 0.0785 (0.0117) | 0.2168 (0.0022) | 0.0629 (0.0017)
CPV 89.05% 89% 89.05% 89%
p=4 | 0.4260 (0.0212) | 0.1080 (0.0161) | 0.3378 (0.0044) | 0.0869 (0.0036)
CPV 91.3% 91.34% 91.3% 91.34%
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Table 7.7: Kernel estimation errors; Brownian bridge innovations, Sloping kernel || ¥||=

0.5, Naive bootstrap

MSE AD
Y- V- Y- Y-
N =50
p= 0.3951 (0.0186) | 0.1108 (0.0038) | 0.3248 (0.0164) | 0.0862 (0.0027)
CPV 76.26% 77.32% 76.26% 77.32%
p= 0.5589 (0.0285 | 0.1728 (0.0095) | 0.4481 (0.0228) | 0.1292 (0.0062)
CPV 83.33% 84.52% 83.33% 84.52%
p=4 | 0.8557 (0.0343) | 0.2536 (0.0115) | 0.6700 (0.0266) | 0.1928 (0.0083)
CPV 87.37% 88.57% 87.37% 88.57%
N =100
p= 0.3490 (0.0096) | 0.0830 (0.0029) | 0.2815 (0.0086) | 0.0616 (0.0024)
CPV 76.45% 77.14% 76.45% 77.14%
p=3 | 0.3996 (0.0144) | 0.1093 (0.0039) | 0.3234 (0.0122) | 0.0830 (0.0030)
CPV 83.12% 83.85% 83.12% 83.85%
p= 0.5877 (0.0243) | 0.1537 (0.0068) | 0.4653 (0.0190) | 0.1172 (0.0050)
CPV 87.04% 87.74% 87.04% 87.74%
N = 200
p=2 | 0.3038 (0.0078) | 0.0736 (0.0019) | 0.2418 (0.0073) | 0.0536 (0.0015)
CPV 75.81% 76.45% 75.81% 76.45%
p= 0.3354 (0.0175) | 0.0968 (0.0048) | 0.2721 (0.0151) | 0.0698 (0.0034)
CPV 82.79% 83.35% 82.79% 83.35%
p=4 | 0.4566 (0.0204) | 0.1112 (0.0047) | 0.3668 (0.0161) | 0.0815 (0.0030)
CPV 86.65% 87.12% 86.65% 87.12%
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Table 7.8: Kernel estimation errors; Brownian bridge innovations, Sloping kernel ||¥||=

0.8, Naive bootstrap

MSE AD
Y- V- Y- Y-
N =50
p= 0.4047 (0.0142) | 0.1446 (0.0036) | 0.3142 (0.0132) | 0.1084 (0.0026)
CPV 80.22% 80.5% 80.22% 80.5%
p= 0.5357 (0.0245) | 0.1526 (0.0062) | 0.4241 (0.02) | 0.1154 (0.0045)
CPV 86.62% 86.92% 86.62% 86.92%
p=4 | 0.8042 (0.0326) | 0.2226 (0.01) | 0.6284 (0.0258) | 0.1698 (0.0076)
CPV 89.98% 90.45% 89.98% 90.45%
N = 100
p= 0.3615 (0.0089) | 0.1177 (0.0027) | 0.2771 (0.0086) | 0.0848 (0.0021)
CPV 81.04% 81.34% 81.04% 81.34%
p=3 |0.4023 (0.0155) | 0.1082 (0.0033) | 0.3152 (0.0133) | 0.0802 (0.0025)
CPV 86.93% 87.07% 86.93% 87.07%
p= 0.5561 (0.0245) | 0.1351 (0.0059) | 0.4407 (0.0204) | 0.1042 (0.0045)
CPV 90.13% 90.31% 90.13% 90.31%
N = 200
p=2 |0.3242 (0.0053) | 0.1037 (0.0021) | 0.2389 (0.0060) | 0.0754 (0.0016)
CPV 81.03% 81.48% 81.03% 81.48%
p= 0.3340 (0.0140) | 0.0890 (0.0023) | 0.2564 (0.0124) | 0.0635 (0.0016)
CPV 86.93% 87.14% 86.93% 87.14%
p=4 | 0.4342(0.0170) | 0.0867 (0.0027) | 0.3424 (0.0137) | 0.0658 (0.0020)
CPV 90.03% 90.18% 90.03% 90.18%
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Table 7.9: Kernel estimation errors; Brownian motion innovations, Gaussian kernel || ¥||=

