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Abstract
An unsteady incompressible fully developed flow in a horizontal flexible and permeable annular pipe
of elliptic cross-section under the action of gravity is studied. The solution is obtained through a
homogenization method by employing a small scale separation parameter that approximates the
pipe in the form of a series. The results in terms of velocity and pressure distributions and mass
flow rate inside the pipe and through the pipe wall are presented and discussed. It is shown that
the pipe thickness has no influence on the water flow through the pores. We also propose that for
the efficient use of water for irrigation, the elliptical pipe should be laid in a vertical position.
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Nomenclature
a semi-minor axis
A constant
b semi-major axis
B constant
C constant
Da Darcy’s number
ex1 , ex2 unit vectors
h water level reservoir
H pipe outer radius
K∗ pipe wall permeability
L∗ pipe length
p pressure inside the pipe
Pin inlet pressure
pm pressure in the pipe wall
q discharge
Q mass flow rate
Re Reynolds number
S∗ wall thickness
U water velocity through pipe wall
V water velocity in the pipe
x variable
x1 pipe lateral axis
x2 pipe longitudinal axis
x3 pipe vertical axis
y variable
Y ∗ width of cross section less the thickness

Greek symbols
ε Y ∗

L∗ (scale separation parameter)
φ pipe wall porosity
α angle measured from the positive major axis
µ∗ water viscosity
χ ratio between characteristic pressures
Υ constant
ρ∗ water density
τ dummy variable

Subscripts
res reservoir
c characteristic quantity
in inlet
m pipe wall

1 Introduction

Flow through ducts plays a very important role in irrigation, chemical, mechanical and biological
engineering. These ducts are used as parts of pipe line , heat exchangers, cooling systems, chemical
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reactors, gas turbines, centrifugal pumps. In this study we consider an irrigation pipe system of
elliptic cross section made of a permeable and flexible material, for example canvas hoses laid on the
ground and connected to an elevated reservoir so that the driving pressure is provided by gravity. The
reservoir has sufficient water capacity of the order of 1m3. The water from the reservoir is delivered
to the plants by letting it filtrate through the porous duct laid down on the ground. The end of the pipe
is sealed so that the flow takes place in the dead end configuration. The key point in this irrigation
system is not only to regulate the total discharge, but also to ensure that the flow rate at the pipe inlet
will be the same as the total flow rate at the pipe outlets (i.e. the total flow rate through the pores)[1].
For this study we consider an incompressible viscous fluid. The fluid flow is unsteady, laminar and
fully developed through a pipe of elliptical cross section.

1.1 Elliptical cross-section
[2] obtained the solution of the Navier-Stoke’s equations by the lubrication approximation, that is, they
assumed that the fluid flow at each axial location x along the channel resembles the fully developed
flow that would exist at that location if the channel shape did not vary with x. Although the asymptotic
solution method gave more accurate results compared to the lubrication approximation, the final
solution for pressure drop and velocity field had a complex form even for simple cross-sectional
geometries. [3] proposed a general model that accounts for gradual variations in the cross-section
of microchannels and relates the pressure drop to geometrical parameters of the cross section.
It’s accuracy was assessed by comparing the results against experimental and numerical data for
a wide variety of cross-sectional shapes. [4] used a point matching technique to calculate closed
form solutions for the velocity distributions in channels of various cross sections. The approach was
based on using general solution Poisson’s equation in the form of trigonometric series expansion.
Pressure drop and Poiseuille numbers were determined for a variety of cross sections. [5] considered
flow in rectangular ducts and employed a linear stability theory to a steady laminar solution and an
eigenvalue problem was generated in the matrix form. The critical Reynolds numbers were evaluated
for some aspect ratios to describe the neutral curves. The study of unsteady flow of an incompressible
second grade fluid in an infinitely long tube of elliptical cross-section was carried out by [6] and the
resulting governing equation was solved using the separation of variables method. They showed the
effect of the applied pressure gradient and an exact solution was obtained. [7] considered the laminar
flow in a sharp edged tube emerging from a large reservoir. The problem was numerically simulated
by solving the full elliptic Navier-Stoke’s equations and using a plenum upstream of the inlet. They
were able to calculate the velocity profile at the tube inlet instead of postulation. In order to study flow
in elliptical pipes exhaustively, it is important to look at turbulent flow. [8] computed the turbulent flow
in a pipe with elliptical cross section using a finite difference method designed to solve the Navier-
Stoke’s equations in orthogonal coordinates. It was shown that the flow characteristics in the pipe’s
cross section along the minor axis were similar to those of the turbulent flow in a plane channel.

