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Abstract

In this thesis we outline the Kerner’s 3-phase traffic flow theory, which states that
the flow of vehicular traffic occur in three phases i.e. free flow, synchronized flow
and wide moving jam phases. A macroscopic 3-phase traffic model of the Aw-
Rascle type is derived from the microscopic Speed Adaptation 3-phase traffic model
developed by Kerner and Klenov [J. Phys. A: Math. Gen., 89(2006), pp. 1775-
1809]. We derive the same macroscopic model from the kinetic traffic flow model of
Klar and Wegener [SIAM J. Appl. Math., 60(2000), pp. 1749-1766] as well as that
of Illner, Klar and Materne [Comm. Math. Sci., 1(2003), pp. 1-12]. In the above
stated derivations, the 3-phase traffic theory is constituted in the macroscopic model
through a relaxation term. This serves as an incentive to modify the relaxation term
of the ‘switching curve’ model of Greenberg, Klar and Rascle [STAM J. Appl. Math.,
63(2003), pp.818-833] to obtain another macroscopic 3-phase traffic model, which is
still of the Aw-Rascle type. By specifying the relaxation term differently we obtain
three kinds of models, namely the macroscopic Speed Adaptation, the Switching
Curve and the modified Switching Curve models. To demonstrate the capability of
the derived macroscopic traffic models to reproduce the features of 3-phase traffic
theory, we simulate a multilane road that has a bottleneck. We consider a stationary
and a moving bottleneck. The results of the simulations for the three models are
compared.






Zusammenfassung

Die vorliegende Arbeit befasst sich mit Kerners 3-Phasen Verkehrsmodellen, in de-
nen der Verkehrsfluss in drei Phasen betrachtet wird, free flow, synchronized flow
und wide moving jams. Zu Beginn wird ein makroskopisches 3-Phasen Modell vom
Aw-Rascle Typ aus dem mikroskopischen Speed Adaptation von Kerner und Klenov
entwickelt [J. Phys. A: Math. Gen., 39(2006), pp. 1775-1809]. Das selbe Modell
kann von den kinetischen Verkehrsmodellen von Klar und Wegener [Comm. Math.
Sci., 1(2003), pp. 1-12] sowie Illner, Klar und Materne abgeleitet werden [Comm.
Math. Sci., 1(2008), pp. 1-12]. In diesem neuen makroskopischen Modell wird
die 3-Phasen Verkehrstheorie als Relaxationsterm beriicksichtigt. Ein ahnliches
Verkehrmodell kann aus dem ’switching curve’ Modell von Greenberg, Klar und
Rascle [SIAM J. Appl. Math., 63(2003), pp.818-833] durch eine Anpassung des
Relaxationsterms hergeleitet werden. Des Weiteren wird ein drittes Modell, das
modified Switching Curve model, als Ubergang zwischen den beiden vorherigen kon-
struiert. Das Verhalten dieser drei Modelle wird anhand von mehreren numerischen
Beispielen untersucht. Alle drei Phasen des Verkehrsflusses konnen bei Fahrbahn-
verengungen beobachtet werden. Hierbei werden auch bewegliche Fahrbahnveren-
gungen betrachtet.






Contents

Acknowledgements

Abstract

Zusammenfassung

1

Introduction
1.1 Overview . . . . . o o e,
1.2 Structure of the Study . . . . . .. ... ... ... ...

The 3-Phase Traffic Flow Theory

2.1 3-Phase Traffic Theory Hypothesis . . . . . ... ... .. ... ...
2.1.1 Phase Transitions in Traffic Flows . . . . . . . ... ... ...
2.1.2  Space Gaps as an Impetus to Traffic Breakdown . . . . . . ..

2.2 Mathematical Models for 3-Phase Traffic Flow . . . . ... ... ...

Macroscopic 3-PTT Models Derivation

3.1 From the Microscopic Speed Adaptation Model . . . . . . .. .. ..
3.1.1  On the Relaxation Term R(u,7) . . . . . . . . ... ... ...

3.2  From the Kinetic Traffic Flow Models . . . . . . ... ... ... ...
3.2.1 Models based on Integro—Differential Equations . . . . . . ..
3.2.2  Evaluation of C*(f) using f =~ pd,(v) . . . . . . .. ... ...
3.2.3 Models based on Fokker-Planck Equations . . . . .. .. ...

3.3 From the Switching Curve Traffic Flow Model . . . . . .. ... ...

3.4 The Derived Macroscopic 3-PTT Model Features . . . ... ... ..
3.4.1 The Riemann Problem and its Solution . . . . . . .. ... ..

The Numerics

4.1 Outline of the Godunov Scheme . . . . . . . .. ... ... ... ...
4.1.1 Godunov Scheme and Contact Wave Resolution . . . . . . ..

4.2 A Hybrid Scheme for Contact Wave . . . . . . ... ... ... ... ..

4.3 Numerical Tests of the Hybrid Scheme . . . . . . . . ... ... ...

4.4 Simulation of 3-Phase Traffic Flow Features . . . .. . ... ... ..
4.4.1 'Traffic Breakdown at Road Bottlenecks . . . . . . . ... ...
4.4.2 Spatiotemporal Congested Traffic Patterns . . . . . . . . . ..

Vil

13
13
18
19
20
25
28
31
36
40



viil Contents

4.4.3 Simulation of Moving Bottlenecks . . . . . .. ... ... ... 63
Conclusion 71

Bibliography 73



1 Introduction

1.1 Overview

Congestion of vehicular traffic within urban areas is a problem experienced world-
wide. It has adverse effects on people quality of life due to delays, accidents and
environmental pollution. One way of eliminating the problem is to increase the
capacity of existing roadways by addition of lanes. However, this is greatly ham-
pered by lack of space, resources or due to environmental issues and sometimes
politics. This leaves the relevant authorities with one major option, that of enhanc-
ing the utilization of existing infrastructure by employing better traffic management
and operations strategies. For effective traffic management and control, proper un-
derstanding of traffic congestion is needed. To achieve the latter, spatiotemporal
behavior of empirical traffic congested patterns should be studied closely. This is
because traffic congestion is observed to take place in space and time in form of spa-
tiotemporal congested traffic patterns that propagate within roadways. Empirical
observation indicate that traffic congestion in a road network is a consequence of
traffic breakdown in initially free flowing traffic [1]. Traffic breakdown is the abrupt
decline of velocity from high values in free flow to lower values in congested traffic,
and normally happens at highway bottlenecks such as on-and off-ramps, lane-drops,
accidents etc.

Now that the origin of traffic congestion is known, it is essential to adequately
describe the situations which are the origin of congestion on road networks. This
calls for traffic flow theories and models whose objective is to describe in a precise
mathematical way the vehicle to vehicle interactions and interactions between ve-
hicles and infrastructure. One such theory is the 3-phase traffic theory since it was
developed to explain traffic breakdown and the resulting spatiotemporal features of
congested vehicular traffic, see [1]. As a remark, it was illustrated by Kerner in [1]
that earlier traffic flow theories fail to explain the real cause of traffic congestion
i.e. traffic breakdown, and many of the resulting spatiotemporal congested traffic
patterns. This failure is attributed to the fact that these traffic flow theories and
models are based on the fundamental diagram of traffic flow which states that there
exists a correspondence between a given value of traffic density and the flow rate
for all density values in the range [0, Pz, Where ppq, is the maximal density. An
account of various mathematical models based on the fundamental diagram of traf-
fic flow can be found in [39] among others. These models can be categorized as
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microscopic, macroscopic and mesoscopic traffic flow models. Microscopic models
entails the tracking of every vehicle to describe its behavior and interactions with
other vehicles in traffic stream. Macroscopic models describe traffic flow dynam-
ics in an aggregate manner using characteristics such as density, velocity and flow
rate. Mesoscopic model(kinetic models) describe traffic flow in less aggregate man-
ner than macroscopic models and in probabilistic terms. Microscopic traffic flow
models based on 3-phase traffic theory already exists, see [1, 3, 25, 26]. However,
there are hardly any macroscopic traffic flow models within the 3-phase traffic theory
framework. This brings us to the following objective of this study.

The main aim of this study is to develop a macroscopic traffic flow model that is
based on 3-phase traffic theory. To do this, we utilize a relaxation term to institute
the 3-phase traffic flow theory, emulating what was done in the microscopic 3-phase
traffic models developed in [3]. All the while we ensure that the macroscopic model
satisfies the anisotropic property of traffic flow, see [9], by using appropriate trans-
formations and approximations in the derivation of the macroscopic traffic models
from microscopic and kinetic traffic models. Another objective is to employ suitable
numerical methods to solve the macroscopic model equations so as to ensure the
model features are preserved while simulating traffic breakdown and the resulting
spatiotemporal congested traffic patterns.

Some parts of this thesis have been presented in [40] and [41].

1.2 Structure of the Study

In Chapter 2 we outline the Kerner’s 3-phase traffic flow theory [1] by stating the
three traffic phases that comprise this theory; namely free flow, synchronized flow
and wide moving jams. The factors prompting the first order transitions from one
phase to the other are also presented. Moreover, the significance of space gaps in
explaining 3-phase traffic theory is stated. The chapter is closed with an account
of microscopic mathematical models developed in [1, 3, 25, 26] for 3-phase traffic
flow and give a highlight of the attributes to failure of macroscopic traffic models in
explaining 3-phase traffic flow features. We also mention the claim made by Helbing
and co-workers [21, 28] in as far as spatiotemporal congested traffic patterns are
concerned.

The derivation of macroscopic 3-phase traffic flow models is devoted to Chapter
3. We begin by deriving the model from the microscopic Speed Adaptation 3-phase
traffic model [3], then from kinetic traffic flow models [6, 38] and lastly from the
macroscopic Switching Curve model [14] whilst constituting the 3-phase traffic the-
ory in the models through a relaxation term. The chapter is concluded by studying
the structural properties of the derived macroscopic models and with a presentation
of the solution to the Riemann problem set up using the conservative form of this
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Aw-Rascle type traffic model.

Chapter 4 presents the numerical solution to the derived macroscopic models.
In this chapter we outline the Godunov scheme and point out its inadequacy in
resolving contact discontinuity, which is a solution to the Riemann problem set up
using the above stated traffic model. What follows is an algorithm, proposed in [16],
that remedies the above stated deficiency of the Godunov scheme. This algorithm
involves the use of the Godunov scheme to approximate shocks and rarefaction waves
and applies a Glimm’s random sampling technique to resolve contact discontinuities
with infinite resolution. By simulations we demonstrate the capability of the derived
macroscopic traffic models to reproduce the features of 3-phase traffic theory such as
traffic breakdown and F' — S — J phase transitions. This is done for a stationary
and a moving bottleneck.






2 The 3-Phase Traffic Flow Theory

2.1 3-Phase Traffic Theory Hypothesis

The 3-phase traffic theory (3-PTT) is an alternative traffic flow theory introduced by
Kerner [1] to explain the empirical spatiotemporal features of vehicular traffic. The
use of the term spatiotemporal is justified by the fact that, in reality, traffic occurs
in space and time. According to Kerner, a traffic phase is a state of traffic viewed in
space and time and found to posses some unique empirical spatiotemporal features.
Usually traffic is considered to be in free flow state or in congested state. However
a closer examination of the congested traffic in space and time reveals that there
exists two different phases i.e. synchronized flow and wide moving jams. Hence the
3-PTT comprises of three traffic phases, namely: free flow (F), synchronized flow
(S) and wide moving jams (J).

As the name suggests, in free flow traffic phase the vehicles move freely with
negligible vehicle to vehicle interactions and therefore they have an opportunity to
move with their desired maximum speeds, unless restricted by the traffic regulations.
This occurs when the vehicle density in the traffic stream is small. The free flow
(F) phase reigns but as the density increases, leading to an increase in the flow
rate, a limit for this phase existence is reached since the vehicle interactions, that
can no longer be neglected, result in a decrease of the average vehicle speeds. This
limit point of free flow occurence denotes the maximum values to which the density
and flow rate can increase and at which the probability of a phase transition to a
congested traffic phase is equal to one [19].

To identify the difference between synchronized flow and wide moving jams, we
begin by defining the latter. A wide moving jam (J) is a localized congested traffic
feature with a high vehicle density and low velocity that propagates upstream in
traffic, which is normally flowing downstream. It is a localized structure in the
sense that it is spatially restricted by two jam fronts i.e. the downstream and the
upstream jam fronts such that within the downstream jam front vehicles accelerate
from the low velocity inside the jam to higher velocity in traffic flow downstream
of the jam; whereas within the upstream jam front, the vehicles decelerate to the
low velocity inside the jam. The two jam fronts move upstream and thus this gives
the wide moving jam its distinctive feature of propagating through any states of
free flow and synchronized flows and even through any bottleneck such as on/off-
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ramps while maintaining the mean velocity of the downstream jam front of between
negative 14-20 km/h [20].

Synchronized flow (S) is any congested traffic that does not exhibit the above
distinctive feature of wide moving jams. In particular the downstream jam front is
often fixed at the bottleneck. In the case that synchronized flow happens to move,
the mean velocity of the downstream front changes in a wide range during the
pattern propagation. Another notable feature of synchronized flow is the formation
of diverse spatiotemporal traffic patterns uptream of the bottleneck. This leads
to the following types of synchronized flow patterns (SP) [1]: localized SP (LSP),
widening SP (WSP) and moving SP (MSP). A LSP is whereby the downstream front
of the SP is fixed at the bottleneck and the upstream front propagates upstream
(but not continuously) in the course of time only to get localized at some distance
upstream of the bottleneck. The WSP is whereby the downstream front is fixed at
the bottleneck, just like the LSP, but the upstream front continuously propagate
upstream in the course of time. The WSP can also be termed as SP of higher
vehicle speed in the case that the bottleneck influence on the highway is relatively
low. An MSP can be realized when both upstream and downstream fronts of a
SP propagate upstream on the road for as long as it does not encounter another
bottleneck upstream where it is likely to induce traffic breakdown(see [1] for more
discussion). Basically, MSP and narrow moving jam are all the same thing if a
propagating narrow moving jam is sorrounded both upstream and downstream by
free flow.

2.1.1 Phase Transitions in Traffic Flows

The motivation of distinguishing congested traffic as synchronized flow (S) and wide
moving jams (J) is to have a proper understanding of the common spatiotemporal
features of congested traffic patterns, which are the origin of the hypotheses of
3-PTT, with the objective of deducing effective and reliable traffic control and man-
agement strategies. It has been observed that traffic congestion occurs mostly in the
vicinity of highway bottlenecks such as on/off-ramps, lane-drops, workzones, road
gradients, accidents e.t.c. Therefore, if on many different days traffic flow frequently
breaks down or congestion sets in at a certain highway bottleneck, then this bottle-
neck is termed as an effectual bottleneck[1]. The common spatiotemporal features
of congested traffic are affiliated with the behaviour of the downstream front of a
congested traffic pattern at an effectual bottleneck, at which onset of congestion is
likely to happen. A term used to describe the nature of traffic congestion emergence
at bottlenecks is traffic breakdown. Thus traffic breakdown is termed as the onset
of congestion in an initially free flow traffic whereby there is an abrupt decrease
in vehicles average velocity in free flow to a considerably lower velocity in con-
gested traffic. Upon the occurence of traffic breakdown, the ensuing spatiotemporal
congested pattern often has its downstream front fixed at the effectual bottleneck
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location. Therefore, traffic breakdown is associated with the F' — S phase transi-
tion. Other fundamental features of traffic breakdown are: at a bottleneck, it can
occur spontaneously or be induced by a spatiotemporal congested traffic pattern
propagating from another bottleneck situated downstream, secondly, this onset of
congestion and its dissolution is accompanied by a hysteresis effect, and thirdly,
traffic breakdown exhibits a probabilistic nature,see [1].

