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    Abstract: An unsteady magneto hydrodynamic viscous incompressible electrically conducting fluid flow between two 

parallel porous plates of infinite length in x  and z directions subjected to a constant pressure gradient in the presence of 

a uniform transverse magnetic field applied parallel to the y  axis with the plate moving with a time dependent velocity is 

analyzed. Two cases where the plates are moving (i) in the same direction, (ii) in the opposite direction while fluid 

suction/injection takes place through the walls of the channels with a constant velocity for suction and injection has been 

investigated. The nonlinear partial differential equation governing the flow are solved numerically using the finite 

difference method and implemented in MATLAB. The results obtained are presented in graphs. The velocity profiles, the 

effect of pressure gradient, magnetic field, time and suction /injection on the flow and the effects of varying various 

parameters on the velocity profile are discussed. A change on the parameters is observed to either increase, decrease or to 

have no effect on the velocity profile.  

 

Index Terms— Pressure gradient, Suction and Injection, Same velocity.  

 

I. INTRODUCTION 

MHD flows are characterized by a basic phenomenon which is the tendency of magnetic field to suppress vorticity 

that is perpendicular to itself which is in opposite to the tendency of viscosity to promote vorticity. MHD Couette 

flow is studied by a number of researchers due its varied and wide applications in the areas of geophysics, 

astrophysics and fluid engineering. The MHD flow between porous plates studied has many important applications 

in areas such as the designing of cooling systems with liquid metals, geothermal reservoirs, in petroleum and 

mineral industries, in underground energy transport, accelerators, MHD generators, pumps, flow meters, 

purification of crude oil, polymer technology and in controlling boundary layer flow over aircraft wings by 

injection or suction of fluid out of or into the wing among many other areas. Researchers have studied unsteady 

channel or duct flows of a viscous and incompressible fluid with or without magnetic field analyzing different 

aspects of the problem. Katagiri [1] investigated unsteady hydro magnetic Couette flow of a viscous, 

incompressible and electrically conducting fluid under the influence of a uniform transverse magnetic field when 

the fluid flow within the channel is induced due to impulsive movement of one of the plates of the channel. 

 

 Muhuri [2] considered this fluid flow problem within a porous channel when fluid flow within the channel is 

induced due to uniformly accelerated motion of one of the plates of the channel. Soundalgekar [3] investigated 

unsteady MHD Couette flow of a viscous, incompressible and electrically conducting fluid near an accelerated 

plate of the channel under transverse magnetic field. The effect of induced magnetic field on a flow within a porous 

channel when fluid flow within the channel is induced due to uniformly accelerated motion of one of the plates of 

the channel, studied by Muhuri [2]. The work by Muhuri [2] was later analyzed by Govindrajulu [4]. Mishra and 

Muduli [5] discussed effect of induced magnetic field on a flow within a porous channel when fluid flow within the 

channel is induced due to uniformly accelerated motion when one of the plates starts moving with a time dependent 

velocity. In the above mentioned investigations, magnetic field is fixed relative to the fluid. Singh and Kumar [6] 

studied MHD Couette flow of a viscous, incompressible and electrically conducting fluid in the presence of a 

uniform transverse magnetic field when fluid flow within the channel is induced due to time dependent movement 

of one of the plates of the channel and magnetic field is fixed relative to moving plate. Singh and Kumar [6] 

considered two particular cases of interest in their study viz. (i) impulsive movement of one of the plates of the 

channel and (ii) uniformly accelerated movement of one of the plates of the channel and concluded that the 

magnetic field tends to accelerate fluid velocity when there is impulsive movement of one of the plates of the 
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channel and when there is uniformly accelerated movement of one of the plates of the channel. Katagiri [1] studied 

the problem when the flow was induced due to impulsive motion of one of the plates while Muhuri [2] studied the 

problem with accelerated motion of one of the plates. Both had considered that the magnetic lines of force are fixed 

relative to the fluid. Singh and Kumar [6] considered the problem studied by Katagiri [1] and Muhuri [2] in a 

non-porous channel with the magnetic lines of force fixed relative to the moving plate. S. Ganesh,   S.Krishnambal, 