1.2 Mass flow rate
Studies have also been carried out for mass flow rate. A three-dimensional mathematical model
for the fluid flow in elliptic cylindrical pipe was presented by [9]. In their study they found that the
pressure drop in elliptical cylindrical pipes is higher than in circular pipes for the same mass flow rate.
[10] calculated the mass flow rate through a tube with elliptical cross-section over the whole range
of the rarefaction parameter varying from the molecular regime to the hydrodynamic one. Various
aspect ratios were considered. The analysis of the numerical data shows the significant influence
of this aspect ratio on the mass flow rate. [11] solved the Navier-Stokes equations exactly for flow
between coaxial circular cylinders and flow in an equilateral triangular pipe. The velocity fields and
total flow rates were found analytically. He found that a relatively small slip length can lead to a large

161



Ndegwa et al.; BJMCS, 5(2), 159-178, 2015; Article no.BJMCS.2015.012

increase in the total rate of fluid flow. The numerical investigation of the rarefied Poiseuille flow in
the channels of elliptical and rectangular cross-sections was carried out by [12] using a secon-order
difference scheme. They showed that the reduced gas flow rate through a rectangular channel is
greater than that through a circular or an elliptical channel. [4] showed that the pressure drop is a
function of the mass flow rate and dimensions of the cross-section. They also noted that the selection
of the characteristic length does not affect the calculated pressure drop.
The purpose of this work is to develop an approximate method to determine the best physical
orientation of a pipe with elliptical cross-section for efficient use of piped water for irrigation by
extending the previous model of [1] to a permeable pipe of elliptical cross-section. The current study
presents the solution of the Navier-Stoke’s equations together with Darcy’s Law in the rectangular
coordinate system. In our study we have employed the homogenization method which eliminates
the difficulties related to the explicit determination of a solution of the problem at the microscale and
offering a less detailed description in the macroscale, but one which is applicable to much more
complex systems [13]. [14] showed that upscaling can be usually achieved only approximately,
and the result may depend on the particular upscaling scheme adopted. For the mass flow rate,
a rectangular cross-section is cut out of the elliptical pipe (see figure 1) and through it’s variation with
the angle α across the cross-section, a solution is obtained.

2 Methodology
We seek a solution for unsteady laminar fully developed flow of a Newtonian fluid with constant
properties in a uniform, flexible and permeable pipe of elliptical cross-section. Finding an exact
solution for such a problem is highly unlikely, but approximations can be obtained in the form of a
series in terms of a small scale separation parameter, ε. The idea is to take advantage of the fact that
variation in the direction of flow, x is gradual compared to variation in the orthogonal direction,y [2].

In our model, it is assumed that the length Y ∗ in figure (1) is small compared to the length of the pipe
L∗. This separation condition is directly connected to the scale separation parameter ε, that must be
small for a macroscopic equivalent model to exist [15]:

ε =
Y ∗(vertical length)

L∗(horizontal length)
� 1

Looking at figure (2), the elliptical cross section has semi-major axis b and semi-minor axis a. From
[12] it was noted that b

a
> 1 gave an error of the order of 1% for the calculations of the flow rate.

That is a < b. The porosity and the permeability of the wall will be denoted by φ and K∗ respectively.
The spatial coordinates are: x∗ε(0, L∗), and y∗ε(0, H∗), where H∗ = Y ∗ + S∗, is the width of the
cross-section in Fig. (3.1) and Y ∗ = a sinα+ (1− sinα)b; αε[0, π

2
] is the width of the cross section

minus the pipe thickness with α being the angle measured from the positive major axis.