Having indicated how the F' — S phase transition comes about, we now look at
how wide moving jams emerge in synchronized flow i.e. S — J phase transition.
The advocacy of Kerner’s 3-PTT is that wide moving jams do not emerge sponta-
neously in free flow. Therefore they can only emerge spontaneously in synchronized
flow phase, as has been observed in real measured traffic data. It has been em-
pirically found out that this S — J transition is associated with a pinch effect in
synchronized flow [23, 24]. Pinch effect is the spontaneous emergence of a growing
narrow moving jam in synchronized flow whereby the average density increases and
average velocity decreases significantly, however, the average flow rate can be great.
The emergence of growing narrow moving jams in metastable synchronized flow can
be caused by unexpected braking of a vehicle in synchronized flow, lane changing
and merging of vehicles from other roads thus causing fluctuations in the traffic
flow variables. Usually S — J transition occurs upstream of the bottleneck location
and also upstream of the road location where the growing narrow moving jam has
initially appeared. The latter is because there is a time lapse for this moving narrow
jam to grow into a wide moving jam.

Nevertheless, Helbing and co-worker [21] seriously question 3-PTT validity basing
their arguments on empirical data from the German freeway A5 close to Frankfurt,
which is the same stretch of freeway from which most of the observations were
done that led to development of 3-PTT. They take issue with the classification
of congested traffic states as moving synchronized pattern and wide moving jams,
preferring not to distinguish between them and just refer to them as moving jams.
They also argue that the general pattern (which is as a result of wide moving jam
emergence in synchronized flow) is a congested traffic pattern not arising from an
isolated bottleneck but rather arises due to a combination of one or many on-ramps
with one or many off-ramps situated upstream of the on-ramp(s).

2.1.2 Space Gaps as an Impetus to Traffic Breakdown

Many traffic operations such as lane-changes, merging of vehicles at on-ramps, and
crossing at intersections depend on the availability of space gaps (i.e. the distance
between the front bumper and the rear bumper of two vehicles following one another)
in traffic flow. Sullivan and Troutbeck [22] showed that space gaps are crucial in
the analysis of non-signalised intersections and roundabouts. Moreover, the charac-
teristics of space gaps is quite relevant in the study of optimal traffic signal control.
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We remark that the distribution of space gaps has a significant effect on platoon
formation and delays. Actually, space gaps are a basic ingredient in the Acceleration
Time Delay model of three-phase traffic flow developed by Kerner and Klenov in [3].
As discussed in [1], the nature of traffic breakdown is explained by a competition of
two opposing tendencies i.e. the tendency towards synchronized flow due to vehicle
deceleration to adapt to the speed of the leading vehicle and the tendency towards
the initial free flow due to vehicle acceleration after relieving its constrainedness
through a lane-change manoeuvre to a faster lane. The tendency associated with
speed adaptation effect can be described using space gaps as follows: whenever a
vehicle approaches a slower preceding vehicle and cannot overtake, it decelerates to
adapt its speed to the speed of the preceding vehicle at any space gap within the
space gap range; see [1]:

hsare(u) < h < hg(u). (2.1)

without caring what is the precise space gap to the preceding vehicle i.e. at a given
steady speed in synchronized flow a driver makes an arbitrary choice of a space gap
from a multitude of space gaps within the range given above. hg(u) is known as the
synchronization gap and is given by;

hs(u) = ury; 7o =7 (1 —0.95 (V:x)2> . (2.2)

whereas hg,fe(u) is the safe gap and expressed in terms of the safe time gap as;

hsafe(“) = UTsqfe- (23>

where u is the average velocity, V4, is the maximum velocity and 7, 754 are con-
stants. The second tendency that causes traffic breakdown at bottlenecks i.e. the
one due to acceleration can be described using space gaps by considering vehicle mo-
tion on a multi-lane road occurring under the condition given by (2.1) and assuming
that later the vehicle can pass the slow moving preceding vehicle by performing a
lane-change manoeuvre to a faster lane and accelerating. Noting that at any given
density, the probability of changing lanes is greater in free flow than in synchronized
flow and that the steady states of synchronized flow cover a 2D-region in the flow-
density plane, we deduce that the probability of lane-changes should be modeled
in such a way that it exhibit a discontinuous character i.e. a drop in lane-change
probabilities when free flow transforms into synchronized flow.

Remark 2.1.1. A traffic state whereby (2.1) is satisfied is the so-called steady state
of synchronized flow that covers 2D-region in the flow-density plane, within the
framework of the three-phase traffic flow theory as shown in figure 2.1. The safe
gap determines the upper boundary of the 2D-region in the flow-density plane and
the synchronization gap determines the lower boundary of the 2D-region in the flow-
density plane such that for h < hg,re(u) the vehicle decelerates while for h > hg(u)
the vehicle accelerates.
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Figure 2.1: The fundamental hypothesis of 3-phase traffic theory. In (a), qualita-
tive representation of free flow (F), the 2D-region of synchronized flow
(S), and the line J associated with wide moving jams in the flow-density
plane. In (b), hg is the synchronization gap that determines the lower
boundary S; and hg, e is the safe gap that determines the upper bound-
ary S, in the flow-density plane (a).

2.2 Mathematical Models for 3-Phase Traffic Flow

Microscopic 3-phase traffic flow models that can reproduce empirical features of
traffic breakdown and the resulting spatiotemporal congested features, can be cate-
gorized as stochastic, deterministic and cellular automata models.

The Kerner-Klenov (K-K) stochastic 3-phase traffic model [25, 1] uses a variety
of driver behavioral characteristics which significantly impact on the spatiotemporal
congested traffic patterns that occur at bottlenecks. In [1] it is explained that the
onset of congestion is as a result of competition between the speed adaptation effect
and the over-acceleration effect that both act in an opposing manner. In the K-K
stochastic model, the speed adaptation effect is achieved via a random speed change
that is applied depending on whether the vehicle decelerates or accelerates. The
over-acceleration effect is achieved either through a random driver acceleration, a
lane change maneuvre to a faster lane or through a combination of both the lane
change processes and a random driver acceleration.

The cellular automata (CA) models within the framework of 3-PTT are developed
based on the Nagel-Schreckenberg ideas of traffic modeling. The major difference
between the 3-phase CA traffic model [26], i.e. KKW CA model, and the earlier CA
models, which are based on the fundamental diagram approach, is that the accelera-
tion behaviour in the former model is dependent on some synchronization distance.
In particular, the rule of changing velocity in this KKW CA model is given in such
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a way that there is neither a velocity-dependent distance, which individual drivers
would choose to drive at, nor is there a density-dependent (space gap-dependent)
optimal velocity that drivers would accelerate to. Prescribing the rule of velocity
change in the above stated manner, ensures that the model is able to reproduce the
2D region(in the flow-density plane) of steady states of 3-PTT. For the earlier CA
models, see [26], that are not within the framework of 3-PTT, the steady states lies
on a curve that is the fundamental diagram.

Remark 2.2.1. In the steady states of synchronized flow that cover a 2D region in
both the distance-velocity and flow-density planes, the velocity and distance/space-
gap are integers in KKW CA model [26] but not in the stochastic K-K model [25].
Howewver, the speed adaptation and the over-acceleration effects are simulated in the
same manner (i.e. stochastically) as in the K-K model.

Another CA model, with velocity adaptation in the 3-PTT framework, is proposed
in [27]. This model is developed in such a way that the vehicle dynamical rules are
randomly changed over time between the rules of the standard Nagel-Schreckenberg
CA model, so as to reproduce wide moving jams, and the rules of the KKW CA
model, so as to take into account the speed adaptation effect of the 3-PTT, that
enables the model to show synchronized flow. See [27] for other microscopic models
in the 3-PTT framework. An underlying feature of microscopic traffic flow models is
that if the velocity difference between the following vehicle velocity and the velocity
of the leading vehicle changes, then the follower vehicle accelerates (or decelerates)
with a time delay. In stochastic and cellular automata models in the context of 3-
PTT, the time delays in acceleration( or deceleration) are taken into account mainly
through the use of random model fluctuations, which is not so realistic.

Hence Kerner and Klenov in [3] went ahead to develop a deterministic micro-
scopic model still in the context of 3-PTT, namely the Acceleration Time Delay
(ATD) model, that explicitly describes the driver time delays in acceleration (or
deceleration). The development of this ATD model is based on empirical features
of traffic phase transitions and spatiotemporal congested patterns together with
some assumptions of vehicles behaviour presented therein. In the ATD model, the
speed adaptation effect is modeled deterministically through a driver acceleration
term whereby the driver adjusts the velocity to that of the leading vehicle within
a synchronization gap. The over-acceleration effect is also deterministically mod-
eled through a driver acceleration term whereby the driver adjusts the velocity to
a predetermined space gap-dependent optimal velocity in free flow. Moreover, the
emergence of moving jams in synchronized flow is simulated through the use some
specified driver time delays, see [3] for details. Therein, another deterministic micro-
scopic 3-PTT model is developed, that is the Speed Adaptation (SA) model whose
major difference with the ATD model lies in how the steady states are represented
on the flow-density plane. Just as in the hypothesis of 3-PTT, the steady states
in the ATD model cover a 2D region in the flow-density plane, whereas in the SA
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model, that is still in the context of 3-PTT, these steady states are averaged and so
they cover a 1D region in the flow-density plane and are therefore represented by a
curve on that plane.

Remark 2.2.2. As pointed out by the authors, one aim of this SA model, which is
a simplification of the ATD model, is to simulate the traffic phase transitions and
features of congested traffic in a simpler way. Another aim is to underscore the
notion that if the hypothesis of 3-phase traffic theory rather than the fundamental
diagram hypothesis is to form the basis of a mathematical model for traffic flow, then
that model can show and predict some (if not all) key empirical features of phase
transitions in traffic flow.

Based on the very recent discussion done by Kerner in the book [1] and on this
study author’s knowledge, macroscopic traffic models developed on the basis of the
3-PTT are virtually non-existent. This is because the existing macroscopic traffic
models, see Chapter 10 of [1], fail to explain traffic breakdown i.e. F' — S transition
and most of the empirical features of the resulting spatiotemporal congested pat-
terns of traffic flow. This failure is attributed to the fact that these models are in
the framework of the fundamental diagram and thus they cannot adequately show
the coexistence of free flow, synchronized flow and wide moving jams, whereby the
steady states of synchronized flow occupy a 2D region in the flow-density plane.
Another factor contributing to these models failure is the absence of the discontin-
uous character of over-acceleration i.e. the discontinuous character of lane-change
probability, as traffic transits from free low to synchronized flow, which as noted in
[1] is one crucial feature of 3-PTT.

Nevertheless, Helbing and co-workers in [28] show the capability of models de-
veloped within the framework of fundamental diagram to reproduce many of the
empirically observed spatiotemporal congested patterns. Therein, they use the gas-
kinetic-based traffic model [4, 37], that has five parameters characterizing the driver-
vehicle units. Using two different set of parameters, they show that the model is able
to reproduce the congested traffic patterns as shown in their version of the phase
diagram. This model, see [4, 37], considers the velocity variance via a velocity vari-
ance prefactor that reflects the statistical properties of measured traffic data. Also
it is non-local, in that the drivers look-ahead behavior is incorporated. However,
looking at the model structure it has a faster-than-traffic wave propagation speed
and this is not so desirable as pointed out by Daganzo in [9].






3 Derivation of Macroscopic 3-Phase
Traffic Flow Models

3.1 Derivation from the Microscopic Speed
Adaptation 3-Phase Traffic Model

The first motivation of this section is the discussion done by Kerner in [1] that
existing macroscopic models, which are in the framework of fundamental diagram,
fails to adequately reproduce traffic breakdown and the resulting spatial-temporal
congested patterns. The second motivation is the work in [2] where the Aw-Rascle
model was derived from a microscopic follow-the-leader model and rigorously showed
to be the hydrodynamic limit of the time discretization of the microscopic model
as the number of vehicles increase, whilst scaling of space and time. We derive a
macroscopic traffic flow model coherent with the 3-Phase Traffic Theory (3-PTT) by
considering the microscopic Speed Adaptation 3-phase traffic flow model developed
in [3], which can be classified as a General Motors (GM) type car-following model.
We review the GM type car-following model as follows: Let x;(t), v;(t); i =1, ..., N
be the location and velocity of vehicles at time ¢t € R*, and also suppose that the
distance headway between two successive vehicles is given by;

li = i1 — @
then we can write the microscopic model equations as follows, compare [2]:

dZL‘Z‘

_ 1
a -~ (38.1)
d’Ui C(’Uzurl - Ui) U(pl) — V;

P 2
dt L—H T (3:2)

where p; is the local “density around vehicle ¢” which together with its inverse 7; i.e.
the local “specific volume” are expressed in terms of the vehicle length H as follows;

H 1 l;
pi = T and T, = P EZ (3.3)

U(p;i) is a density-dependent optimal velocity. The constant C' > 0 and the relax-
ation time 7' are given parameters.

13
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Remark 3.1.1. Here the density is normalized and therefore dimensionless so that
1
=1

the maximal density is pjom = -
jam

The second term on the right of equation (3.2), referred to as the relaxation term,
describes the tendency of drivers to accelerate to the density-dependent optimal
velocity U(p;) while the first term on the right of equation (3.2) accounts for the
dependence of vehicle i acceleration at time ¢ on the relative velocities of this vehicle
7 and vehicle 7 + 1 ahead of it at a clearance [; — H from vehicle 7. Thus the name
car-following models. Using 7; we rewrite the microscopic model (3.1)-(3.2) as;

d$i —
a
do; _ Ol —w) , UG) (3.4)
such that
dl; dry Vi1 — v
E = Ul—i-l U; = E - H (35)

And defining a(p;) i.e. the speed adaptation coefficient as
1 -1
a(p)=C(r—1)"=C <; - 1) : (3.6)

We now introduce the microscopic Speed Adaptation model for 3-phase traffic flow
as below, compare [3]:

d.fEi

dt t

dv; a(ﬂz‘) %(Ufree(ﬂ') - "Ui), v; > UsynaTi > Tjam,

o = g A+ URNT) — ), v < Uy T > Tjam,
_%Uh T < Tjam‘

(3.7)
Remark 3.1.2. If we choose to use the distance headway l; instead of clearance
li = H in equation (3.2), then we can obtain the ‘pressure law’ p(p) = Viesln( L),

jam

that is considered in [16]. To achieve this, the speed adaptation term in (3.2) can be
written as;

@i(’Uz‘H - v,-) Bi(vig1 — v;)
lz‘ = HT,’

where now B; is the speed adaptation coefficient specified as below;
Bi = Bi(p) = piVres

with the reference velocity V,.y > 0 being a constant.
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A striking difference between the microscopic model of the GM type, equations
(3.1)-(3.2) and the above stated microscopic Speed Adaptation model for 3-phase
traffic flow, equation (3.7), is in how the relaxation term is prescribed.