[7] studied unsteady MHD stokes flow of a viscous fluid between two parallel porous plates. They considered the 

fluid being withdrawn through both walls of the channel at the same rate. Various aspect of the flow problems 

in porous channel have been studied, Bég et al. [8], studied unsteady magnetohydrodynamic Hartmann-Couette 

flow and heat transfer in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects. Makinde et 

al. [9] studied unsteady hydromagnetic flow of a reactive variable viscosity third-grade fluid in a channel with 

convective cooling while Vieru et al. [10] studied the Axial Flow of Several Non-Newtonian Fluids through a 

Circular Cylinder. 

 

Seth et al. [11], studied the problem considered by Singh and Kumar [6] when the fluid flow is confined to porous 

boundaries with suction and injection considering two cases of interest, viz (i) impulsive movement of the lower 

plate and (ii) uniformly accelerated movement of the lower plate. Seth et al. [11] concluded that the suction exerted 

a retarding influence on the fluid velocity whereas injection has accelerating influence on the flow while the 

magnetic field, time and injection reduce shear stress at lower plate in both the cases while suction increases shear 

stress at the lower plate. Ismail et al. [12].   MHD flow between two parallel plates through porous medium with 

one in uniform motion and the other plate at rest and uniform suction at the stationary plate. They used the 

Similarity transformation method to solve the problem and concluded that the axial velocity of the fluid decreases 

as density, time, and Hartmann number increases. The Axial velocity of the fluid increases as average entrance 

velocity increases Transverse velocity of fluid increases as density, Hartmann number and suction increases. 

Joseph et al. [13] studied Unsteady MHD couette flow between two infinite parallel porous plates in an inclined 

magnetic field with heat transfer with the lower plate considered porous. They concluded it shows that magnetic 

field has significant effect to the flow of an unsteady MHD couette flow between two infinite parallel porous plates 

in an inclined magnetic field with heat transfer. Kiema et al. [14] considered laminar viscous incompressible fluid 

between two infinite parallel plates when the upper plate is moving with constant velocity and the lower plate is 

held stationary under the influence of inclined magnetic field and concluded that the increase in magnetic field 

strength and magnetic inclination results into decreases in the velocity profiles. Onyango et al. [15]  considered 

magneto hydrodynamic flow between two parallel porous plates with injection and suction in the presence of a 

uniform transverse magnetic field with the magnetic field lines fixed relative to the moving plate with a constant 

pressure gradient and concluded that the magnetic field, pressure gradient, time and injection have an accelerating 

influence on the fluid flow with a constant pressure gradient in the direction of the flow on both cases of suction and 

injection while viscosity and suction exert a retarding influence. Extensive researches have been done on the flow 

between parallel plates. This study is with consideration when both plates are motion with the same velocity in the 

same direction and in opposite directions. This work presents findings of studies on MHD couette flow problem 

between porous plates with magnetic field lines fixed relative to the moving upper plate with suction and injection 

on the plates.  

 

II. MATHEMATICAL FORMULATION  

 
Fig1: Physical model of the problem 
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This study considers the flow of unsteady viscous incompressible electrically conducting fluid between two 

parallel porous plates 0y  and hy  of infinite length in x  and z directions with a constant pressure 

gradient in the presence of a uniform transverse magnetic field oH applied parallel to the y  axis. 

Initially (when time 0t ), the fluid and the porous plates of the channel are assumed to be at rest. When 

time 0t , the lower plate ( 0y  ) and the upper plate ( hy  ) starts moving with time dependent velocity 

n

otu  (where ou is a constant and n  a positive integer) in the x  direction with the fluid suction/injection takes 

place through the walls of the channel with uniform velocity oV  where 0oV  for suction and 0oV  for 

injection. 

The velocity and the magnetic fields are given as 0( , ,0)q u v  and 0(0, ,0)H H


 respectively. 