0.5, Naive bootstrap

MSE AD

-9 Y= -9 Y=
N =50
p= 0.4332 (0.0285) | 0.1357 (0.0064) | 0.3618 (0.0242) | 0.1093 (0.0048)
CPV 90.51% 90.88% 90.51% 90.88%
p= 0.7502 (0.0456) | 0.2156 (0.0122) | 0.6054 (0.0376) | 0.1643 (0.0081)
CPV 93.79% 94.18% 93.79% 94.18%
p=4 | 1.1924 (0.0607) | 0.3276 (0.0184) | 0.9272 (0.0484) | 0.2476 (0.0130)
CPV 95.5% 95.86% 95.5% 95.86%
N =100
p= 0.3386 (0.019) | 0.0883 (0.0037) | 0.2850 (0.0161) | 0.0715 (0.0029)
CPV 90.09% 90.39% 90.09% 90.39%
p=23 | 0.5288 (0.0314) | 0.1263 (0.0058) | 0.4310 (0.0253) | 0.0962 (0.0036)
CPV 93.47% 93.74% 03.47% 93.74%
p= 0.9364 (0.0584) | 0.1850 (0.0111) | 0.4741 (0.0453) | 0.3200 (0.0076)
CPV 95.24% 95.45% 05.24% 95.45%
N = 200
p=2 |0.2217 (0.0103) | 0.0779 (0.0023) | 0.1845 (0.0089) | 0.0614 (0.0018)
CPV 90.49% 90.80% 00.49% 90.80%
p= 0.3814 (0.0235) | 0.0973 (0.0047) | 0.3119 (0.0195) | 0.0756 (0.0037)
CPV 93.69% 93.91% 93.69% 93.91%
p=4 |0.6339 (0.0374) | 0.1250 (0.0049) | 0.5034 (0.0298) | 0.0969 (0.0038)
CPV 95.36% 95.50% 95.36% 95.50%
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Table 7.10: Kernel estimation errors; Brownian motion innovations, Gaussian kernel

|¥||= 0.8, Naive bootstrap

MSE AD
-9 Y= -9 Y=
N =50
p= 0.3477 (0.0264) | 0.1336 (0.0048) | 0.2826 (0.0217) | 0.1058 (0.0035)
CPV 92.98% 92.61% 92.98% 92.61%
p= 0.6528 (0.0375) | 0.1872 (0.008) | 0.5175 (0.0291) | 0.1436 (0.0061)
CPV 95.52% 95.38% 95.52% 95.38%
p=4 | 1.1332 (0.0599) | 0.2960 (0.0166) | 0.8755 (0.0465) | 0.2242 (0.0118)
CPV 96.8% 96.78% 96.8% 96.78%
N =100
p= 0.2509 (0.0180) | 0.0851 (0.0031) | 0.2035 (0.0149) | 0.0666 (0.0023)
CPV 93.17% 92.95% 93.17% 92.95%
p=3 | 0.4628 (0.0238) | 0.1054 (0.0046) | 0.3699 (0.02) | 0.0811 (0.0036)
CPV 95.61% 95.49% 95.61% 95.49%
p= 0.8510 (0.0532) | 0.1464 (0.0063) | 0.6695 (0.0419) | 0.1116 (0.0046)
CPV 96.87% 96.8% 96.87% 96.8%
N =200
p=2 |0.1487 (0.0078) | 0.0654 (0.0019) | 0.1205 (0.0062) | 0.0513 (0.0016)
CPV 93.88% 93.87% 93.88% 93.87%
p= 0.3414 (0.0245) | 0.0670 (0.0033) | 0.2716 (0.0209) | 0.0526 (0.0027)
CPV 96.07% 96.06% 96.07% 96.06%
p=4 |0.6090 (0.0371) | 0.0954 (0.0047) | 0.4814 (0.0301) | 0.0754 (0.0036)
CPV 97.15% 97.15% 97.15% 97.15%
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Table 7.11: Kernel estimation errors; Brownian motion innovations, Identity kernel || ¥||=