Regarding the relaxation term, the model (3.1)-(3.2) is in the framework of the
fundamental diagram. From the 3-PTT hypothesis point of view, it means that
there is an averaging of the infinite number of steady states of synchronized flow
to one synchronized flow velocity for each density in the velocity—density plane.
The consequences are that the model will fail to show the very essential features of
synchronized flow and also the features of coexistence of free flow, synchronized flow
and wide moving jams. In the microscopic Speed Adaptation model (3.7), the 2D
region of steady states of synchronized flow is also replaced by a 1D region i.e. by a
curve S, given by U2¥"(1/p;), in the pu — p plane and in the associated 7 — u plane
as shown in figure 3.1. However, its relaxation term incorporates the F' — S — J
phase transitions of 3-PTT as follows:

e the traffic breakdown i.e. F — S transition is simulated by a discontinuity
between the free flow (F) and the synchronized flow (S) states such that the
point of discontinuity in the curve F, given by U/m¢(1/p;), in figure 3.1(a),
marks the limit point ((pu)/"¢, p/re¢) of free flow existence i.e. if p > p/r¢ an

max? Fmazx max

F — S transition will occur.

e the S — J transition is simulated by supposing that an instability of syn-
chronized flow states exists for densities, p > pﬁf‘”, the critical density for an
S — J transition to occur. For a comprehensive discussion of the microscopic
Speed Adaptation model and its variants, see [3].

-
""""

Jjam

Y
\J

Figure 3.1: Averaging of the 2D-region steady states of synchronized flow in the
microscopic Speed Adaptation model.

A macroscopic description of traffic low is obviously valid if we consider a large
number of vehicles on a sufficiently long stretch of road. Therefore in the limit that
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the number of vehicles goes to infinity we can obtain the Lagrangian form of the
macroscopic model equations. To this end, we introduce the Lagrangian “mass”
coordinates (X, T) whereby T' =t and

X = /x p(y,t)dy

that is not a mass, but rather describes the total length occupied by vehicles up to
point z since p, in this case, is dimensionless. Now approximating (v, — v;) /H by
Oxu yields from (3.5) and (3.7) the following Lagrangian form of the macroscopic
equations in terms of the following variables: u which is the macroscopic velocity,
the (normalized) density p that is now the dimensionless fraction of space occupied
by vehicles, and its inverse 7 = % i.e. the specific volume:

8T7' - 6Xu =0 38)
oru —a(l/T)0xu = R(u,T) (3.9)
where
%(Uf”e(T) —u), V> Upyn, T > Tjam,
R(u,7) = ¢ 2(UZ(1) —u), v <Ugyn,T > Tjam, - (3.10)
—%u, T < Tjam-
and

a(1/7) = a(p) = C (% - 1) o

To obtain the macroscopic equations in Eulerian coordinates, we change the La-
grangian “mass” coordinates (X, T) into Eulerian coordinates (x,t) with either

0. X=p, OX=—-pu T=t
or
1

8Xa::p* =T, 8Tx:u, axt:(), athl

Considering that x = x(X,T) and t = T we have, from (3.8)

ot ox ox ot
o (5r) + 0o (57) - 20 () - (o) = ©

Evaluating the derivatives in the brackets using the above stated relations we get;

OT +u0,T — 10, u = 0 (3.11)
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and since 7 = %, (3.11) becomes;

1 1 1
——0p — Zubpp — —0u = 0
P P P

which on multiplying through by —p? yields the continuity equation;
Oip + u0pp + po,u = 0. (3.12)

From (3.9) we write;

ot Ox ot Ox
Oyu (8_T) + O,u (8_T> —a(p) {&gu (0_X) — Ozu <(‘3—X)} = R(u,T)
and again using the above stated relations we get;

Dt + udyt — alp) (%) o = Rlu,r) (3.13)

Multiplying (3.13) through by p and introducing (3.12) into it, we get;
pOyu + pud,u + u [Oyp + O (pu)] — a(p)Oru = pR(u, T)
That is;
[pOru + udyp] + [2pudyu + u*0yp] — a(p)dyu = pR(u,T)

which together with (3.12) yields the following macroscopic Speed Adaptation 3-
phase traffic flow model equations of the Aw-Rascle type:

O+ Oalpu) = 0
Oi(pu) + 0x(pu®) — a(p)dpu = pR(u,T) (3.14)

Remark 3.1.3. From the type of the car-following model considered in Remark 3.1.2
one can obtain, by using the above procedures, the following macroscopic Aw-Rascle
type traffic model;

O(pu) + 0y (pu®) — pB(p)dyu = pR(u,T)

whereby B(p) = pVies. This is the model studied in [16] but without the relazation
term R(.).
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3.1.1 On the Relaxation Term R(u, )

The fundamental hypothesis of the 3-phase traffic theory (3-PTT) is constituted
in the microscopic Speed Adaptation model through the relaxation term on the
r.h.s. of (3.7). Consequently in the above derived macroscopic Speed Adaptation
model (3.14) the 3-PTT hypothesis is taken into account through R(u,7), that is
presented in (3.10). The 3-PTT hypothesis postulates that the hypothetical steady
states of synchronized flow cover a 2D region in the flow-density plane as shown
in figure 2.1. However, since the purpose for the development of the microscopic
Speed Adaptation model was to simulate the nature of phase transitions in 3-PTT
in a simple manner [3], the infinite number of steady states of synchronized flow are
averaged such that they now cover a 1D region in the flow-density plane as shown
in figure 3.1. In this figure, they are represented by the curve U¥" (1), where 7 = %
is viewed here as the space-gap; same as in [3]. The relaxation term (3.10) is such
that vehicles decelerate if 7 is less than 7j,,,. We define 74, as the maximum space
gap between vehicles within which the state of traffic can be said to be in the wide
moving jam phase. However, if 7 > 7., but the vehicles velocity u is less than
the parameter Us,,, that is the averaged speed within which the steady states of
synchronized flow emerges, then the drivers will tend to synchronize their velocities
i.e. conform their velocities, to the velocity given by the function U¥"(7). Hence
the state of traffic is said to be in the synchronized flow phase. Moreover, if 7 > T4,
but u > Us,, then the state of traffic is said to be in free flow phase whereby the
drivers accelerate from lower velocities to the optimal speed U/™¢(7).

The relaxation term R(u,7) can be expressed in an equivalent form R(u, p) with
the introduction of the mean parameters p’”" and p/T which are respectively: the
minimum density below which synchronized flow cannot occur and the limit density

for free flow existence. That is

1 e
with,
ui(p), P < Poins  Or u>us(p),u>ug(p), p < phice,
> Ugyn, poit < p < piree;
Ue(p’ u) _ ) or u syyn Pmin pfreepmax (316)
u2(p)7 u < Usynapmin < p < pmax?
or u<us(p), P < P < Phae, or p>phic

whereby in order to preserve the possibility of the description of very essential fea-
tures of synchronized flow found in empirical observations, see [1], we opt not to
replace the 2D region of steady states of the synchronized flow by a 1D region i.e.
by a curve in the flow-density plane. But rather to introduce two density-dependent
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optimal velocity curves u$(p) and u§(p);

u$(p) = Vitanh {M}

CoVo
Cu(l/p — hs)l

us(p) = Vitanh { =7

which are monotone decreasing and satisfy the following properties:

(i) us(p) = uilp), for p < poi,
(ii) u§(p) > Usyn > us(p), for ppi, < p < plics
(ii)) ui(p) = us(p), for plhies < p < pjoms US(Pjam) = uS(Pjam) = 0
Property (i) is due to the agreement that free flow states can be well represented
in the flow-density plane by a curve of positive slope. Thus for densities p < p¥"
vehicles will adjust their velocities u to the optimal velocity uf(p). Property (ii) is the
critical element of our hypothesis on how the relaxation term constitutes the 3-phase
traffic theory. We postulate that for traffic densities within the range [p”", pire],
vehicles will move at different velocities i.e. u will be multivalued. To this aim, we
presume that if vehicle velocities u < Usy,, then the drivers will prefer to adjust their
velocities to u$(p) since the possibilities of overtaking slower vehicles are very low.
But if u > U,y, the vehicles possibilities of overtaking slower vehicles are higher
and therefore there will be the tendency of the drivers to adjust their velocities u
to u$(p). Property (iii) indicates the situation where the densities are high enough
i.e. p > p/re such that free flow can no longer exist and so the congested state of
traffic dominates the flow. This is likely to happen at some location upstream of a
road bottleneck after congestion has already set in and the resulting spatialtemporal
patterns have propagated upstream. Thereby compeling vehicles velocities to tend
to us(p). We note that a continued increase of the density in this traffic state will
lead to a complete stop of traffic hence u{(pjam) = u3(pjam) = 0. The above traffic
dynamics are illustrated in figure 3.2 whereby the vehicles velocity preferences are
portrayed by the direction of the arrows and the length of these arrows denotes the
values of U¢(p,u) — u. The parameters used are presented in table 3.1.

3.2 Derivation from Kinetic Traffic Flow Models

Kinetic traffic flow models are based on a description of the traffic dynamics by
distribution functions of velocity of vehicles in traffic flow. Letting this distribution
function be denoted by f(z,v,t), it can be interpreted as: at time instant ¢ the
expected number of vehicles driving in a road segment [z, z + dz] with velocity in
range [v,v + dv] is equal to f(x,v,t)dzdv. We consider two kinds of kinetic models
for vehicular traffic flows, i.e. kinetic models based on integro-differential equations
and those based on the Fokker-Planck type of equations.
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Figure 3.2: U°(p, u) —u for the macroscopic Speed Adaptation model. Shown in (b),
is a zoom of the 2D region of (a).

3.2.1 Models based on Integro—Differential Equations

There are a number of ways of deriving macroscopic models from the underlying
integro-differential equations of kinetic models. It depends on how the pair distri-
bution is decomposed, for example by vehicular chaos assumption, and on the kind
of closure relation used to approximate the distribution function. Here we only focus
on the procedures used to develop the gas-kinetic-based macroscopic model [4, 5, 7]
and the Aw-Rascle type model [6]. In the kinetic models used to develop the above
stated macroscopic models, a significant role is played by the pair distribution func-
tion f(x,v,x+h,0,t) in describing the interaction rates between vehicles at location
x driving with velocity v and the leading vehicles at location x + h driving with ve-
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locity ©. h > 0 being the distance headway between the two considered locations
of vehicles. The explicit form of this pair distribution of interacting vehicles yields
different kinetic traffic flow models. Now, based on the conservation law, the equa-
tion governing the dynamics of distribution function f = f(x,v,t) can, in the case
of the model in [7], be given by;

8tf+8x(vf)+8v<UUT_ ”f) = (Of),, (3.17)

upon neglecting lane-change interaction rates; while in [6] it is given by;

Ouf +0u(vf) = CT(f) (3.18)

On the Lh.s. of (3.17), the third term describes the tendency of drivers to accelerate
to their desired velocities Uy with a relaxation time 7. The r.h.s. term of this
equation represents the braking interactions between vehicles, assuming that the
braking vehicles decelerate to the exact velocity of the vehicle ahead. It is expressed
as follows:

(Oif)ine. = xPplG(f) — L(f)],

where Pp denotes the probability of braking in the situation where a faster vehicle
upon encountering a slower vehicle, which it is unable to overtake by changing lanes
to a faster lane. y denotes the effective cross section that accounts for the increased
number of vehicle interactions in dense traffic due to vehicular space requirements.
And G(f) denotes the gain of f(x,v,t) due to braking of vehicles, while L(f) stands
for the loss of f(x,v,t) due to the braking of the vehicles. These functions are given
as; see [7]

G(f) :/ lv —0|f(x, 0,2 + h,v,t)d0
O>v

L(f) :/ |v — 0| f(x,v,z + h,v,t)do.
V>0

v

In (3.18), the r.h.s. term, that accounts for vehicular interactions due to both
acceleration and braking, is given below as in [6]

CT(f) = [GH(f) = LEN] + [GA(S) = LE()]

where the gain and loss terms G%(f), LL(f), X = A, B due to braking i.e. X = B,
and due to acceleration i.e. X = A are expressed as in [6] as follows;

e - [[ I P (i Joa(o.)

% f(z,9, 2 + hg, 0., t)dddi, (3.19)
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Here o5 (v, 0) accounts for the imperfect adaptation of the faster vehicle with velocity
¥ to the velocity v, of the slower vehicle ahead during interaction. It is expressed
as a probability distribution,

and indicates how the new velocity v is distributed.

0<B<1 (3.20)

LE(f) = / v — 04| Pg(v; ) f(z,v,2 + hp, 04, t)d0y (3.21)
V4 <v

Gz(f) = /] . |?A}—@+|O’A(U,@)f(l’,f}7l'—|—hA,’lA}+,t>d@dlA)+
v<v4
(3.22)

where 04(v,0) describes the probability with which the slower following vehicles
accelerate to a velocity v from v after interaction with a faster vehicle ahead, that
is moving with velocity v, > v. Here,

A X[@,mm(vmw,a@)](v)
o, ) min(Viaz, ad) — 0

1<a<+00 (3.23)

which indicates how the new velocity is distributed.
NG = [ o oulfoo ot hab o, (3.24)
V4 >v

To evaluate the above integrals, the pair distribution needs to be specified. In [7] it
is approximated by a general bivariate Gaussian distribution function as follows;

det
Pl v+ by, ) = pla, Dol + ) Vo
T

exp(—0.5¢(v, v)). (3.25)

¢(v,v) is a positive definite quadratic form that enables the developed model to
incorporate the possible correlations between velocities of interacting vehicles (see
[7] for its explicit form). det¢ is its determinant and p(.,t) is the macroscopic
traffic density. In [6] the pair distribution is approximated by a chaos assumption
i.e. in terms of the one-vehicle distribution function f(z,v,t) and a leading vehicle
distribution function q(h,v; f) as follows;

flz,v,z+ h,0,t) = q(h,v; f)f(x,v,t)F(z + h,0,t). (3.26)

F(z + h,0,t) denotes the probability distribution in v of vehicles at location = + h
ie. f(x+h,0,t) = p(x+h,t)F(x+h,0,t). The function q(h;v, f) is the distribution
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of leading vehicles at a distance h from the considered vehicle with velocity v and
assuming that the vehicle velocities are distributed according to f(x,v,t). It is
prescribed a priori and should have the following two properties:

/ (b, f)dh = 1.
0

and

( /0 " ha(hi v, £)dh) = (3.27)

pla,t)’
which implies that the average space gap of the vehicles is ﬁ.