In our study we let a = 1
2
b then from Y ∗ = a sinα + (1 − sinα)b we have for α = π

2
, Y ∗ = a and for

α = 0, Y ∗ = b

Therefore we define max(Y ∗) = b

This implies that
H∗ = Y ∗ + S∗ = a+ S∗

The water velocity V∗ and the velocity U∗ through the porous wall can be written in terms of their
components as

V∗ = V ∗x2ex2 + V ∗x3ex3
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Figure 1: Schematic diagram of the fluid flow

Figure 2: Elliptic cross-section of the pipe
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U∗ = U∗x2ex2 + U∗x3ex3
The other unknowns are the pressure p∗ in the pipe and p∗m in the pipe wall. We consider the case
for unsteady flow and the governing equations are:

(i) continuity equation (for flow in the pipe)

∇∗ · V∗ = 0 (2.1)

(ii) Navier Stokes equation

∂V∗

∂t∗
+ (V∗ · ∇∗)V∗ = − 1

ρ∗
∇∗p∗ +

µ∗

ρ∗
∇∗2V∗ (2.2)

(iii) continuity equation (for flow through the pipe wall)

∇∗ · U∗ = 0 (2.3)

(iv) Darcy’s law

φU∗ = −K
∗

µ∗
∇∗p∗m (2.4)

2.1 Dimensionless formulation
The rescaled length components are defined as follows

x =
x∗

L∗
, y =

y∗

max(Y ∗)
, H =

H∗

max(Y ∗)
, S =

S∗

max(Y ∗)

where x and y are normalized length and width, so they vary from zero to unity. The rescaled velocity
components are defined as follows

Vx =
V ∗x
V ∗c

, Vy =
V ∗y
εV ∗c

, Ux = ε
U∗x
U∗c

, Uy =
U∗y
U∗c

where the characteristic velocity U∗c is taken so that φU∗c = εV ∗c .
We define the characteristic time as t∗c = L∗

V ∗
c

.
The inner channel pressure is rescaled by

p∗c =
µ∗L∗V ∗c

4Y ∗2

for laminar flow of a Newtonian fluid, whose viscosity is µ∗ with the mean velocity V ∗c .
The fluid characteristic pressure can be defined using equation (2.4), i.e.

p∗m,c =
φµ∗

K∗
S∗U∗c = ε

φµ∗

K∗
S∗V ∗c

The ratio between the characteristic wall pressure and the characteristic fluid pressure can be represented
as

χ =
p∗m,c
p∗c

=
ε2

8

S

Da
(2.5)

with Da = K∗

Y ∗2 .

164



Ndegwa et al.; BJMCS, 5(2), 159-178, 2015; Article no.BJMCS.2015.012

2.2 Boundary Conditions
The boundary conditions employed to our fluid flow are;

p∗(0, y∗, t∗) = P ∗in(t∗)

p∗m(x∗, H∗, t∗) = 0

p∗(x∗, Y ∗, t∗) = p∗m(x∗, Y ∗, t∗)

V ∗y(x∗, Y ∗, t∗) = φU∗y(x∗, Y ∗, t∗)

V ∗x(x∗, Y ∗, t∗) = 0

V ∗y(x∗, 0, t∗) = 0

∂V ∗x
∂y∗

∣∣∣∣
y∗=0

= 0

The dimensionless boundary conditions are written as follows

p|x=0 = Pin(t) =
P ∗in(t)

p∗c
, p|y=1 = pm|y=1, pm|y=H = 0

∂p

∂x
|x=1 = 0(dead−end configuration)

(2.6)

Vy|y=1 = Uy|y=1, Vx|y=1 = 0, Vx|x=1 = 0 (2.7)

Vy|y=0 = 0,
∂Vx
∂y

∣∣∣∣
y=0

= 0 (2.8)