The magnetic forces 
2

0e H Velocity   

From the Navier Stokes equation  

2u
u u P u F

t
  


      


                     (1.0) 

2u
u u P u J B

t
  


       


                     (1.1) 

The flow is incompressible (the density  , is considered a constant) and is considered in one dimension along the 

x- axis hence the Navier stokes equation along the x-axis is given as   

2 2

2 2

u u u P u u
u v J B

t x y x x y
  

       
         

        
           (1.2) 

For a Couette flow 0
P

x


 


 but for the analysis 
P

x





= a constant  
. The two plates are infinite in length 

hence 0
u

x





.The fluid is injected on the lower plate with a constant velocity 0V  and is also sucked from the 

upper plate at the same constant velocity 0V .The general equation governing the flow reduces to  

2 22

0

2

( )e H uu u u
v

t y y

 

  

   
   

  
                       (1.3) 

Where  







 , and 

2 22

0

2

e H uu u u
v

t y y


 



  
   

  
                        (1.4) 

where 





   

The magnetic field lines are fixed relative the moving plates (The upper plate and the lower are accelerating 

uniformly–a function of time) hence the velocity is considered as a relative velocity and reflects how fast the fluid 

is moving relative to the moving plates. The general equation governing the flow  

 2 22
0 0

2

n

e H u u tu u u
v

t y y


 



  
   

  
              (1.5) 

For consideration of the two cases of interest viz. (i) movement of the plates in the same direction (i.e. n = 1) and 

(ii) movement of the plates in the opposite direction (i.e. n = 1). 
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Case I. Movement of the plates in the same direction (i.e. n = 1) 

 

Taking 1n  , for a case of uniform acceleration, the governing equation for the flow becomes  

 2 22
0 0

2

e H u u tu u u
v

t y y


 



  
   

  
                 (1.6) 

With the boundary conditions defined as;  

0u    0 y h   0t   

0

nu u t  at   y h  0t                              (1.7) 

0

nu u t  at   0y   0t   

III. NUMERICAL COMPUTATION 

Non-Dimensionalization of the Equations 

The non dimensionalization of the governing equation is performed by selecting characteristic dimensionless 

quantities. The dimensionless quantities used in non dimensionalization of the governing equation (1.5) and the 

boundary condition (1.7) are    

y
y

h

  ,   
uh

u


    and   
2

t
t

h

                          (1.8) 

2

2 3

u u y t u u

t y t t h t h h t

     

   

     
  

     
           (1.9) 

2

1u u u y u u

y u y y h y h h y

    

   

     
  

     
               (2.0) 

2 2

2 2 2 3 2

u u u u y u

y y y y h y y h y y h y

     

   

            
       

             
        (2.1) 

Replacing on the governing equation (1.6) 

 2 22 2
0 0

03 2 3 2
. .

e H u u tu u u
V

h t h y h y

  
 



  

  

  
   

  
         (2.2) 

Non dimensionalizing the relative velocity in equation (2.2) by setting  
u u

u h u
h






      and 

2

2

t t h
t t

h






     Substituting in (2.2) to non-dimensionalize the relative velocity 

2 22 2 2

0
0 03 2 3 2
. . e Hu u u u t h

V u
h t h y h y h

   
 

 

    

  

   
     

    
       (2.3)  

and multiplying the equation by  

3

2

h


 gives 

2 23 2 3 3 3 2 3 2

0
0 02 3 2 2 2 2 3 2 2

. . . . . e Hh u h u h h u h u t h
V u

h t h y h y h

   
 

      

    

  

   
     

    
      (2.4) 
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2 23 2 3 2

0 0
02 2 2

eV h Hu u h u h u t h
u

t y y h

 


    

    

  

   
     

    
     (2.5) 

2 23 2 3 3

0 0
02 2 2

1
.eV h Hu u h u h t h

u u
t y y h


 

    

   


  

   
     

    
     (2.6) 

2 2 23 2 3

0 0
02 2 2

eV h H hu u h u t h
u u

t y y


 

   

   


  

   
     

    
             (2.7) 

2 2 23 2 3

0 0
02 2 2 2

.eV h H hu u h u t h
u u

t y y


 

   

   


  

   
     

    
       (2.8) 

2 2 23 2 3

0 0
02 2 2

eV h H hu u h u t h
u u

t y y




   

   


  

   
     

    
      (2.9) 

The expression

2 2 2
20e H h

M



  is the Hartmann number squared, and 0u h


 is the Reynolds number Re   and 

hence substituting in Equation 2.9, this gives 

3 2 3
20

02 2 2

V hu u h u t h
M u u

t y y


  

   


  

   
     

    
            (3.0) 

3 2
20

2 2

ReV hu u h u h
M u t

t y y


  

  
 

  

    
     

    
            (3.1) 

 Equation (3.1) is the governing equation in non-dimensional form. 