In derivation of the macroscopic equations from the kinetic equation, the intrinsic
macroscopic variables of interest are defined as moments of the distribution function
f(x,v,t) as follows;

Vmaz
density : p=plzt)= / f(z,v,t)dv
0

Vmaz
average velocity : u=u(z,t) = (p(z,t))" / vf(x,v,t)dv
0

However, the obtained macroscopic equations are of an infinite hierarchy, in that the
macroscopic density equation(i.e. the continuity equation) depends on the average
velocity and the macroscopic equation for the average velocity in turn depends on
the velocity variance which is given by

0 = 0(z,1) = (p(, )" /0 "0 = w2 f (v, ) du

Since the macroscopic equations for density and velocity dynamics are sufficient to
describe the flow of traffic, the hierarchy of equations is closed by assuming that
the variance # is a function of the first two moments i.e. the density and average
velocity; and/or by associating the one-vehicle distribution function f(z,v,t) with
some probability distribution. In [7], the closure was done by approximating the
velocity variance, which is extensively used in the macroscopic version of the vehicle
interaction terms therein:

0 = a(p)u?

i.e. it is a proportion of the squared average velocity with the density-dependent
proportion given by the Fermi function. This closure relation together with the ap-
proximation of the pair distribution (3.25) yields the gas-kinetic-based traffic model.
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Following the criticism of Daganzo of second-order traffic flow models (i.e.Payne-
type models) in [9], Aw and Rascle in [8] revamped research of the second-order
traffic models by developing a traffic model that satisfies the principle that the
vehicle is an anisotropic particle that mostly responds to frontal stimuli.

Remark 3.2.1. The gas-kinetic-based traffic model is a Payne-type traffic model.
Nevertheless, Helbing and co-worker in [13] defends the model basing their argu-
ments on comparison of the Payne model with the Aw-Rascle model and with the
microscopic car-following models.

Motivated by the work of Aw and Rascle [8], Klar and Wegener [6] derived
the Aw-Rascle traffic model from the kinetic model (3.18) by using the relation
f(z,v,t) = pF(z,v,t), and an ansatz for the stationary equilibrium distribution
f¢(p,u,v) together with the approximation of the pair distribution given by (3.26).
In their derivation of the velocity equation, an additional term that is density-
dependent only and involves the velocity variance through the “traffic pressure”
emerges. The velocity variance in this case was approximated by;

~ ! / 0= (0)? £ (o, 0)dv = 5 ()

where p°(p) is the approximate “traffic pressure” and under the assumption that u is
not too far from its equilibrium value u®(p) i.e. u®(p) is substituted for u. However,
this additional term influence was numerically shown to be negligible. Thus the
resulting macroscopic model is an Aw-Rascle type traffic model.

In this study we derive a macroscopic 3-phase traffic low model from the ki-
netic equation (3.18) by approximating the distribution function using the simplest
possible one-node quadrature ansatz [10, 11],

f(z,v,t) = p(x,t)6(v — u(x,t)) (3.28)

where §(.) is the Dirac delta function in the sense of distributions. The limitation of
this simple approximation is the disregard of fluctuations in the distribution function
f(z,v,t), since (3.28) corresponds to the situation whereby all vehicles present at
location z and time instant ¢ move at the same average velocity u, see [12]. However,
this limitation is overcome by introducing the relaxation term, which in this study is
coherent with 3-phase traffic theory. The advantage of using (3.28) is that it readily
yields an Aw-Rascle type macroscopic traffic flow model as will be shown shortly.
Moreover, this closure relation approximates the “traffic pressure” by zero i.e.

Vinaz Vinaz
pe = / (U - u>2f(‘r7 v, t)d'U ~ / (U - U)25(U — U)d'l) =0
0 0
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3.2.2 Evaluation of C*(f) using f ~ pd,(v)

We use the method of moments to obtain macroscopic equations from kinetic equa-
tions by multiplying the inhomogeneous equation (3.18) by v*, k = 0,1 and then
integrating with respect to v in the range [0, Vy,az] i-€.

Vimas Vinax
8t/ ¥ f(z,v,t)dv + 835/ V" f (v, ) dv
0 0

Vimaz
— /0 V*CT(f)(z, v, t)dv (3.29)

Remark 3.2.2. For the chosen closure relation (3.28), the distribution function
f(z,v,t) for one-dimensional flows is fully determined by its first two moments
(M, k=0,1) according to the relations;

Vmaw ‘/"YLU/QC
M, = / oF f (2,0, t)dv = p/ V"6 (v — u)dv = pu®
0 0

The zeroth moment ,k = 0, gives the density p while the first moment,k = 1, yields
the flow rate pu.

Whilst dropping ¢, for convenience in writing of the variables, we evaluate the
r.h.s. of (3.29) using expressions (3.19)-(3.24) as follows;

Gain from Braking Interaction;

Vmaz Vmu.z
/ FGE(f)dv = / P // |0 — 04| Pp(0; p,u)op(v, D)
0 0 >0

< f(z,0, %+ hg, i, )dddi,dv

Vmal
:/ oF // |0 — 04| Pp(0; p,u)op(v,0)
0 o>y
xq(hp,0; ) f(z,0)F(z + hp, 04 )dodi dv

setting f(z,v) = pF(z,v), as done in [6], implies that F'(z,v) = d,(v) from relation
(3.28). Thus;

Vmaz Vmaz
/ FGE(f)dv ~ / oF // |0 — 04| Pp(0; p,u)op(v,0)q(hp, 0; p)
0 0 o>y

X p6u ()8, (04 )dbdd, dv
(3.30)
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Loss from Braking Interaction;

Vmaz Vma.’l)
[ e = [T [ e patp
0 0 U4 <v

X  f(z,v,x+ hp,04,t)doydv
Vmafl‘
= [T [ o elPatesp wath, v )
0 U4 <v
x f(x,v)f(x 4+ hp,04,t)d0sdv
‘/TYLax
~ / vk/ [v — 04 |Pg(v; p, u)q(hp,v; p)
0 U4 <v
X p0y(0)0y, (04)d0ydv (3.31)

As a consequence of the Dirac delta function the above gain and loss terms due to
braking interactions reduces to;

Q

plu — ui|Pp(p, u)q(hp; p)

Vm(l.’r
X [/ vkaB(v,u)dv — uk}
0

= plu—uy|Pg(p,u)q(hp;p)

y |: 1 /Vmaz k ( )d k;:|
_— VX180l (V)dV — u
u(l=5) Jo 7P

= plu—uy|Pp(p,u)q(hp;p)

[u(11—5) /Z vPdy — uk] (3.32)

with uy = u(z+hp) which allows us to consider the fact that vehicular interactions
are forwardly directed. Noting that braking occurs when v > u, and that;

|u_u | _ —(u+—u), U > Uy, (3 33)
- (uy —u), u<ug.

Vimaz
| s - i) do

we obtain the following from (3.32),

/ T ) — L] do ~ P 2ot Jthoit)
0 u

Wb = (Bu)kH! i
% [ k+1 — }

which vanishes for £ = 0 but for £ = 1 we obtain,

Vimaz
/0 F G5 —Lh(N] dv ~ —plus — u)Pa(p.uw)a(hs: p)

[U(12— B)

] y U > Ut (3.34)
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Gain from Acceleration Interaction;

Vm(lzw VVVLGI
/ G (f)dv = / o® // |0 —04]oa(v,0)
0 b<iy

X f(z,0,2 4+ ha,04)d0dosdo

— /sz //KU+ |0 — by |oa(v,9)q(ha, ; f)

X f(x,0)F(x + ha, 04)dodosdv

Vmaz
~ / // 16— oy loav, 0)g(ha, 5 p)
v<v+

X p0y ()0, (04 )dddydv (3.35)

Loss from Acceleration Interaction;

Vmaz Vmaz
/ L (f)dv = / vk/ |v — 04| f(z,v,2 + ha, vy, t)dOsdv
0 V4 >v

Vmaac
— / / v — o g(ha, v: ) ()
v+>v

(x + ha, 04, t)d0sdo

‘/NLG,‘L
/0 [ o gl s 9 (0)0, (020
V4>V

(3.36)

X

%

As a consequence of the Dirac delta function the above gain and loss terms due to
acceleration interactions reduces to;

Vimaz Vinaz
[ s - sl de = u— et | [ Foaw o -]

= plu—uilg(ha;p)

% 1 /Vmaz k ~( )d ok
i), V" X, (V) dv — u

1 U
= plu—uy|q(hasp) [~ / vkdv—uk]
u—u J,

(3.37)

with @ = min(Vye, au). Noting that acceleration occurs when u < u, and using
(3.33) we obtain,

ak—&-l o uk;—H

Vimaa
/0 ot [G—‘A;(f) o Lj(f)] dv =~ p(ut —u)q(ha; p) [MM — uk]

which vanishes for £ = 0 but for £ = 1 with & = au we obtain,

au —u

Vinaz
[ e - L) do = plas — wathaio) |

:|, U< Uy

(3.38)
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Using Taylor approximation u(x + h) — u(z) ~ ho,u on (3.34) and (3.38) we get;

s
Vinaz phePs(p,u)q(hp;p) uOzu, Oyu <0,

/ VPO (f)dv ~ o1 2 . (3.39)
0 phaq(ha;p) udu, Oy,u >0

We can assume that the leading vehicles are distributed in such a way that;

balla ) = haa(hasp) = S (3.40)

where b(p) is some increasing function of density p, whose exact form will be de-
duced in a little while. Thus we obtain the following Aw-Rascle type macroscopic
equations;

Ou(pu) + 0. (pu?) — a(p,u)Ou = 0 (3.41)

where a(p, u) is deduced from (3.39) and written as;

db(p)

P SOB(p? U), aﬂcu < 07

pd—pgoA(u), Oyu >0

with suitable functions p4(u), @p(p,u). We can make further simplifications by
approximating p4(u), ¢p(p,u) by a constant C' to obtain the coefficient,

alp) = Cp—L 42
From (3.6) we find that b(p) takes the fOl“m;

b(p) = —In [l = p] (3.43)

3.2.3 Models based on Fokker-Planck Equations

We consider the following Fokker-Planck type traffic flow model, i.e. the kinetic
traffic flow model developed in [38], but neglecting the diffusion term and the lane-
changing rates:

Of+0:(vf)+ 0, (B[f]f) = 0. (3.44)
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Here B |[f] describes vehicle braking/acceleration behaviour in response to traffic
situations and can be expressed as in [38]:

—eppP Po(u®, v)fo — uPlt, v > uP,
B(f](z,v,t) = 1§ calpmes —p)ut =07, v <uP v <ot
0, otherwise

with p* = p(x + hx,t), v = u(x + hyx,t), for X = A, B. Pg(u®?,v) represents the
probability of braking. 7 = 1,2 and cy4, cg are dimensionless constants for n = 2.
In the case that 7 = 1, we suppose that cpp® Pz = Cq(hg; p) and cA(pmez — p*) =
Cq(ha; p), where q(ha; p),q(hpg; p) are defined as before and with C' as a constant.
Hence for 7 = 1 we can write the braking/acceleration term as follows:

_CQB’U_UBL U>uBa
Bf](z,v,t) = < Cqalu* —v|, v<uP v<ut, (3.45)
0, otherwise
Now to obtain a macroscopic model from the kinetic model (3.44) with B [f] given
as in (3.45), we use the one-node quadrature ansatz (3.28) to approximate the distri-

bution function f = f(x,v,t) in evaluating the integrals in the following expression;
for k=0, 1.

Vimaz Vimaz Vimaz
O / v fdv + 0, / oM fdu + / v*0, (B[f] f)dv =0
0 0 0
(3.46)

Evaluation of the third term in the Lh.s. of (3.46) can be done by integration by
parts as follows:

Vimaz Vimaz
/0 0, BIf) fydv = [*Bf] £ - / k1B (] fdo.
(3.47)

Noting that the velocity distribution function is such that f(0) = f(Vijez) = 0, the
Lh.s. of (3.47) vanishes for k£ = 0. But for k = 1 we can write;

Vimaz uB Vimaz
/0 00, (BIf) f)dv = — / BIf) fdv - / BIffdv.  (3.48)

B
Considering the ansatz f =~ §,(v), if the average velocity u < u? the second term
on r.h.s. of (3.48) vanishes but the first term becomes:

B

—/ B[f] fdv =~ —Cpgalu® —u| , v<u® v<u?
0
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Else if u > u® the first term on r.h.s. of (3.48) vanishes but the second term becomes:

Vmax
[ Bl St Conslu— L v

B

Altogether, we obtain;

Voo Cpgplu —u®B|, u>uP,
/ 00, (B[f] f)dv = ¢ —Cpgalu? —u|, u<uB, u<u?, (3.49)
0 0, otherwise

Using the following definitions;

B
u—u-| =
| | —u), u<ub.

{—(uB —u), u>uP,

ut =l =

{(UA—U), u? >,

—(ut —u), vt <u.

and the approximation u® —u ~ hx0,u for X = A, B, expressions (3.48) and (3.49)
yields;

Vmaz J— .
/ vy (BIf] fldv ~ gquhBax“’ Oru<0 55
0 —Cpqaha0,u;  Oyu >0

Choosing haqa and hpgp as in (3.40) we obtain the coefficient (3.42), i.e.

p

Therefore, from (3.46) we obtain the Aw-Rascle type macroscopic equations (3.41)
with the coefficient a now given as in (3.51). Introducing the relaxation term R(u, p)
i.e. equation (3.15) to the r.h.s. of equation (3.41) while using coefficient (3.51),
that is coefficient (3.42), we obtain the following macroscopic 3-phase traffic flow
model from the considered kinetic traffic models:

Op+ 0:(pu) = 0
O (pu) + 0p(pu?) — a(p)dpu = pR(u, p) (3.52)

Remark 3.2.3. If we set haga = hgqs = p in both (3.39) and (3.50) and also
let C = V,z, then the coefficient a(p) in (3.42) and (3.51) becomes a(p) = Viepp®.
Thus the l.h.s. of (3.52) becomes the model studied in [16], which has the ‘pressure
faw’ p(p) = Viegln( L)
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In this section we have shown the derivation of macroscopic model equations from
the kinetic equations. And as shown in [40], one obtains macroscopic equations re-
gardless of whether one uses a kinetic model based on an integro-differential equation
or the Fokker-Planck type equation. In model (3.52) we simply use the relaxation
term (3.15) that is deduced from the microscopic Speed Adaptation model (3.7).
This kind of relaxation term, unlike the classical ones, yields a multi-valued fun-
damental diagram. It is shown in [41] that the multi-valued fundamental diagram
can be obtained from a kinetic model. This is made possible by use of the braking
probability in the relaxation term of the kinetic model. In section 3.3 we determine,
explicitly in terms of p and u, the macroscopic equivalence of the relaxation term in
the kinetic model [41] by applying linear interpolation in the relaxation term of the
Switching Curve traffic flow model presented in [14].