The Reynolds number is given by

Re =
ρ∗V ∗cY

∗

µ∗

2.3 Dimensionless system of equations
The continuity equation for the velocity component Vx is defined as

∂Vx
∂x

+
∂Vy
∂y

= 0 (2.9)

The equations of motion governing our longitudinal fluid flow can be written as follows

Re

ε

[
∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

]
= − 4

ε2
∂p

∂x
+
∂2Vx
∂x2

+
1

ε2
∂2Vx
∂y2

(2.10)

Re

ε

[
∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

]
= − 4

ε4
∂p

∂y
+
∂2Vy
∂x2

+
1

ε2
∂2Vy
∂y2

(2.11)

The equations for flow through the porous walls are governed by the continuity equation and Darcy’s
Law (2.4) and they are given by

∂Ux
∂x

+
∂Uy
∂y

= 0 (2.12)

Ux = −ε2 S
χ

∂pm
∂x

(2.13)

Uy = −S
χ

∂pm
∂y

(2.14)
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2.4 Homogenization
This method involves writing the governing equations at the pore scale and then introducing an
expansion in power series of ε of all the relevant quantities leading to the formulation of the macroscopic
governing equations at the various orders in ε [16]. Looking at the small parameter ε, we are
interested in the limit problem and it’s solution when ε tends to zero. With ε small, a regular perturbation
expansion for each quantity in the system (2.10 - 2.14) and in the boundary conditions (2.6 - 2.8) can
be written as:

f(x, y, t) =

∞∑
n=0

f (n)(x, y, t)εn (2.15)

and we match the terms with equal powers. Looking at (2.10) and (2.11) the inertia terms can be
neglected at the zero order if the inequality Re � ε−1 is satisfied. Since we have assumed that the
flow is laminar, then Re < 1000. We also assume that the inertial terms are negligible in comparison
with the terms having a factor ε−k, with k ≥ 2 [1].

With the above assumptions, equation (2.11)reduces to

−4

ε4
∂p

∂y
+

1

ε2
(
∂2Vy
∂y2

) = 0

The term with ε−4 approaches zero faster than the term with ε−2. Therefore

−4

ε4
∂p

∂y
= 0

and this yields

∂p

∂y
= 0 (2.16)

We immediately deduce that

p(0) = p(0)(x, t) (2.17)

Now we go to equation (2.10)and this reduces to

−4

ε2
∂p

∂x
+

1

ε2
∂2Vx
∂y2

= 0

∂2Vx
∂y2

= 4
∂p

∂x

∂Vx
∂y

= 4y
∂p

∂x
+ F (x, t)

From the boundary conditions, when y = 0 ∂Vx
∂y

= 0 and therefore F (x, t) = 0.

∂Vx
∂y

= 4y
∂p

∂x

Vx = 2y2
∂p

∂x
+G(x, t)

Next we apply the boundary condition when y = 1 and we find that G(x, t) = −2 ∂p
∂x

and this leads to

V (0)
x (x, y, t) = 2

∂p(0)

∂x
(y2 − 1) (2.18)
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Looking at the equation for continuity (2.9)we see that ∂Vy
∂y

= − ∂Vx
∂x

Substituting for Vx we get

∂Vy
∂y

= −2
∂2p(0)

∂x2
(y2 − 1)

Integrating over (0,y) we have

Vy = −2
∂2p(0)

∂x2

∫ y

0

(τ2 − 1)dτ

= −2
∂2p(0)

∂x2

[
τ3

3
− τ
]y
0

V (0)
y (x, y, t) = −∂

2p(0)

∂x2
2y

3
(y2 − 3) (2.19)

(2.18) and (2.19) are the equations for velocity within the pipe in the x and y directions respectively

By applying the boundary conditions Vy|y=1 = Uy|y=1 in (2.19) we obtain

U (0)
y (x, 1, t) =

4

3

∂2p(0)

∂x2
(2.20)