0.5, Naive bootstrap

MSE AD
-9 Y= -9 Y=
N =50
p= 0.4503 (0.0307) | 0.1312 (0.0067) | 0.3768 (0.0259) | 0.1062 (0.0052)
CPV 90.73% 91.03% 90.73% 91.03%
p= 0.7647 (0.0463) | 0.2167 (0.0126) | 0.6184 (0.0384) | 0.1633 (0.0083)
CPV 93.97% 94.31% 93.97% 94.31%
p=4 | 1.2107 (0.0615) | 0.3319 (0.019) | 0.9405 (0.0497) | 0.2503 (0.0134)
CPV 95.61% 95.96% 95.61% 95.96%
N =100
p= 0.3489 (0.0203) | 0.0806 (0.0035) | 0.2959 (0.0173) | 0.0659 (0.0029)
CPV 90.34% 90.59% 00.34% 90.59%
p=3 | 0.5396 (0.0335) | 0.1263 (0.0062) | 0.4413 (0.0271) | 0.0963 (0.0040)
CPV 93.66% 93.90% 93.66% 93.90%
p= 0.9524 (0.0579) | 0.1927 (0.0126) | 0.7502 (0.0447) | 0.1440 (0.0085)
CPV 87.28% 87.90% 87.28% 87.90%
N =200
p=2 | 0.2304 (0.0115) | 0.0698 (0.0024) | 0.1939 (0.0101) | 0.0561 (0.0019)
CPV 90.73% 91.02% 90.73% 91.02%
p= 0.3885 (0.0235) | 0.0950 (0.0048) | 0.3180 (0.0194) | 0.0734 (0.0037)
CPV 93.89% 94.09% 93.89% 94.09%
p=4 | 0.6398 (0.0366) | 0.1280 (0.0051) | 0.5077 (0.0291) | 0.0986 (0.0038)
CPV 95.47% 95.62% 05.47% 95.62%

141




Table 7.12: Kernel estimation errors; Brownian motion innovations, Identity kernel || ¥||=

0.8, Naive bootstrap

MSE AD
-9 Y= -9 Y=
N =50
p= 0.3795 (0.0297) | 0.1364 (0.0055) | 0.3093 (0.0243) | 0.1089 (0.0038)
CPV 93.27% 92.89% 93.27% 92.89%
p= 0.6711 (0.0387) | 0.1873 (0.0077) | 0.5337 (0.0298) | 0.1429 (0.0055)
CPV 95.79% 95.60% 95.79% 95.60%
p=4 | 1.1523 (0.0619) | 0.3018 (0.0182) | 0.8882 (0.0480) | 0.2289 (0.013)
CPV 96.98% 96.93% 96.98% 96.93%
N =100
p= 0.2795 (0.0212) | 0.0868 (0.0033) | 0.2291 (0.0178) | 0.0688 (0.0025)
CPV 93.52% 93.33% 03.52% 93.33%
p=3 | 0.4758 (0.0250) | 0.1040 (0.0041) | 0.3818 (0.0209) | 0.0803 (0.0031)
CPV 95.90% 95.78% 95.90% 95.78%
p= 0.8701 (0.0527) | 0.1527 (0.0072) | 0.6818 (0.0414) | 0.1160 (0.0053)
CPV 97.06% 96.98% 97.06% 96.98%
N = 200
p=2 |0.1641 (0.0092) | 0.0689 (0.0022) | 0.1337 (0.0074) | 0.0545 (0.0017)
CPV 94.20% 94.24% 04.20% 94.24%
p= 0.3503 (0.0241) | 0.0677 (0.0034) | 0.2797 (0.0205) | 0.0529 (0.0027)
CPV 96.35% 96.34% 96.35% 96.34%
p=4 | 0.6145 (0.0366) | 0.0989 (0.0053) | 0.4849 (0.0297) | 0.0779 (0.0040)
CPV 97.34% 97.34% 97.34% 97.34%
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Table 7.13: Kernel estimation errors; Brownian motion innovations, Sloping kernel || ¥||=