3.3 Derivation from the Switching Curve Traffic Flow
Model

In the Switching Curve traffic flow model presented in [14], two equilibrium velocity
curves Uy(p), Ua(p) are proposed. This follows from the fact that, for traffic flow
on multilane freeways, one often observes distinct stable equilibrium relationships
between traffic velocity and density. The two curves are monotone decreasing and
are such that Us(p) < Ur(p), 0 < p < prmaz With Ui (pmaz) = U2(Pmaez) = 0 as shown
in figure 3.3(a). These characterize two modes in which the state of traffic occur

“A pA

pnm.\‘

Figure 3.3: Shown in (a), are the two equilibrium velocity curves U;(p) and Us(p),
while (b) shows the switching curve S(u).

i.e. the upper curve U;(p) characterize the fast mode, where the traffic is less dense
and thus enabling easy lane change and overtaking maneuvres; and the lower curve
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Us(p) characterize the slower mode, where traffic is more dense and thus yielding
a significant decline in lane change and overtaking maneuvres. The characteristic
feature of this model is the existence of a switch curve, p = S(u) for u > 0, that is
a monotone non-decreasing function satisfying the following: see figure 3.3(b).

S(u) = py, 0<u< Uspy), and S(u) = p1, u>U(p) (3.53)

whereby 0 < p2 < p1 < pPmaz With Us(pe) < Ui(p1). The governing equations of the
Switching Curve model can be given as; see [14].

Op~+ 0x(pu) = 0

u(pu) + 0x(pu®) + pUi(p) O = pR(u, p) (3.54)
with
W - JTUile) =), p < Su),
R(u, p) {%(UQ([)) W) 53 S, (3.55)

and U{(p) = 0, (Ui(p)) < 0. Here we simply let Ui(p) = —@. The switching
mechanism postulated in (3.55) is as follows: if the current traffic state, (p,u), lies
below p = S(u), drivers preferences will tend towards the fast equilibrium curve
u = Uy(p), whereas if the traffic state lies above p = S(u) , the drivers preferences
now will tend towards the slow equilibrium curve u = Uy(p).

Now setting p; = p/® and py, = p” we can write the equivalent of R(p,u) in
(3.55) as;
1 €
with,

syn

Ue(po) = 4 410D P < Py or > Bp) o < p < Phias:
’ 5(p), u < R(p), pois, < p < phice, or p>plre

max?

(3.57)

u max

where now the switching curve is R(p); viewing the traffic dynamics from the per-
spective of density. The optimal velocity curves u§(p) and u$(p) are the same
monotone decreasing functions of density as defined in section 3.1, but satisfying
a different property (ii), which is now given by;

syn free

ui(p) > R(p) > u5(p),  Prin < P < Pinas
whereby

ws(pn) = R(O). wi(pfiee) = R(pfi)

pmin pmin Pmaz Pmaz
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Figure 3.4: U¢(p, u) — u for the Switching Curve model. Shown in (b), is a zoom of
the 2D region of (a).

as shown in figure 3.4. The explanations given in section 3.1 for the properties (i)
and (iii) also holds for this kind of relaxation term; only that in the explanation
given under property (ii), we replace the constant line Uy, with the curve R(p),
that is an increasing function of density for p € [p ¥ p/re]. In figure 3.4 just as
in figure 3.2 the vehicles velocity preferences are depicted together with the values
of U¢(p,u) — u. Notice that inside the density range [p"  p/7¢] and also within
the confines of the optimal curves u$(p) and uS(p), the arrows close to the curve
R(p) (in figure 3.4) and line U,,, (in figure 3.2) have more length than those further
away as we tend to the optimal curves. This is not the case in the following modified
Switching Curve model, see figure 3.6. The parameters used to generate these figures

are given in table 3.1.
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Note that the model equations (3.52) yields a 3-phase traffic flow model because
the 3-phase traffic theory(3-PTT) hypothesis has been constituted in the model
through the relaxation term (3.15). However, in the Switching Curve model (3.54),
the manner in which the relaxation term is specified, see (3.56), does not actually
yield a 3-phase traffic flow model. Indeed, simulations of (3.52) with the relaxation
term (3.56) (presented in Chapter 4) reveals that moving jams emerge spontaneously
at the onset of congestion at a road bottleneck, which is contrary to 3-PTT which
advocates that traffic congestion is a sequence of first order F' — S — J transitions.
Nevertheless, we can modify the relaxation term (3.56) to obtain a 3-phase traffic
flow model by linear interpolation as follows: From the plot of U¢(p, u) — u in figure
34 at p = p = 0.4 we deduce the diagram shown in figure 3.5. There we do the

Figure 3.5: Modification of Switching Curve model by linear interpolation.

linear interpolation by introducing parameters kq,ks as below;

ki = ui(p) + a(R(p) — ui(p))
ky = uy(p) +a(R(p) —u3(p)) 5 O<a<l

Since the slope of the lines upon which segments lyu{ and u§ls lie is —1, we have

0—104

-1= o ki<uy, ;>0
U?—kl ) 1 Uy, 1
lb—0

—-1= i ke >, 1o <0
k2_u§ ) 2 Ug, 2

which yields [y = u{ — k; and Iy = u§ — ky. Next we determine the slope of line
segment [1ls that cuts through R at fixed density p as;

5 — ll—lg :(Ui—kl)—(ug—]{Q)
kl—kz kl_k2

This will certainly be the slope of any line segment 1l cutting through R(p) for

a fixed density p chosen from the range [p;¥h, pl¢]. Since we know that all these



3.3. From the Switching Curve Traffic Flow Model 35

lines should cut through R(p) at which U¢(p, u) —u = 0 we make use of the straight-
line equation in its “slope-intercept” form to obtain the intercept c of lines [/5 that
passes through point (R(p),0) as follows;

0=sR(p)+c = c=—sR(p)

Therefore the linear interpolation between surfaces u§(p) — u and u$(p) — u for
p € [pis, piree] is described by the equation;

Pmins Pmazx

up) =su—R(p) ; peE [ph, plrec] (3.58)

The above procedure yields the following relaxation term that is capable of repro-
ducing the traffic breakdown phenomenon of 3-PTT.

1 e
with,
us(p), p<pui, or u>us(p),u>u§(p),p < plec,
Us(p,u) = S us(p) +u, us(p) <u<u§(p),pi, < p<plrec,
us(p), u < u§(p), pyln < p<plree, or p>plre

Hence from the Switching Curve traffic model (3.54) with (3.56) we obtain a macro-
scopic 3-phase traffic flow model i.e. the modified Switching Curve model given by
(3.52) but with the relaxation term defined as in (3.59). In this relaxation term,
we still consider the same optimal velocity curves but which are hereby required to
satisfy only the previously defined properties (i) and (iii). Now due to the linear
interpolation done to modify the Switching Curve model in order to obtain a 3-phase
traffic flow model, property (ii) is altered to;

SYyn free

UT([)) > (u*(p) + U) > u;(p>7 Pmin < P < Pmazx
with

us(ptn) = R(pVL),  uS(plree) = R(plree)

and whereby u,(p) + u is another solution in addition to the equilibrium solutions
u$(p) and u$(p), of the equation;

u=Up,u) (3.60)

for a given p within the range [p;*"  plrec]. That is the equation has 3 different so-

lutions which are consistent with the 3-PT'T hypothesis, which says that the steady
states of synchronized flow should cover a 2D region in the flow-density plane and
consequently in the velocity-density plane. This 2D region is the place where the
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multivalued solutions to (3.60) are located. From another perspective, while consid-
ering (3.60), we write that the value of U®(p, u) —u should vanish at the solutions of
(3.60), i.e. the arrows diminish at the solutions, as shown in figure 3.6. Notice the
third solution wu,(p) + u is located along the curve R(p) for some p € [p¥"  plree].
Now if (3.60) had a unique solution in the density range [p;*", pire¢] just like it
normally does for any p < p’¥" (see figure 3.6) then we would obtain a well defined
relation for equilibrium velocity and density, then the usual fundamental diagram
would result. That is to mean, the 2D region of synchronized flow would vanish and
in place we would have a 1D region i.e. a curve on the velocity-density plane and

also on the flow-density plane.

Table 3.1: Relaxation term parameters (dimensionless).

Cu 0.45 || V, | 0.85
plree | 0.5 || hy | 0.05
et 1 0.3 | o | 2.9
Pjam | 0.95 || Vi | 0.5
Usyn | 028 | hy | 1.1
« 0.7 || ¢s | 2.9

3.4 Features of the Derived Macroscopic 3-Phase
Traffic Flow Model

The macroscopic traffic flow models derived in the previous sections i.e. the macro-
scopic Speed Adaptation model (3.14), (3.15) in section 3.1, the Switching Curve
model equations (3.54), (3.56) with Uj(p) = —@ in section 3.3 and the modified
Switching Curve model (3.52), (3.59), only differ in how the relaxation term is pre-
scribed. Otherwise, the L.h.s. of the system of partial differential equations is the
same and it is sufficient in showing the main features as far as the models solutions
are concerned. Therefore, in this section we discuss the features of the Aw-Rascle
type system;

Op+ 0z(pu) = 0 (3.61)

Depending on how we recast equation (3.62), we can rewrite the above system in
two forms. That is;

Non conservative form: This is in terms of the primitive variables p and u.

Op+ 0z(pu) = 0 (3.63)
O + (u — @)amu =0 (3.64)
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Figure 3.6: U¢(p, u) — u for the modified Switching Curve model. Shown in (b), is a
zoom of the 2D region of (a).

whereby equation (3.64) describes the change of velocity u in space and time. It is
obtained by use of the mass conservation equation (3.63) in the flow rate equation
(3.64) as

PO+ uyp + udyp + pOru+(pu — a(p))dpu = 0 (3.65)
=0

and upon dividing through by p. For clarity, we use the following expression;

a(p) _ C
y A pp!(p) (3.66)

where the prime denotes differentiation with respect to p.
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Conservative form: Multiplying equation (3.61) by p/(p) we have;
P(p)(Oep + ubep + pOru) =0 = pp/(p)Osu = —p/(p)(Osp + udup)
which enables (3.64) to be rewritten as;
Oy + u0yu + pl(p)(Op + udyp) = 0
or,
O(u+p(p)) +ude(u+p(p)) = 0 (3.67)

Now multiplying equation (3.61) by the term, u+ p(p), and equation (3.67) by p we
add the resulting equations to get;

(u+p(p))0p + (u+p(p))0s(pu) + pd(u + p(p)) + pudy(u +p(p)) =0

which can be rearranged and then combined with (3.61) to yield the following con-
servative form of the considered system;

O lp(u + p(p))] + Ozlpu(u+p(p))] = 0 (3.69)
where the conservative variables are p and
y = pu+ pp(p)) (3.70)

However, unlike in gas dynamics where the second equation of a system in conserved
form would have a natural interpretation as the conservation of momentum, (3.69)
is not derived from any conservation principle because conservation of momentum
does not have a direct physical interpretation in traffic flow. Hence there is no direct
physical interpretation of the conservative variable y. It is somewhat heuristic. Note
that the system (3.61)-(3.62) and (3.63)-(3.64) are identical for smooth solutions.
Therefore, we use the system (3.63)-(3.64) to show the hyperbolic features of the
derived macroscopic traffic model by expressing it in a vector form using a vector
V = (p,u)” of primitive variables:

oV +AV)O,V = 0 (3.71)
where,
u P
A(V) = (3.72)
0 u—pplp)

Now, the properties of the system are largely dictated by the eigenvalues of the
Jacobian matrix A(V'), that are determined by the characteristic polynomial,

det(A— ) =0
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These eigenvalues are the characteristic speeds that govern the propagation of infor-
mation in the traffic stream. Therefore system (3.63)-(3.64) and consequently the
macroscopic traffic low models are strictly hyperbolic, because calculation of the
eigenvalues of A(V) yields the following;

MV)=u—pplp) <u,  X(V)=u ; p#0

with the largest eigenvalue equal to the traffic flow velocity u. This means that no
traffic information travels faster than the traffic and so the anisotropic character of
vehicular traffic flow is preserved. In the ensuing we will refer to waves associated
with A\; as 1-waves and to those associated with A, as 2-waves. In order to determine
these waves we determine the right eigenvectors R(") = (ry), réi)) of the matrix A(V)
corresponding to the eigenvalues \; from,

AR® = \,RY ;i =1,2 (3.73)
On solving (3.73) for each eigenvalue we readily obtain,

1 1
RY(V) = LRV =
—p/(p) 0

Letting V be the gradient with respect to V = (p,u)? we determine the kind of
waves associated to each eigenvalue \;, 7 = 1, 2, by checking whether the dot product
VAi(V) - R9(V) vanishes or not. Precisely, for A, (V) = u — pp/(p) we have;

I\ 1
: = —0,(pp/(p)) —p(p) # 0
duha —p/(p)

implying that 1% characterisitc field is genuinely nonlinear. For A\o(V) = u we have;

9,\ 1
: =0
d.2) \0O

that is the 2"? characterisitc field is linearly degenerate. As a result of the above, the
1-waves will be either a rarefaction or shock wave and the 2-waves will be contact
discontinuities. Note that a shock is a jump discontinuity associated with the 1%
characteristic and a contact discontinuity is also a jump discontinuity associated with
the 2"¢ characteristic . The 1-and 2-waves aid in solving the Riemann problem. The
jump discontinuities have to be regarded in the conservative form (3.68)-(3.69). We
now discuss the construction of solutions to the Riemann problem.
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3.4.1 The Riemann Problem and its Solution

Using the conservative form (3.68)-(3.69) of the Aw-Rascle type traffic model we set
up the Riemann problem with piecewise constant initial data as follows;

U+ 0, F(U)=0
U(z,0) = UL z:f x <0 (3.74)
Ur if >0

where U = (p,y)" , F(U) = (pu,yu)” and UL (Ug) is the piecewise constant traffic
state on the left(right) of the jump located at x = 0. Since A\i(p,u) < Aa(p,u), for
all U, then 1-waves must precede 2-waves, see [15]. Thus the general solution of the
Riemann problem includes: a 1-wave connecting the left state U, to an intermediate
state Uy (to be defined) and a 2-wave connecting this intermediate state Uy, to the
right state Ur. Now because the 1-waves can either be shocks or rarefaction waves,
there will be the following types of solutions,

e 1-shock connecting Uy, to Uy, followed by a 2-contact discontinuity connecting
Uy to Ugr. Note here that the shock speed S; can be less than zero or greater
than zero as in figures 3.7(a),(b) respectively.

e l-rarefaction wave connecting Uy, to U, followed by a 2-contact discontinuity
connecting Uy to Ugr. The right edge of the fan is denoted by Sy (i.e. the
rarefaction head) and the left edge of the fan is denoted by Sr (i.e. the
rarefaction tail). See figure 3.8. Note that in the case of a 1-shock, Sy = Sy =
S

Of course Uy, = Ur(Uy = Uyp), if Upand Ug are connected by only a 1-wave(2-
wave). To determine the intermediate state Uy, we need to compute the Riemann

(a) (b)

Figure 3.7: Possible shock solutions to the Riemann problem.

invariants in the sense of Lax and use the i-Lax curves (associated to the i-waves,
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\ J

Figure 3.8: Possible rarefaction fan solution to the Riemann problem.

i = 1,2) to represent the solution on our preferred (p,pu) phase plane. In this
case a phase transition will refer to the event of traffic changing from one state to
another. Basically, the 1-Lax curve (2-Lax curve) is the set of points (loci) in the
(p, pu) phase plane, which can be connected to a given state by a 1-wave (2-wave).
We state that the shock and rarefaction curves coincide for the Aw-Rascle system
[8, 16]. Therefore to determine the 1-Lax curves, we arbitrary choose the situation
where a given left state Uy, can be connected to an arbitrary state U, on the right by
a 1-shock of speed S;. This can only be admissible if the following entropy condition
is satisfied

A (P, uy) < S1 < M(pr,ur).