By substituting equations (2.13) and (2.14)in (2.12) we get

∂

∂x

[
−ε2 S

χ

∂pm
∂x

]
= − ∂

∂y

[
−S
χ

∂pm
∂y

]
−ε

2S

χ

∂2pm
∂x2

= −S
χ

∂2pm
∂y2

∂2pm
∂y2

= ε2
∂2pm
∂x2

According to [11]and [6] the longitudinal pressure gradient is constant.Therefore, from the boundary
condition (2.6)3

∂2pm
∂x2

= 0 and this implies

∂2pm
∂y2

= 0

∂pm
∂y

= J(x, t)

pm = J(x, t)y +K(x, t) (2.21)

By exploiting the boundary conditions (2.6) then J(x, t) = − p
H−1

and K(x, t) = pH
H−1

. Therefore

pm =

(
− p

H − 1

)
y +

pH

H − 1

pm = p

(
H − y
H − 1

)
pm

(0)(x, y, t) = p(0)(x, t)

[
H − y
H − 1

]
(2.22)
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We can now write (2.14) as

Uy = −S
χ

∂pm
∂y

= −S
χ

(
− p

H − 1

)
=
S

χ

(
p

H − 1

)
(2.23)

and in turn equation (2.20)

Uy
(0)(x, 1, t) =

4

3

∂2p(0)

∂x2
=
S

χ

(
p(0)

H − 1

)
(2.24)

We now get the equation

∂2p(0)

∂x2
=

3S

4χ

p(0)

H − 1

This is an ordinary differential equation with the boundary conditions (2.6)

p(0) = C1e

√
3S

4χ(H−1)
x

+ C2e
−
√

3S
4χ(H−1)

x (2.25)

Let C =
√

3S
4χ(H−1)

Then p(0) = C1e
Cx + C2e

−Cx

On application of the boundary conditions (2.6)we obtain equations for the constants C1 and C2, that
is

C1 = Pint(t)

1+e2C
and C2 = Pint(t)

1+e−2C

(2.25) can now be written as

p(0) =
Pin(t)

1 + e2C
eCx +

Pin(t)

1 + e−2C
e−Cx

We can express the pressure profile as follows

p(0) = Pin(t)

[
eCx

1 + e2C
+

e−Cx

1 + e−2C

]
(2.26)

Recalling equations (2.18) and (2.19), we can substitute for p(0) to obtain

Vx
(0)(x, y, t) = Pin(t)2C

[
eCx

1 + e2C
− e−Cx

1 + e−2C

]
(y2 − 1) (2.27)

Vy
(0)(x, y, t) = −Pin(t)

2

3
C2

[
eCx

1 + e2C
− e−Cx

1 + e−2C

]
y(y2 − 3) (2.28)

Equations (2.27) and (2.28) represent the components of the longitudinal velocity in the x and y
directions respectively in terms of the pressure.
By squaring C we have C2 = 3S

4χ(H−1)
and we can write (2.24) as

Uy
(0)(x, 1, t) =

4

3
C2p(0)

which on substituting for p(0) yields the equation for velocity through the pores

Uy
(0)(x, 1, t) = Pin(t)

4

3
C2

[
eCx

1 + e2C
+

e−Cx

1 + e−2C

]
(2.29)

For the uniform distribution of water along the pipe, we introduce the ratio
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Υ =
Uy

(0)(1, 1, t)

Uy
(0)(0, 1, t)

=
Pin(t) 4

3
C2
[

eC

1+e2C
+ e−C

1+e−2C

]
Pin(t) 4

3
C2
[

1
1+e2C

+ 1
1+e−2C

]
=

2(eC + e−C)

e−2C + 2 + e2C

=
2(eC + e−C)

(eC + e−C)2

=
2

eC + e−C

=
1

coshC
(2.30)

and let it be approximately equal to 1. [1].
We can now make C the subject in (2.30)

C = arccos

[
1

Υ

]
= ln

[
1

Υ
+

√
1

Υ2
− 1

]

= ln

[
1

Υ
(1 +

√
1−Υ

]
(2.31)

with Υ ≤ 1 and sufficiently close to 1.
By making χ the subject in the equation for C2, i.e. [χ = 3S