Dimensionalizing the boundary conditions from (1.7) using the non-dimensional parameters from equations (1.9), 

(2.0) and (2.1) are obtained as  

0u   0 1y   and  0t   

Re
t h

u



     at 1y  ;      0t                            (3.2) 

Re
t h

u



     at  0y   ;      0t   

Case II. Movement of the plates in the opposite direction (i.e. n = 1) 

For case (ii) where the parallel porous plates of the channel are in motion in the opposite directions. 

The governing equation is given by  

3 2
20

2 2

ReV hu u h u h
M u t

t y y


  

  
 

  

    
     

    
            (3.3) 

 

The boundary conditions are as follows  

0u   0 1y   and  0t   

Re
t h

u



     at 1y  ;      0t                            (3.4) 
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Re
t h

u



      at  0y   ;      0t   

The governing equations in non-dimensional form together with the boundary conditions for both cases will be 

presented in their finite difference forms consistent with the method of solution. 

 Governing Equation in Finite Difference Form 

The finite difference analogues of the PDEs arising from the equation governing this flow are obtained by replacing 

the derivatives in the governing equations by their corresponding difference approximation .The following 

substitutions are done for the derivatives for the Crank Nicolson, we have the proposed averages as 

, 1 ,

2

i j i ju u
u




                                  (3.5) 

, 1 ,i j i ju uu

t t









                               (3.6) 

 
1, 1 1, 1 1, 1,

4( )

i j i j i j i ju u u uu

y y


     



  


 
                      (3.6) 

 

2
1, , 1,

22

2i j i j i ju u uu

y y


 



 


                              (3.7) 

   

2
1, , 1, 1, 1 , 1 1, 1

2 22

2 21

2

i j i j i j i j i j i ju u u u u uu

y y y


      



           
     
          

   (3.8)  

Replacing in the governing equation 

   

3
, 1 , 1, 1 1, 1 1, 1,0

2

1, , 1, 1, 1 , 1 1, 1

2 2

, 1 ,2

4( )

2 21

2

Re

2

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j

j

u u u u u uV h h

t y

u u u u u u

y y

u u h
M t


 



      

      



    
   

  

           
     

           

 
  

 

     

 (3.9)

 
   

3
, 1 , 1, 1 1, 1 1, 1,0

2

1, , 1, 1, 1 , 1 1, 12

, 1 ,2

4( )

1
2 2

2

Re

2

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j

j

u u u u u uV h h

t y

u u u u u u
y

u u h
M t


 



      

      



    
   

  

     
 

 
  

 

   (4.0) 

Multiplying through by t  
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                                        (4.2) 

Rearranging (4.2) gives 
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                                          (4.3) 

Here 
0
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, 

2

2
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


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2 Reh
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
   and the suction/ 

injection  parameter 0V h
S


 .   

Substituting the values of  ,  ,  ,  ,   and S  in (4.3) gives  
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                                           (4.4) 

Rearranging (4.4) gives 
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                                          (4.5) 

Rearranging equation (4.5) gives 
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                                          (4.6) 

Collecting the like terms form equation (4.6) gives         
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Rearranging equation (4.7) 

     

   

1, 1 , 1 1, 1

1, , 1,

1 2

1 2

i j i j i j

i j i j i j j

u u u

u u u t

     

      

    

 

       

      
            (4.8) 

The finite difference equations obtained at any space node, say, i  at the time level 
1jt 

 has only three unknown 

coefficients involving space nodes at 1i  , i  and i i  at
1jt 

. In matrix notation, these equations can be 

expressed as AU B where U  is the unknown vector of order ( 1)N   at any time level 1jt  . B  is the known 

vector of order ( 1)N  which has the value of U at the 
thn time level and A is the coefficient square matrix of 

order ( 1) ( 1)N N    which is a tridiagonal structure. 