0.5, Naive bootstrap

MSE AD
-9 Y= -9 Y=
N =50
p= 0.4342 (0.0238) | 0.0942 (0.0053) | 0.3445 (0.0204) | 0.0719 (0.0040)
CPV 91.67% 91.73% 91.67% 91.73%
p= 0.8201 (0.0554) | 0.1981 (0.0124) | 0.6413 (0.0471) | 0.1506 (0.0089)
CPV 94.46% 94.65% 04.46% 94.65%
p=4 | 1.3519 (0.0742) | 0.3598 (0.0289) | 1.0401 (0.0594) | 0.2715 (0.0211)
CPV 95.87% 96.15% 95.87% 96.15%
N =100
p= 0.3475 (0.0220) | 0.0529 (0.0028) | 0.2751 (0.0191) | 0.0408 (0.0023)
CPV 91.23% 91.24% 01.23% 91.24%
p=3 | 0.6202 (0.0502) | 0.0987 (0.0049) | 0.4925 (0.0411) | 0.0757 (0.0040)
CPV 83.12% 83.85% 83.12% 83.85%
p= 0.9982 (0.0597) | 0.1906 (0.0133) | 0.7747 (0.0469) | 0.1449 (0.0101)
CPV 95.59% 95.72% 95.59% 95.72%
N =200
p=2 | 0.2792 (0.0162) | 0.0292 (0.0017) | 0.2172 (0.0148) | 0.0225 (0.0014)
CPV 91.66% 91.68% 91.66% 91.68%
p= 0.4478 (0.0274) | 0.0624 (0.0041) | 0.3548 (0.0219) | 0.0491 (0.0034)
CPV 94.36% 94.41% 94.36% 94.41%
p=4 | 0.6975 (0.0363) | 0.1009 (0.0053) | 0.5438 (0.0276) | 0.0782 (0.0043)
CPV 95.72% 95.79% 95.72% 95.79%
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Table 7.14: Kernel estimation errors; Brownian motion innovations, Sloping kernel || ¥||=

0.8, Naive bootstrap

MSE AD
Y- V- Y- Y-
N =50
p= 0.4639 (0.0220) | 0.1025 (0.0049) | 0.3573 (0.0197) | 0.0783 (0.0038)
CPV 93.95% 93.61% 93.95% 93.61%
p= 0.8305 (0.0534) | 0.2001 (0.0110) | 0.6494 (0.0456) | 0.1520 (0.0080)
CPV 95.99% 95.87% 95.99% 95.87%
p=4 | 1.3655 (0.0773) | 0.3666 (0.0352) | 1.0532 (0.0615) | 0.2781 (0.026)
CPV 97.03% 97.04% 97.03% 97.04%
N =100
p= 0.3932 (0.0184) | 0.0571 (0.0027) | 0.2948 (0.0172) | 0.0435 (0.0021)
CPV 93.85% 93.64% 03.85% 93.64%
p=3 | 0.6383 (0.0487) | 0.1022 (0.0051) | 0.5029 (0.0404) | 0.0782 (0.0042)
CPV 95.89% 95.82% 05.89% 95.82%
p= 0.9910 (0.0586) | 0.1900 (0.0129) | 0.7726 (0.0468) | 0.1443 (0.0098)
CPV 96.92% 96.9% 96.92% 96.9%
N =200
p=2 |0.3481 (0.0139) | 0.0309 (0.0016) | 0.2560 (0.0138) | 0.0238 (0.0013)
CPV 94.41% 94.35% 04.41% 94.35%
p= 0.4834 (0.0253) | 0.0624 (0.0040) | 0.3773 (0.0206) | 0.0488 (0.0033)
CPV 96.22% 96.22% 96.22% 96.22%
p=4 | 0.7087 (0.0352) | 0.1011 (0.0053) | 0.5524 (0.0271) | 0.0780 (0.0043)
CPV 97.14% 97.15% 07.14% 97.15%
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