4C2(H−1)
] we can rewrite the Darcy’s

equation (2.5) as

Da =
ε2S

8χ

=
ε2S

8
[

3S
4C2(H−1)

]
=

ε2C2(H − 1)

6
(2.32)

We take a value of Υ less than 1, find C and finally obtain the wall permeability K∗.
We still have to find how the inlet pressure P ∗in(t) evolves when the reservoir is progressively
drained. Let the reservoir be a cylinder of radius Rresres∗ and height h∗res and let h∗0 be the height
of its base from the ground. The height h∗(t∗) of the water level within the reservoir will decrease in
time and so will the pressure P ∗in(t∗) = ρ∗g∗(h∗(t∗) + h∗0) [1].

Rescaling the heights by h∗res we obtain

Pin(t) =
ρ∗g∗h∗res

p∗c
(h(t) + h0) (2.33)

2.5 Mass flow rate
The equation for mass flow rate for a tube with elliptic cross section can be found in any standard
textbook in fluid dynamics (see [17]) yielding;

Q =

∫
S

V (x, y)dS (2.34)
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Therefore the equations for flow rate at the pipe inlet and outlet through the pores for the elliptic pipe
are respectively given by;

Q∗in =

∫ 1

0

Vx(0, y, t)dy (2.35)

=

∫ 1

0

2CPin(t)

[
1

1 + e2C
− 1

1 + e−2C

]
(y2 − 1)dy

= 2CPin(t)

[
1

1 + e2C
− 1

1 + e−2C

] [
y3

3
− y
]1
0

= −4

3
CPin(t)

[
1

1 + e2C
− 1

1 + e−2C

]
= −4

3
CPin(t)

[
1 + e−2C − (1 + e2C)

(1 + e2C)(1 + e−2C)

]
= −4

3
CPin(t)

[
e−2C − e2C

(1 + e2C)(1 + e−2C)

]
=

4

3
CPin(t)

[
e2C − e−2C

(1 + e2C)(1 + e−2C)

]
(2.36)

Q∗out =

∫ 1

0

Uy(x, 1, t)dx (2.37)

=

∫ 1

0

4

3
C2Pin(t)

[
eCx

1 + e2C
+

e−Cx

1 + e−2C

]
dx

=
4

3
C2Pin(t)

[
eCx

C(1 + e2C)
− e−Cx

C(1 + e−2C)

]1
0

=
4

3
CPin(t)

[(
eC

1 + e2C
− e−C

1 + e−2C

)
−
(

1

1 + e2C
− 1

1 + e−2C

)]
=

4

3
CPin(t)

[
eC − 1

1 + e2C
+

1− e−C

1 + e−2C

]
=

4

3
CPin(t)

[
(eC − 1)(1 + e−2C) + (1− e−C)(1 + e2C)

(1 + e2C)(1 + e−2C)

]
=

4

3
CPin(t)

[
eC + e−C − 1− e−2C + 1 + e2C − e−C − eC

(1 + e2C)(1 + e−2C)

]
=

4

3
CPin(t)

[
e2C − e−2C

(1 + e2C)(1 + e−2C)

]
(2.38)

The equation for the mass flow rate is therefore given by Q∗ = 4
3
CPin(t)

[
e2C−e−2C

(1+e2C)(1+e−2C)

]
and is in

terms of pressure and the axial and longitudinal velocities.

3 Results and Discussion
We have considered unsteady fully developed viscous and incompressible flow through an annular
pipe with elliptic cross-section. The pipe is made of a flexible and permeable material and this allows
water to seep through.

170



Ndegwa et al.; BJMCS, 5(2), 159-178, 2015; Article no.BJMCS.2015.012

3.1 Pressure profiles
In figure (3) the inlet pressure has been plotted against the length of the pipe, x and it is found
to decrease with increase in the length. The fluid pressure has also been plotted against time for
different values of x and it is found to decrease with time. It is clear to see that the inlet pressure
is equal to the fluid pressure at x = 0. There is also a sharp decrease in pressure at the entrance
of the pipe but later on the decrease is gradual along the length of the pipe. This is caused by the
presence of the pores which is in agreement with the results of [18]. [1] also found that the pressure
will decrease in time along the pipe. In addition, from (2.16) the pressure is a function of x only as
also shown in figure (3) below.