The coefficients of the interior nodes will be represented as: 
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For 2,3,4....( 1)j N  , then the equation   (4.8) becomes  

1, 1 , 1 1, 1j i j j i j j i j j j j ja u b u c u d e f g h                     

                                          (5.0) 

The system of equations resulting from equation (5.0) are represented in a tridiagonal matrix form as  
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IV. RESULTS AND DISCUSSION 

The physical situation of the problem and the effects of various flow parameters on the flow regime are depicted 

graphically and discussed. The simulations are curried out using ISO FLUIDS 3448 which are industrial oils whose 

kinematic viscosities range between 2 and 10.A constant pressure gradients between 1 and 5 and Reynolds 

numbers 1.The results are as follows; 

Case 1: Plates moving in the same direction 

 
Fig.2: Varying the Reynolds number 

 

 
(a) 

 
(b)

Fig.3: Varying the Magnetic number 

 
(a) 

 

 
(b) 

Fig.4: Varying the Pressure gradient 
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Case II:   Plates moving in the opposite directions 

 
Fig.5: Varying the Reynolds number 

 

 
(a) 

 

 
(b) 

Fig.6: Varying the Magnetic number 

 

 
(a) 

 
(b) 

Fig.7: Varying the Pressure gradient 
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From figure 2. and figure 5. The velocity of the fluid increases with the increase in the Reynolds number for both 

suction on the upper plate and injection on the lower plate and injection on the upper plate and suction on the lower 

plate. The increase in the velocities are more pronounced at the plates due to the no-slip condition. 

 

From figure 3. and figure 6. The increase in the magnetic number leads to an increase in the velocity of the fluid in 

the case where fluid suction is done on the upper plate and injection on the lower plate and the case where fluid 

injection is done on the upper plate and suction on the lower plate since the increase in the magnetic number 

reduces the drag force in the fluid hence increased velocities. The magnetic number gives a measure of the relative 

importance of the drag force resulting from the magnetic induction and the viscous forces in the fluid. 

 

From figure 4. and figure 7. The velocity profiles increase with increase in the pressure gradient in both cases 

where fluid suction is done on the upper plate and injection on the lower plate and where fluid injection is done on 

the upper plate and suction on the lower plate since Pressure gradient is applied in the direction of the flow hence 

an increase in pressure gradient results in an increase in the force in the fluid in the direction of the flow which 

results in increased velocity profiles for the fluid flow. 

 

For all the cases, it is observable that the velocities near the boundary for the plate with injection are greater than 

the velocities of the fluid near the plate with suction since injection of the fluid through the plate destabilizes the 

boundary, increasing the pressure and leading to a decrease in the viscous forces hence increase in the motion of the 

fluid.   

V. CONCLUSION 

The findings of this study  leads to a conclusion that the magnetic field, pressure gradient, time and injection have 

an accelerating influence on the fluid flow with a constant pressure gradient in the direction of the flow on both 

cases of suction and injection. The injection and suction of fluid from either of the plates has a significant effect on 

the velocity profiles with injection leading to increased velocities and suction leading to decreased velocities of the 

fluid. 

NOMENCLATURE 

B   Magnetic field strength vector, [wbm
-2

] 

Ho   Magnetic flux identity along the y- axis [wbm
-2

] 

g   Acceleration due to gravity vector, [ms
-2

] 

H   Magnetic field intensity vector in Amperes per meter, [Am
-1

] 

J   Current density, [AM
-2

] 

e    Unit electric charge, [C] 

E     Electric field, [v] 

S    Suction/ Injection 

M     Magnetic parameter 

Xi    Permeability parameter 

Re    Reynolds number     

P    Pressure force, [nm
-2

] 

*P    Dimensionless pressure force. 