Since any discontinuity propagating with speed S; satisfy the Rankine-Hugoniot
condition [17, 30], we write;

pitis — prug, = Si(ps — pr) (3.75)
Yutls — yrur, = S1(Y« — Y1) (3.76)

Eliminating S; from (3.75) and (3.76) yields;

(Yeus — yrur)(ps — pr) = (Pt — prur) (Y« — yr)

which simplifies to,

Yo _ UL (3.77)
Px PL

And since state U, is arbitrary, the 1-Lax curve passing through Up are obtained
from (3.77) in terms of the primitive variables as;

Li(p; pr,ur) = ur + p(pr) — p(p) (3.78)
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Note that in (3.77), the 1-wave is a shock if p; < p, and a rarefaction if p;, > p.
The 2-Lax curves are obtained by considering one of the Rankine Hugoniot condition
(3.75), (3.76) and by stating that an arbitrary left state U, can be connected to a
given right state Ui by a contact discontinuity of speed S if the following parallel
characteristics condition [30] is satisfied;

)\2(,0*, U*) = )\2(/)R; UR) =5

Hence using (3.75) we write;

pslls — PRUR = UR(Ps — PR) (3.79)

whereby we deduce that u, = ug. Since U, is arbitrary, then 2-Lax curves passing
through Uy are given as;

Ly(p; pr, ur) = ug. (3.80)

That is they are straight lines exiting the origin in the (p, pu) plane. Having obtained
the 1-Lax curves and the 2-Lax curves, we now simply state the Riemann invariants
wy and wy associated with the respective characteristic Ay and A

wr =u+plp) Wy = U. (3.81)

For numerical purpose (in the ensuing chapter) we present the solution, say Ug, to
the Riemann problem (3.74) set at z = 0 as follows:

Uy Zf Sl <0
Us=1Up iof S1>0 (382)
U if Sp<0<Sy

where the intermediate state Uy = (pur, yM)T is computed from the Lax curves as
below:

ups + p(par) = ur +plpr) (3.83)

Since upr = ug and y = pu + pp(p) we obtain from (3.83) the following expressions;

pPM = p_l(uL + p(pL) — ur)

Ym = ,OMy—L (3.84)
PL

Hence obtaining the explicit form of the intermediate state Ups in terms of Up,Ug.
To obtain the solution U = (p, §)T i.e. U = U(Uy,Uyy) inside the rarefaction fan,
we consider the speed of the characteristic rays inside the fan, see figure 3.8 and also
use Lax curves to have;

u+p(p) = uL+plpr)
a—pplp) = 0 -;%:0 (3.85)
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which upon solving simultaneously for p and @ yields the desired form of the Riemann
solution U. To compute the speeds 51,57 and Sy we note that Uy, and Uy, can always
be connected by a 1l-rarefaction wave provided they lie on the same integral curve
(on which rarefaction curves lie) and that the condition A\i(pr,ur) < A(par, unr)
needs to be satisfied, see [17]. Otherwise, if Ay (pr,ur) > A (par, upr) then the two
states should be connected by a 1-shock and so from the Rankine Hugoniot condition
we have;

pLurL — PMUM
Si=——"—
PL — PM

Moreover, since the right(left) edge of the 1-rarefaction wave is said to carry the
value Uy (Up) [30], we write;

St =ur — prp/(pL)
Sy = uy — pup!(pur) (3.86)

Finally, we illustrate on the (p, pu) phase plane how the derived Aw-Rascle type
traffic model (3.68)-(3.69) handles transitions from a left state Uy to the right Ug
with the aid of the above determined i-Lax curves(for i=1,2). We sample two cases:

Case 1: pr, = pr, ur, > ug. This is shown in figure 3.9(a) whereby to reach Ug
from Uy, the model predicts that traffic should first decelerate through 1-shock to
state Uy; along the outer 1-Lax curve, then transit from Uy, to Ug along the lower
2-Lax curve(ray), while maintaining its average velocity.

Case 2: pr, > pr, ur < ug. This is shown in figure 3.9(b). Herewith, to reach
Ug from Uy, the model predicts that traffic first accelerates through 1-rarefaction
fan to a new state Uy situated along the inner 1-Lax curve and also on the upper
2-Lax curve(ray). Then transits from Uz to Up along the upper 2-Lax curve(ray).A
detailed explanation and more representations on phase planes of solutions to the
Aw-Rascle system with Riemann initial data can be found in [8]. See also [18] for
more on phase transitions.

To conclude we include the relaxation term in the conservative form (3.68)-(3.69)
of the macroscopic traffic models introduced in sections 3.1,3.2 and 3.3 as follows:
we define the source term S(U) as the vector;

0
S(U) = (3.87)
pR(u, p)

i.e. as a function of conservative variables p and y which are components of the
vector U = (p,y)T. The source term comprises of the relaxation term R(u,p),
that is expressed here in terms of the primitive variables p and u. Note that the

velocity u = y/p — p(p). The relaxation term can also be expressed in terms of
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Figure 3.9: Illustration of traffic phase transitions with the aid of Lax curves. Shown
in (a) is a 1-shock followed by a 2-contact, and in (b) is a 1-rarefaction

followed by a 2-contact.
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the conservative variables. However, its use in this form in (3.87) is equivalent to
using R(u, p). Hence we opt to use the latter. Now writing the conservative system
(3.68)-(3.69) in vector form as it was done while introducing the Riemann problem
in (3.74), and using (3.87) we obtain the following system

aU + 0,F(U) = S(U).

(3.88)

This is the conservative form of the traffic flow models (3.14),(3.52) with their respec-
tive relaxation term (3.15), (3.56) and (3.59) for the macroscopic Speed Adaptation,
the Switching Curve and the modified Switching Curve models.
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In this chapter we numerically investigate the ability of the macroscopic traffic mod-
els derived in the previous chapter to reproduce the features of 3-phase traffic the-
ory. To this end, we simulate a multilane road that has a bottleneck. We regard
a lane-drop as the stationary bottleneck and a slow moving vehicle(s) as a moving
bottleneck. The simulation involves obtaining a numerical solution to the conser-
vative system (3.88). We use a hybrid numerical scheme proposed in [16], that is
based on the Godunov scheme to approximate shock and rarefaction waves, but uses
a Glimm’s random strategy to sample the contact discontinuity.

4.1 Outline of the Godunov Scheme

To numerically solve the homogeneous system:

OU + 8,F(U) =0 (4.1)

j = 1--- M of the same size Ax. The cell interfaces and cell centér are respec-
tively defined as w; 1= (j — 1)Axz, Tipl = jAz and x; = (j — 5)Az. Moreover,
discretization of the temporal domain is done in time intervals At, whose choice
depends on the Courant-Friedrichs-Lewy(CFL) condition. Suppose that at time
t = ", the general initial data for (4.1) is given as U(z,t"). Then the first step of
the Godunov scheme is the evolution of the solution to a time ¢t"*! = ¢" + At. That
is achieved through considering the cell averages,

of (3.88), the spatial domain is discretized into M cells, C; = [z, _1 :vj+%] for

" 1 Tird ~ "

i-3
which now produces a piecewise constant approximation of the solution U(x,t") as;

Ulx,t")=U" forallzeC;, j=1---M, neN (4.3)

J

The second step is that of obtaining the solution for the local Riemann problems,
say RP(U]TL, ]’Erl), at the cell interface T with data U} and U}, ;, respectively, on

45
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the left side and right side of position z; 11 The solutions to this Riemann problem
are self-similar solutions,
U1 (2/1), T=r—ay, t=t—1" 1€ [zj,050], t € 1", 8"
i.e. they are functions of the Riemann problem local coordinates #/t and are con-
stituted by the 1-and 2-waves. Now for a sufficiently small time step At, such that
there are no wave interactions (see condition (4.6)), we obtain the global solution
U(z,t) in the entire spatial domain, for ¢ € [0, At], by gluing together the solutions
of the local Riemann problems set at each interface of the cells as below,
Uw,t) = Uy (#/1),  forall (w,t) € [1j,2541] x [0, At] (4.4)
Having obtained the solution U (x,t), the final step of the Godunov scheme entails

the evolution of the solution to a time t"*! = " + At by defining a new set { +1}
of average values as follows

gt = ! / G ) (4.5)
J Az J, ) ’ ‘
-2
within C; = [z;_ 1,1 1]. To guarantee that the interaction of the i-waves, i = 1,2

is entlrely contained within cell C; we impose the following CFL condition;

At < chle

= max {|INU)], i =1,2} (4.6)

Cepi is called the Courant number and is usually set to 1. The CFL condition
together with the integral form of the conservation law allows us to alternatively
express U in the following form, see [17, 30]:

At
n+1l __ n n
Uptt = Up + 1o s - P (4.7)

with the intercell numerical flux given by;

Fry = F(U;, 2 (07 U7, UF )

Jjts j+1

4.1.1 Godunov Scheme and Contact Wave Resolution

Here we present the failure of Godunov scheme to properly resolve contact waves
that arise in the traffic model (3.88) as discussed in [16]. This failure is attributed to
the fact that Godunov scheme does not obey the maximum principle property(see
the maximum principle theorem in [16]) on the velocity u. To show this we consider
the Riemann problem (3.74) with the left and right states, Uy, and Ug respectively,
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set up in a way that the solution to the Riemann problem is an isolated contact
wave moving at a speed Sy > 0. That is,

’ Up if x> Sot '

with p, > 0, pgr > 0, pr # pr, but whereby uy, = ugr = Ss. From the first step
of the Godunov scheme (4.2) with n = 0, the CFL condition(4.6) and given that
Sy > 0, the update formula (4.5) in the first time step yields, Uj = U?, if j # 1 and
for j = 1, which is the index of the cell affected by the 2-wave from x;_ 1, we will
have;

. 1 Az
p1 = E/o p(x, At)dx
. 1 Az
n=ag ) y(x, At)dx (4.9)
which leads to,
1 Ax
yo= Az, (pu+ pp(p))(z, At)dx
SQ Az 1 Az
= A, pla, At)dz + pp(p)(z, At)dz (4.10)
0 0

due to the fact that velocity w is constant at u;, = ugr = Sy across the contact wave.
From (4.9) and (4.10) we get;

1 Az
=50+ - / pp(p)(x, At)dz = Sapi + (pp(p))i (4.11)
0

Now calculating the velocity u} from pj and y; and considering the result (4.11) we
get;

i (pp(p)1 — pip(pi)

1 Y1 1
ub =2 p(oh) = 5, +
Lol ' Pl

As a result of the convexity of the function p — pp(p), and by Jensen’s inequality
it follows that (pp(p))i > pip(pl). Hence;

uy > So(=up = up)

that is after the first time step, the velocity will not be equal everywhere in the
spatial domain. Hence the Godunov scheme fails to resolve contact waves correctly.
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4.2 A Hybrid Scheme for Contact Wave

We now present the algorithm proposed in [16], that resolves the above stated de-
ficiency of the Godunov scheme. The idea of the algorithm is to keep on using the
Godunov scheme to resolve shock and rarefaction waves (which it does very well),
but use a Glimm’s random sampling technique [29, 30] to properly capture the con-
tact waves. Therefore the algorithm is presented in two steps. We start with how the
sampling is done in order to take into account only the contact waves. We consider
an interval [x;_1,%;41], j = 1--- M upon which the Riemann problem on the inter-
faces ; 1 and x;,1 is set. Note that under the CFL condition (4.6) the Riemann
problem set at other interfaces outside the interval [x;_1,2;4+1] do not influence the
solution U;“Ll. So U;LH only depends on the three states, U ;, Uj",and U, ;. To
proceed, we state that the Riemann problem at the interfaces x;_ 1 and 1 give
rise in general to a 1-wave and a 2-wave (in this case a 2-contact that propagates at

speed Sy = u > 0 ) as shown in figure 4.1 below;

U (U U

_]'+IJ

;Sf n

2.j+1

4 ™

"_;+1

Xtz Xi+1
Figure 4.1: The considered interval [z;_1, 2 41]

As in [16], the solution U(z,#"*z) at t"*2 and on interval [x;_1,x;41] is defined
as a piecewise constant function on each subinterval [z;_1, xjfé), [:Ujfé,xj +%), and
[j41,2j41]. This function randomly picks up a value between Uf',, Uy (U4, U}'),
U}, Uy (U}, U7 ) and U, as per their rate of occurrence in their respective subin-
tervals. That is;

ur, if xe[xj,l,xjfé)
Uz, t"2) = U2 if zelz, 1,2,,1) (4.12)

=3 bi+d

ir if TE€ [xj+%a$j+1]
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with
gt _ JUn(ULL U if ans € (0, 5755) 4.13
j - n . At Qn ( ) )
U; if  any1 € (R 9% s 1)
and
n n . 2At on
U;L_:rl2L _ UM(U] 7Uj+1) Zf An+1 € (gAtAz S ) (414)
}L_,_l Zf An41 € [ ng, )

The random sampling technique in (4.13) and (4.14) is achieved via the van der
Corput random sequence (a,,) within the interval (0,1) and defined as below [29, 30];

= %L 27D g =%k ok
with 7, = 0,1 being the binary expansion of the integers n =1,2,---

The second step of the algorithm involves taking into account the shock and
rarefaction waves in the solution to the Riemann problems. This is the step that
involves the Godunov scheme. We begin this step by considering the Riemann
problem set at x; 41 The part of its solution that has influence on cell C; =

[a:j 1L 1] is located on the left of the contact wave emanating from interface z;, 1,
2

and obtained by averaging U (.; U; nt3 Uj:fL) on (zj,z;, 1 ), which is equivalent to
the average;

2 Tyl o [T —X; +1
n+l 2 J X
Uj+;,L = Ac / v ( U ) t (4.15)

This is because U, i1 and UL are either equal or separated by a 2-contact. Now
consider the Rlemann problem set at x; The part of its solution that has influence

ntl

on cell Cj is obtained by averaging U(; LU +2) on [xj_%,mj).This solution is
located on both sides (i.e. on the left and rlght) of the 2-contact, if this type of
2-wave is present at the interface z; 1. Hence we can write these three possibilities,

see [16]:

1.
2

N

1
e For the right side of the 2-contact in U(; Ur U 7ﬁ"’) where the random sam-
pling makes the choice,
n+%

U

J

—UP with Up(Uly,U") # UP (4.16)

1

we replace U | by U;-H§ in the U to have;

2 i L [ —T;_1 1 1 1
Un+1 o U J—3 . Uﬁ+2 Uﬁ+2 o U?,l+2
2 R A-T /:p 1 ( At Y o ) o !