Figure 3: Fluid pressure in pipe and inlet pressure
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3.2 Velocity Vx

In figure (4) from the center of the pipe, the velocity tends towards zero along the inner wall of the
pipe. Also, from the inlet, the velocity of the fluid tends towards zero along the length of the pipe.
The decrease in Vx is attributed to loss of water along the pipe through the pores and also due to the
dead end configuration of the pipe. This result is in contrast to that of an elliptic pipe without pores as
was studied by [19]. Their results showed that the velocity increased towards the center of the pipe
and also increased towards the outlet of the pipe. The velocity does not influence the formation of
droplets since it tends to zero at each pore and this is also clear from the boundary conditions (2.7)

Figure 4: Longitudinal velocity in x direction
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3.3 Velocity Vy

In figure (5) the velocity decreases with increase in time. The velocity decreases along the length
of the pipe but increases from the center line to the inner wall of the pipe. Initially there is a sharp
increase in velocity along y but thereafter the increase is gradual. We can conclude that this increase
in Vy from the center line to the wall of the pipe is due to the presence of the pores. This is because
[9] studied an elliptical pipe without pores and their result was that the velocity increased from the
wall of the pipe towards the center line.

Figure 5: Longitudinal velocity in y direction
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3.4 Velocity Uy

In figure (6) the velocity through the pipe outlets decreases along the length of the pipe. In addition,
the velocity through the initial outlets increases sharply than through the subsequent outlets. This
compares favourably with the study of circular pipes by [20] who found that the tangential velocity
component vanishes on the channel wall. In our case the velocity does not vanish but decreases. By
rearranging equations (3.7 and 2.5), we find that an increase in the permeability of the pipe leads to
an increase in Uy. In this regard, for the velocity through the pipe to be great, we need to increase
the permeability of the pipe by adding more pores. Another key observation from the equations is
that the thickness of the pipe does not affect the water velocity through the wall. Finally, at each
pore, the water velocity through the pipe wall is constant. The explanation for this is in the equation
∂pm
∂y

= J(x, t) where the pressure gradient across the wall is constant.

Figure 6: Velocity through the permeable wall

3.5 Mass flow rate

From the mathematical formulation of mass flow rate equation, we find that Q∗in = Q∗out that is,
water entering the pipe from the elevated reservoir is equal to the water leaving the pipe through the
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pores and therefore the system is operating optimally. The mass flow rate is also directly proportional
to the pressure drop and this is in agreement with the work of [9]

Proposition. For efficient use of water for irrigation (through force of gravity) using an annular
permeable pipe with elliptic cross section, it is recommended that the pipe be placed in a vertical
position.

Proof. In the mathematical formulation of Q∗in and Q∗out above,(2.36 and 2.38) we used y = 1
for the boundary conditions and this corresponded to α = 0 (see figure 2). Using y = 0.5 which
corresponds to α = π

2
, the boundary conditions (2.6 and 2.7) will now be;

p|x=0 = Pin(t) =
P ∗in(t)

p∗c
, p|y=0.5 = pm|y=0.5, pm|y=H = 0

∂p

∂x
|x=1 = 0(dead−end configuration)

(3.1)

Vy|y=0.5 = Uy|y=0.5, Vx|y=0.5 = 0, Vx|x=1 = 0 (3.2)

By applying the boundary conditions (2.8, 3.1and 3.2)equation (2.18)changes to

V (0)
x (x, y, t) = 2

∂p(0)

∂x
(y2 − 1

4
) (3.3)

and (2.19)is now

V (0)
y (x, y, t) = −∂

2p(0)