I—3

(4.17)
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n+i

e For the left side of the 2-contact in U(; U, U; ?) where now the random
sampling choose;

USYE = Uy (U, U) with Upp(UPy, UP) £ U (4.18)

J

we obtain the solution as the average;

n+1 2 Y~ x_xj % n
U 7R_ A[E/ U TUJ 1,U- dx (419)

|

Since that the condltlon UM(U 1, UP) # U in (4.16) and (4.18) is equivalent
1

to Un(Uj 1, U ) + U +§ = U}, we can collectively write;

( T ~ [(XT—T. 1 nt+i
2 J U( Ath;UnlvU‘ 2)dl’;

Ax Jx. 1
J732

. n nt3 _
Ut = iof  Un(UjLy,U; %) = U (4.20)
27

otherwise

e When within the time step At no 2-contact is present at interface x e then

1
Un (U7, U7F) = U and consequently U;+2 = U}'. Thus the solution U” !

entering cell C; is averaged as in the Godunov scheme:

n+1 2 Y~ .%—Ij_% n n
U 7R = A:L‘/ U T;Ujfl’Uj dx (421)

R

)l

Now combining the above averages of the Riemann solution on the half-cells [z L z;)
and (z;, 7, +%] we write the numerical solution at the next time step " as below

n+l1 __ n+1 n+
o = 5 U+ Urte)
n+2 At nti n+3,
= Ut (7 - jf) (4.22)
The left and right numerical flux function are respectively given by;
n+i,L ntx n n+i,L
Pty = FolU] 2 Upy) = F(UG2Y).
n n l,R
Fa(Up,, UF) = PG
. n n+2 n+s
R _ i Un(Uf,, U = 0]
i3 nt+3y.
F<U] )7
otherwise
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with Ug computed as in section 3.4. Details on the properties of this numerical
scheme can be found in [16].

To complete the numerical solution to the conservative system (3.88) we use the
source term splitting approach [30] or the fractional step approach [17]. To this
aim, letting [zo, z5s] to be the spatial domain, we state that given the initial value
problem:

{@Usz(U) =50), m=<z<am (4.23)

Uz, t") = U™

The idea is to evolve U™ from time ¢ = " to the new value U"*! at time ¢t = ¢"*!
in a time step At = t"*! — " that satifsy the CFL condition (4.6), by first solving
the homogeneous system;

Uz, t™) =0"

using the hybrid numerical scheme (4.22) in a time step of size At to obtain the
solution U""". Note that the initial condition for the homogeneous system (4.24) is
the same initial condition for the non-homogeneous system (4.23). The second step

of this approach is done by using T as the initial condition to solve the following
ordinary differential equation that accounts for the presence of the source term;

aUu
a5
= U"t! (4.25)
U’n-l—l,
and done in the same time step of size At (satisfying the condition (4.6)) to now
obtain the approximate solution U™ of the non-homogeneous initial value problem
(4.23) that is the discrete version of conservative system (3.88). The numerical

method employed to solve (4.25) is the explicit Euler method,
Ut = U™+ AtS(t",U"), At ="t —¢"

where now U™ ~ U(t"). Hence the complete numerical scheme of the conservative
system (3.88).

4.3 Numerical Tests of the Hybrid Scheme

In order to visualize the features of the numerical scheme presented in the previous
section, we simulate the Aw-Rascle type macroscopic traffic model given by equa-
tions (3.68),(3.69) i.e. the derived model equations without the source term (i.e. the
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relaxation term). Following the particular choice of the speed adaptation coefficient
in equation (3.6), we take p(p) = Cln(7%;) in equation (3.69). We investigate two
traffic flow scenarios that are envisaged in two Riemann problems. This in turn
lead to two solutions of interest, namely: a 1-shock wave followed by a 2-contact
wave and a l-rarefaction wave followed by a 2-contact wave. In this case we choose
C' = 0.7 and the mesh size Ax as given in table 4.1, and consider the following
Riemann problem, given in terms of the primitive variables:

Vi, 0) =4 b i w0 (4.26)
Ve iof x>

where the left Vi, = (pr,uz)” and the right Vz = (pg,ur)? traffic states are chosen
as:

e Case 1:

PL — 047 UL:1
PR — 04, UR:02

with ¢ = 0. In this case the exact solution is given by a 1-shock wave followed
by a 2-contact wave. Equations (3.84) can be used to obtain the exact solution.
The results are shown in figure (4.2).

e Case 2:

pr = 0.6, wur=20.05
PR — 05, UR:OQ

with 2y = 0. Here too, equations (3.84),(3.85) can be use to obtain the exact
solution as a 1-rarefaction wave followed by a 2-contact wave. The results are
shown in figure (4.3).

Note that in both cases the computation is done using the conservative variables
p and y = pu + pp(p). This is essential especially for determination of the correct
intermediate state in Case 1.

Remark 4.3.1. As proved in [16] for the consistency theorem, Theorem 3.1 part
(1), if only shock and rarefaction waves arise in the considered flow; then the hybrid
scheme (4.22) coincides with the Godunov scheme. Therefore, for simulations done
in the following section, we essentially use the Godunov scheme since the emergent
congested traffic patterns are basically composed of shock and rarefaction waves.

4.4 Simulation of 3-Phase Traffic Flow Features

We now introduce the source term (i.e.the relaxation term) to the conservative sys-
tem (3.68)-(3.69) in order to proceed with our simulation of 3-phase traffic flow
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Figure 4.2: The hybrid scheme solution to the Riemann problem; p; = 0.4,u; =
1,pr =0.4,ur =0.2 and 2y =0
, Density att =10 Velocity att = 10
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(a) (b)
Figure 4.3: The hybrid scheme solution to the Riemann problem; p;, = 0.6,u; =
0.05,pr = 0.5,ug = 0.9 and ;g =0
features. To this end, we consider the non-homogeneous system 3.88 and the nu-

merical scheme presented in section 4.2.

4.4.1 Traffic Breakdown at Road Bottlenecks

The kind of bottleneck that we consider in these simulations is a lane-drop, from
3 lanes to 2 lanes in a highway as shown in figure 4.4. It is well-known that any
carriageway capacity is commensurate with the number of lanes it possess. Therefore
the section of the highway with 3 lanes accommodates more vehicles than the part
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effective bottleneck

lane 1 1> [ I— L > [ >

lane 2 L1 - I
temrmrsmsrmErmsms PR PRE

lane 3 | il L I

- -
- -

lane —drop merging zome

Figure 4.4: A lane-drop bottleneck.

with 2 lanes. As a consequence, the lane-aggregate maximal density of the section
of the highway with 3 lanes is greater than that of the section of highway with 2
lanes. This is to mean that at an increased flow rate, the maximum capacity in
the 2-lane section of the highway will be reached faster as the traffic from the third
lane merge onto the other two lanes. This will in turn affect (negatively) the free
flow of traffic and so congestion will set in at the location of lanes reduction. We
will come back to onset of congestion shortly. We now look at how the effects of
lane-drop are taken into account in the relaxation term, which is utilized in Chapter
2 to constitute the hypothesis of 3-phase traffic theory in the macroscopic traffic
models derived therein. Let the highway under consideration be along the z-axis
and beginning at x = —50 and ending at x = 10 with the lane-drop merging zone
situated around x = 0. Let the direction of flow of traffic be in the direction of
increasing = along the axis. Now suppose () is a function representing the change
in traffic density, due to the presence of the lane-drop, and satisfy the following;
(a) 1 < |p(z)| <n for any x € [—50,10].
(b) ¢(x) =11in (—50,—d) for § > 0.
(¢) w(z) =nin (0,10).
(d) ¢(x) increases on (—6,0).
as depicted in figure 4.5. Next we scale the density with this function ¢ = ¢(z) in
the relaxation terms (3.15), (3.56) and (3.59) i.e.
1 e
R(u,p,0) = (U (wp,u) —u) (4.27)

with U¢(.) given by the respective expressions characterizing the three macroscopic
traffic models to be compared, i.e. the Switching Curve (SC), macroscopic Speed
Adaptation (SA), and the modified Switching Curve (mod.SC) models. In the en-
suing simulations we use the parameters given in tables 3.1 and 4.1.

¥
Y
¥
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lane —drop merging zone

Figure 4.5: Function op(z) with n = 3/2 and § = 1.

Table 4.1: Model parameters used in simulations.

Az | 607400 || Cupy | 0.9
5 1 n|3/2
c | 03 T| 5

Remark 4.4.1. In [31], it has been shown that indeed the empirical flow-density di-
agram strongly depends both on the highway location where the diagram is measured
and on the type of spatiotemporal congested traffic pattern present at the measure-
ment location.

We now resume the onset of congestion issue and demonstrate the ability of
the macroscopic 3-phase traffic flow models to reproduce the empirically observed
first-order F' — S phase transition at road bottlenecks. The above stated road-
inhomogeneity causes a permanent disturbance of traffic flow, localized in the neigh-
borhood of the lane-drop. This is because there is merging of traffic from the ending
lane 3 onto the two continuing lanes 1 and 2, figure 4.4, which happens within the
lane-drop zone. Therefore, this disturbance of flow is permanent and localized i.e.
it is a deterministic disturbance. A deterministic disturbance in free flow at the
lane-drop bottleneck happens if: firstly, there is a high enough flow rate in free flow
on the highway upstream of the lane-drop bottleneck, and secondly, vehicles merg-
ing from lane 3 onto the other two lanes (i.e. lanes 1 and 2) compel the vehicles
on these two lanes to decelerate in the vicinity of the lane-drop zone. As a conse-
quence of this deceleration, there will be a dynamic decrease in (lane-aggregated)
velocity and in turn an increase in the (lane-aggregated) density localized in the
vicinity of the bottleneck as shown in figures 4.6(a)-(f). As more vehicles perform
the mandatory lane changes from lane 3 to merge onto lanes 1 and 2, and also due
to the high enough flow rate; the amplitude of the deterministic disturbance will
grow. However, this growth has a limit which is the nucleus required for the oc-
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Figure 4.6: Simulation of velocity, u and density, p dynamic changes within the
deterministic disturbance at the lane-drop bottleneck. The curves c¢1—c4
are related to different time moments.

currence of traffic breakdown i.e. F' — S transition. If this limit is exceeded then



4.4. Simulation of 3-Phase Traffic Flow Features 57

F — S transition occurs at the bottleneck, compare curves ¢2 and ¢3 in figures
4.6(a)-(f). The deterministic disturbance in initial free flow becomes a nucleus for
traffic breakdown if within this disturbance the velocity decreases to or below the
critical velocity required for F' — S transition, respectively, the density increases to
or above the critical density [1]. Now with increased flow rate at the bottleneck due
to merging of vehicles, a wave of dense traffic appears and propagates upstream, see
curve ¢4 in figures 4.6(a)-(f). The curve ¢4 in figures 4.6(a),(b),(e) and (f) shows a
narrow moving jam already propagating upstream. Note that the formation of the
wave of dense traffic begins with the upstream propagation of the upstream front
of the deterministic disturbance at a velocity that increases with increase of vehicle
merges. After the downstream front of the wave appears within the disturbance and
propagates upstream, then the upstream front of this wave will now tend to conform
its propagation velocity to the velocity at which the downstream front propagates.
Generally, as shown in figures 4.6(a)-(f), the Switching Curve (SC), modified Switch-
ing Curve (mod.SC) and macroscopic Speed Adaptation (SA) models predicts that,
after the occurrence of a F' — S transition at the lane-drop bottleneck, moving jams
emerges and propagates upstream.

In the flow-density plane, see figure 4.7, the flow rate within the deterministic
disturbance increases with an increase of the density that is in turn a result of
a decrease in the velocity within this disturbance. However, due to the merging
of vehicles at the lane-drop, this increase in the disturbance reaches a limit upon
which the velocity within the disturbance decreases and density increases abruptly
leading to a F' — S transition. Thus synchronized flow emerges. In particular, there
appears a moving synchronized flow pattern (MSP) i.e. an upstream propagating
narrow moving jam that is surrounded both upstream and downstream by free flow.
As a result of the upstream propagation of the downstream front of synchronized
flow, that was initially fixed at the bottleneck, there will be an increase in velocity
within the deterministic disturbance. This velocity increase has some limit upon
which the velocity of vehicles in synchronized flow increases and density decreases
drastically. Thus leading to a return to free flow at the lane-drop bottleneck. Hence,
a S — F phase transition occurs, completing a loop i.e. a hysteresis loop where the
upper part of the loop is the deceleration branch associated with F' — S transition
while the lower part of the loop is the acceleration branch associated with a S — F
transition. However, this free flow traffic state exists for only a short period of time
and then another F' — S transition occurs spontaneously at the bottleneck leading
to a new moving synchronized flow pattern (MSP). See curve ¢4 in figures 4.6(a)-(f).
Eventually we will observe a sequence of MSPs.

4.4.2 Spatiotemporal Congested Traffic Patterns

In the previous section 4.4.1, the nature of traffic breakdown phenomenon at a
highway bottleneck (in particular a lane-drop) has been discussed. We have showed
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Figure 4.7: (a)-(c) Traffic hysteresis effects at the lane-drop merging zone, depicted
in the flow-density plane. (d) The time dependence of the velocity u
within the deterministic disturbance at the lane-drop bottleneck.

the capability of the three models to reproduce the empirically observed spontaneous
appearance of a deterministic disturbance at the bottleneck and whose amplitude
grow to exceed some critical value leading to a spontaneous F' — S phase transition.

In this section we look into the above featured models’ ability to replicate the
observed features of spatiotemporal congested patterns that occur in a highway
once traffic breakdown has occurred at the highway bottleneck(s). In [32], its is
shown that synchronized flow pattern (SP) and general pattern (GP) of congested
traffic occurs in the vicinity of an isolated bottleneck(i.e. an effective bottleneck
located far enough from other effective bottlenecks on the considered highway).
A general pattern (GP) is a spatiotemporal congested traffic pattern consisting of
synchronized flow that borders the isolated bottleneck location but this synchronized
flow is in turn bordered upstream by a sequence of wide moving jams. After traffic
breakdown is realized at an isolated bottleneck, various patterns of synchronized
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flow may result. These patterns are differentiated by the behavior of their upstream
and downstream fronts that separate the synchronized flow within, from the free flow
outside of the congested traffic. As pointed out earlier, in section 2.1 a SP can either
be a localized SP (LSP), moving SP (MSP) or a widening SP (WSP). We take the
lane-drop set-up depicted in figure 4.4, to be our isolated bottleneck and investigate
the kind of synchronized flow patterns, discussed in [1], that the Switching Curve,
modified Switching Curve and the macroscopic Speed Adaptation models are able
to reproduce at the bottleneck location. As shown in figure 4.8, the macroscopic
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Figure 4.8: Spatiotemporal congested traffic patterns simulation with macroscopic
Speed Adaptation (SA) model.

Speed Adaptation model produces MSPs. Also, in figure 4.9 the modified Switching
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Figure 4.9: Spatiotemporal congested traffic patterns simulation with modified
Switching Curve (mod.SC) model.
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Curve model is shown to produce MSPs, which do not extend upstream of the
bottleneck like in the SA model. These MSPs or rather narrow jams grow (i.e.
velocity decrease and density increase within them) as they move upstream of the
lane-drop bottleneck. As discussed in [32, 24|, a phenomenon of growing narrow

“elocity at x = -2

=4

a 5‘0 160 ‘IéO 2[‘30 QéO 200
t
Figure 4.10: Narrow moving jams propagation at location x = —2 for the macro-
scopic Speed Adaptation model.

jams is that if two or more growing narrow moving jams are relatively close to a one
another and one of these narrow jams grow into a wide moving jam, then the further
growth of the narrow jams that are nearby is suppressed and/or they merge with
the wide jam that has been formed. Hence a S — J phase transition is realized.
Moreover, if growing narrow moving jams are far enough from the wide moving
jam, then the process of either suppressing and/or merging of these narrow jams
result into another wide jam formation. This is vividly shown in figures 4.8 and 4.11
whereby the growing narrow moving jams at z = —2 in figure 4.10, merge later on,
see for example at x = —10, to transform into wide moving jams at x = —14. In
the course of formation of these narrow moving jams, the downstream front start to
propagate upstream from the lane-drop bottleneck. As a result, the velocity(density)
within the deterministic disturbance increases(decreases) past the limit necessary for
sustainment of synchronized flow leading to a return to free flow at the bottleneck.
However this free flow state is short-lived and so another traffic breakdown occurs
at the bottleneck and in turn another upward moving narrow jam emerges. This
process is repeated resulting to a sequence of narrow moving jams of low velocity
within them, figures 4.8 and 4.9. Looking at the simulation results of the Switching
Curve model, figure 4.12 reveals that this model is not quite a 3-phase traffic flow
model. In particular, the onset of congestion at the lane-drop, for this model leads to
formation of moving jams that are rather wide and are such that the velocity within
them decline rapidly, hence readily forming wide moving jams. Figure 4.13 shows the
flow-density relations at various location of the considered highway, i.e. upstream
of the lane-drop,x = —20, within the lane-drop,z = 0, and downstream of the lane-
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Figure 4.11: Narrow moving jams propagation at x = —10 and coalescence at loca-
tion x = —14 for the macroscopic Speed Adaptation model.
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Figure 4.12: Spatiotemporal congested traffic patterns simulation with Switching
Curve(SC) model.

drop,z = 5. Due to the high flow rate on the 3-lane highway section upstream of
the lane-drop and the lane-drop itself, the highway section downstream of the lane-
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drop i.e. the 2-lane section operates at maximum capacity. This is depicted by the
simulation data points for highway location x = 5 on the flow-density plane scaled-
down by a factor % Within the lane-drop location i.e. x = 0 synchronized flow, that
is MSP, is reported for the modified Switching Curve (mod.SC) and the macroscopic
Speed Adaptation (SA) models. For the Switching Curve (SC) model at the same
location,z = 0, shown in figure 4.14(a) the traffic hysteresis loop is pronounced,
unlike in the mod.SC and SA models. Thus we can state that the SC model rather
predicts a F' — J transition rather than a F' — S transition captured by the other
two models, which produces moving synchronized flow pattern. Upstream of the
lane-drop i.e. x = —20, wide moving jams propagate through free flow. These wide
moving jams possess the characteristic feature of maintaining the velocity of the
downstream front that is approximately -20 km/h, see figures 4.13 and 4.14.
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Figure 4.13: pu — p relation for the modified Switching Curve (mod.SC) and the
macroscopic Speed Adaptation (SA) models upstream, z = —20,

within, x = 0, and downstream, z = 5, of the lane-drop bottleneck,
figure 4.4.
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Figure 4.14: pu— p relation for the Switching Curve (SC) model upstream, x = —20,
within, x = 0, and downstream, x = 5, of the lane-drop bottleneck,
figure 4.4.

Remark 4.4.2. Here we briefly report on the simulation results obtained by using
the ‘pressure law’ py(p) = V}efln(ﬁ) in the conservative system (3.68)-(5.69), with
the relazation term included, by comparing them with those reproduced by the same
system but now with ‘pressure law’ p1(p) = Cln(:£;). We take the constant Viey =
0.45 and C' is as giwen in table 4.1. In as far as the reproduction of spatiotemporal
congested traffic patterns is concerned, the two ‘pressure laws’ yields qualitatively
the same patterns as shown in figure 4.15. However, the jams propagate upstream
at different speeds as shown in table 4.2, where we have used a mazximal free flow
velocity of 120 km/h. Also, as shown in figure 4.16, the density inside the jams is

higher for the ‘pressure law’ py than that of py; since pa(p) < p1(p).

Table 4.2: Wide moving jams propagation velocities in km /h.

SC mod.SC SA
p1 | -23.9012 | -22.2776 | -28.7576
P | -23.4494 | -22.0800 | -25.4118

4.4.3 Simulation of Moving Bottlenecks

In vehicular traffic theory, a moving bottleneck on a multilane highway is usually a
result of the slow motion of some vehicles such as trucks or buses. Numerous stud-
ies of moving bottlenecks with models within the fundamental diagram approach
have been done. To mention a few, we state that the problem of moving bottleneck
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Figure 4.15: A comparison of simulation results of the Switching Curve (SC), mod-
ified Switching Curve (mod.SC) and macroscopic Speed Adaptation
(SA) models, respectively, for the given ‘pressure laws’ p; and ps. In

(a)-(c), the results for ¢t = 400 are displayed.

was introduced by Gazis and Herman [33] whereby they principally assumed that
the discharge flow rate i.e. the flow rate just downstream of the moving bottleneck
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Figure 4.16: A comparison of density profiles of the macroscopic Speed Adaptation

(SA) model for the given ‘pressure laws’ p; and py. We show the dif-

ference in density within the jams at distance x = —20, in figure 4.15.

is fixed. However, for all feasible bottleneck velocities this assumption is unrealis-
tic. Newell [34] removed the above stated assumption of the discharge flow rate by
suggesting that on say a 2-lane road the moving bottleneck is a long convoy such
that the traffic stream in the lane adjacent to this long convoy can be represented
on the flow-density plane by a scaled-down curve of the fundamental diagram of
the 2-lane traffic low. Thus enabling the discharge flow rate to vary, as shown in
figure 3 of [34]. However, this model’s prediction is that the discharge flow rate
decreases with an increase in the moving bottleneck velocity. This is in contrast
to empirical observations especially if the moving bottleneck is not necessarily a
long convoy of vehicles as shown by Munoz and Daganzo in [36], through exper-
iments using the kinematic wave theory, that the discharge flow rate increases as
the bottleneck velocity increases. Moreover, Kerner and Klenov [35] have recently
studied the features of traffic breakdown of a moving bottleneck and the resulting
spatial temporal congested patterns using the stochastic 3-phase traffic flow model
[25]. It was observed that traffic breakdown is associated with the F' — S phase
transition and most of resulting congested patterns are qualitatively different from
those arising from traffic congestion at motionless bottlenecks such as on/off-ramps
and lane-drops. Now utilizing the relaxation term we demonstrate the ability of
the Switching Curve, modified Switching Curve and the macroscopic Speed Adap-
tation models to reproduce the spontaneous emergence of congested traffic patterns
at moving bottlenecks. Similar to the scaling of density that was done for the lane-
drop bottleneck, we hereby achieve the effects of a moving bottleneck by scaling p in
the relaxation terms (3.15), (3.56) and (3.59) by a function 5 = [(z(t)) as follows;

R(u,p, B) = %(Ue(ﬁp,u)—u) (4.28)
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where [ represents the change in traffic density due to the presence of a slow-moving
vehicle platoon and satisfy the following, for the initial time ¢ = 0:

(a) 1 < |B(x)| < n for any z € [—30, 30].

(b) B(x) =11in (=30, —x1) U (3, 30).
(¢) B(z) =mnin (0, xs).
(d) S(z) increases on (—zy,0) and decreases on (2, x3) with xe — xo = |x].

as depicted in figure 4.17. Since this bottleneck is moving, we let the moving bot-
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moving bottleneck section, B,,

Figure 4.17: Function B(x(t)) at the initial time ¢ = 0, with n = 3/2

tleneck section,Bj; move on the outer lane of the considered 3-lane highway(figure
4.4 but without the lane-drop) at a constant velocity vp, that can be any value less
than the minimum possible velocity for free flow existence. This moving bottleneck
section comprises of the length of the moving bottleneck, flanked on the rear and
front sides by lane-changing sections for the faster vehicles. Now let x5(t) be the
location of the moving bottleneck at time ¢ € RT. Then zg(t) is required to solve
the ordinary differential equation;

diL‘B<t) .
a0 (4.29)
r5(0) = 29,

which describes the motion of the bottleneck along the highway. 2° stands for the
initial position of the bottleneck. Note that due to (4.29) also z1(t), xa(t), x3(t)
will move at the same constant velocity vp and the shape of S(x(t)) remains the
same. Equation (4.29) is coupled with the traffic flow model equations to simulate
the effects of the moving bottleneck on traffic flow on a multilane road. We choose
the flow rate, pu, great enough i.e. p = 0.35 and the velocity is given by u = u$(p)



4.4. Simulation of 3-Phase Traffic Flow Features 67

and vary the moving bottleneck velocity vg as 0.1, 0.17. Moreover, we choose the
initial positions of the bottleneck section as x1 = —1, x5 = 3, x3 = 4. It is clear that
faster vehicles will have all the intentions to pass the slow-moving vehicle/platoon
by changing lanes to the adjacent lanes. This vehicle lane changing maneuvres
that occurs within the rear lane-changing section of the moving bottleneck causes
a deterministic velocity disturbance that moves at the velocity vp and is localized
at the moving bottleneck. If the moving bottleneck velocity is relatively low i.e
vg = 0.1 and the flow rate on the multilane road is great enough, traffic breakdown
spontaneously appear within the deterministic disturbance at the moving bottleneck
and as a result narrow moving jams will appear in the case of the macroscopic 3-
phase traffic flow models: macroscopic Speed Adaptation (SA) model and modified
Switching Curve (mod.SC) model, figure 4.18. The Switching Curve (SC) model,
in the same figure 4.18, also predicts the spontaneous emergence of moving jams
within the moving deterministic disturbance at the moving bottleneck. But these
jams have a greater width as compared to those of the SA and mod.SC models. In
the three cases, we observe that the emergence of the wide moving jams suppresses
the growth of the smaller jams leading to their dissolution.

At higher bottleneck velocity vg = 0.17, see figure 4.19, we observe a different
behavior of traffic flow predicted by the three models. Basically, there is the forma-
tion of wide moving jams separated by widening synchronized flow (WSP) in the
vicinity of the moving bottleneck. The WSP is usually a congested traffic pattern
of high velocity and less density compared to other congested traffic patterns, that
are feasible once traffic breakdown has occurred at a bottleneck. The number of
wide moving jams formed in the mod.SC model is significantly less compared to
the other two models. While traffic congests upstream of the moving bottleneck,
free flow is realized downstream of this bottleneck as clearly depicted in the figures
4.18 and 4.19. Although it is not shown here, for a bottleneck moving at velocity
v = 0.2, only WSP formed upstream of the moving bottleneck. If vp takes much
higher values, then there will be hardly any congested pattern formation upstream of
the moving bottleneck and consequently the flow rate downstream of the bottleneck
will remain high and within the range of the initial value, that was chosen great
enough. Hence we can conclude that an increase of the moving bottleneck velocity,
vp is accompanied by an increase in the flow rate just downstream of this moving
bottleneck i.e. an increase of the discharge flow rate, as was empirically observed
by Munoz and Daganzo in [36].
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Figure 4.19: Spatiotemporal congested traffic patterns caused by a bottleneck mov-






Conclusion

In this study macroscopic traffic low models within the framework of Kerner’s 3-
phase traffic flow theory have been presented. The 3-phase traffic theory is con-
stituted in the macroscopic equations through the relaxation term. The idea is to
preserve the 2D region of steady states of synchronized flow by introducing two
density-dependent optimal velocity curves which satisfy certain properties for the
given density ranges. It is the difference in these properties that brings about three
kinds of relaxation terms that in turn result in three kinds of macroscopic traffic
models. The macroscopic model equations, which are of the Aw-Rascle type, are
derived from microscopic and kinetic traffic models. We use transformation of co-
ordinates from Lagrangian to Eulerian in order to obtain the macroscopic model
equations from the microscopic equations. As for the derivation from kinetic mod-
els, we use a one-node quadrature ansatz [10, 11] to obtain Aw-Rascle type model
equations from kinetic models based on integro-differential equations and on the
Fokker-Planck type of equations. The hyperbolic nature of the derived macroscopic
models is studied. By construction of the solutions to the Riemann problem, set
up using the conservative form of the model, the model features have been explored
further. The numerical method for solving the macroscopic model in conservative
form is discussed and tests are carried out to show the effectiveness of the numerical
method used. Using this numerical method we go ahead to simulate traffic flow on
a roadway with a lane-drop bottleneck and a moving bottleneck. Through these
simulations, we assess the ability of the derived macroscopic traffic low models i.e.
the Switching Curve, modified Switching Curve and macroscopic Speed Adaptation
models to reproduce the complex spatiotemporal features of traffic flow. Namely
the first order F' — S transition and the coexistence of free flow (F), synchronized
flow (S) and wide moving jams (J) as observed in real traffic flow. We state here
that empirical investigation, see for instance [32] indicate that unless synchronized
flow is hindered, moving jams do not emerge in free flow but rather emerge in the
synchronized flow phase of traffic. That is their emergence is due to a sequence of
two first order phase transitions: F' — S and S — J. This is because the onset
of congestion in an initial free flowing traffic is associated with F' — S transition
and later on at some location upstream of the bottleneck, S — J transition occurs
depending on the bottleneck strength and the traffic demand. Generally, of the
three models investigated, the macroscopic Speed Adaptation and modified Switch-
ing Curve model gives better prediction of 3-phase traffic theory principle than the
Switching Curve model.
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