∂x2
2y

3
(y2 − 3

4
) (3.4)

with (2.20)also changing to

U (0)
y (x, 0.5, t) =

1

6

∂2p(0)

∂x2
(3.5)

Looking at the equation for wall pressure (2.21) and applying the boundary conditions (3.1), then
J(x, t) = − 2p

2H−1
and K(x, t) = 2pH

2H−1
. Therefore equation (2.22) is given by

pm
(0)(x, y, t) = 2p(0)(x, t)

[
H − y
2H − 1

]
(3.6)

We can now write (2.14) as

Uy = −S
χ

∂pm
∂y

= −S
χ

(
− 2p

2H − 1

)
=
S

χ

(
2p

2H − 1

)
(3.7)

and in turn equation (3.5)

Uy
(0)(x, 0.5, t) =

1

6

∂2p(0)

∂x2
=
S

χ

(
2p(0)

2H − 1

)
We now get the equation

∂2p(0)

∂x2
=

6S

χ

2p(0)

2H − 1

This is an ordinary differential equation with the boundary conditions (3.1)

p(0) = C1e

√
12S

χ(2H−1)
x

+ C2e
−
√

12S
χ(2H−1)

x (3.8)

Let C =
√

12S
χ(2H−1)

Then p(0) = C1e
Cx + C2e

−Cx
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By substituting the equation for pressure (2.26)in the equations (3.3, 3.4 and 3.5)we get the equations
for the velocities in terms of pressure and they are respectively as follows

Vx
(0)(x, y, t) = Pin(t)2C

[
eCx

1 + e2C
− e−Cx

1 + e−2C

]
(y2 − 1

4
) (3.9)

Vy
(0)(x, y, t) = −Pin(t)

2

3
C2

[
eCx

1 + e2C
− e−Cx

1 + e−2C

]
y(y2 − 3

4
) (3.10)

Uy
(0)(x, y, t) = Pin(t)

1

6
C2

[
eCx

1 + e2C
+

e−Cx

1 + e−2C

]
(3.11)

Next we look at the equations for the mass flow rate (2.36 and 2.37) and these will change to

Q∗in =

∫ 0.5

0

Vx(0, y, t)dy =
1

6
CPin(t)

[
e2C − e−2C

(1 + e2C)(1 + e−2C)

]
(3.12)

and

Q∗out =

∫ 1

0

Uy(x, 0.5, t)dx =
1

6
CPin(t)

[
e2C − e−2C

(1 + e2C)(1 + e−2C)

]
(3.13)

respectively
Subsequently, for y = 0.75 corresponding to α = π

4
, the equation for the mass flow rate is:

Q∗in = Q∗out =
9

16
CPin(t)

[
e2C − e−2C

(1 + e2C)(1 + e−2C)

]
(3.14)

Thus looking at the above equations the mass flow rate is maximum when α = 0 and this lies on the
major axis of the ellipse and is minimum when α = π

2
which is on the minor axis. Therefore for the

efficient use of water for irrigation, the permeable elliptical pipe should be laid in a vertical position as
shown in figure (7)

Figure 7: Vertical elliptical cross section

Hence the proof.

4 Conclusion
In this work,the homogenization method was used to study the flow of incompressible fully developed
flow in a horizontal pipe of elliptical cross-section. The advantage of this method is that the equations
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are derived from the fundamental laws of fluid dynamics rather than heuristic assumptions and
therefore they have a sound physical basis. It also averages values of the dependent variables
over large scales and renders a good approximation of the fine scale solution. The following points
summarize the principal results of this study:

(i) The mass flow rate was shown to be maximum along the major axis meaning that the elliptical
pipe should be placed in a vertical position for efficient usage of water for irrigation.

(ii) The velocity through the pipe wall is not affected by the thickness of the pipe and at each pore
the velocity is uniform and constant. Indeed the formation of droplets at each pore for irrigation
is uniform along the pipe.

(iii) The presence of pores leads to an increase in velocity from the center line towards the wall
of the pipe. This proposed solution can be directly used for computing wall shear stress
distribution along the boundary of the wall.
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