q     Velocity vector, [ms
-1

] 

i  , j , k  Unit vector is the x, y, z directions respectively 

u , v , w  Component of velocity vector q, [ms
-1

] 

*u ,
*v ,

*w  Dimensionless velocity components 
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*x ,
*y ,

*z  Dimensionless Cartesian co-ordinates 

x , y  , z   Dimensional Cartesian co-ordinates 

iF      Body forces tensor, [N] 

iU      Velocity tensor, [ms
-1

] 

jx       Space tensor, [m] 

oV      Suction velocity, [ms
-1

] 

Greek symbol   Meaning 

      Fluid density, [kgm
-3

]        

 µ      Coefficient of viscosity, [kgm
 -1

s] 

      Electrical conductivity, [Ω-
1
 m-

1
] 

µe      Magnetic permeability, [Hm
-1

] 

 

REFERENCES 
[1] Katagiri, M., (1962).Flow Formation in Couette Motion in Magneto hydrodynamics. Phys. Soc. Jpn., Vol. 17, p. 

393-396.   

[2] Muhuri, P. K., (1963).Flow Formation in Couette Motion in Magneto hydrodynamics with Suction. J. Phys. Soc. Jpn., 

Vol. 18, p. 1671-1675.   

[3] Soundalgekar V.M. (1967). On the flow of an electrically conducting incompressible fluid near an accelerated plate in 

the presence of a parallel plate, under transverse magnetic field. Proc. Ind. Acad. Sci., 65A, pp. 179-187. 

[4] Govindrajulu T., (1969). Unsteady flow of an incompressible and electrically conducting fluid between two infinite discs 

rotating in the presence of a uniform axial magnetic field .Journal: ActaMechanica - ACTA MECH, vol. 8, no. 1, pp. 

53-62, 

[5] Mishra SP and Muduli JC (1980).Unsteady flow through two porous flat walls in the presence of a magnetic field. Rev. 

Roum. des Sci Tech. Serie de Mech. Appl., 25, pp. 21-27. 

[6] Singh, A. K. and Kumar, N., (1983). Unsteady Magneto- hydrodynamic Couette Flow. Wear, Vol. 89, p. 125-129. 

[7] Ganesh, S., & Krishnambal, S. (2006). Magneto hydrodynamic flow of viscous fluid between two parallel porous plates. 

Journal of Applied Sciences, 6(11), 2420-2425. 

[8] Bég O.A, Zueco J. and Takhar H.S (2009). Unsteady magneto hydrodynamic Hartmann-Couette flow and heat transfer in 

a Darcian channel with Hall current, ionslip, viscous and Joule heating effects. Network numerical solutions, Nonlinear 

Science Numerical Simulation .14 (4), pp. 1082-1097. 

[9] Chinyoka, T., and Makinde, O.D., (2012).Unsteady hydro magnetic flow of a reactive variable viscosity third-grade fluid 

in a channel with convective cooling. International journal for numerical Methods in Fluids, Vol. 69(2), pp. 353-365 

[10] D. Vieru and Siddique I. (2010).Axial Flow of Several Non-Newtonian Fluids through a Circular Cylinder Journal: 

International Journal of Applied Mechanics. Vol. 02, pp.543  

[11] Seth G. S., Ansari S. and Nandkeolyar R., (2011). Unsteady Hydro magnetic Couette flow within a porous channel. 

Tamkang journal of Science and Engineering. Vol. 14. No. 1, pp. 7-14 

[12] Ismail, A. M., Ganesh, S., & Kirubhashankar, C. K. (2014). Unsteady MHD flow between two parallel plates through 

porous medium with one plate moving uniformly and the other plate at rest with uniform suction. Int. J. Sci. Eng. Tech. 

Res, 3, 6-10. 

[13] Joseph, K. M., Daniel, S., & Joseph, G. M. (2014). Unsteady MHD Couette flow between two infinite parallel porous 

plates in an inclined magnetic field with heat transfer. International Journal of Mathematics and Statistics Invention, 2(3), 

103-110. 

http://academic.research.microsoft.com/Author/21700437/t-govindarajulu
http://academic.research.microsoft.com/Keyword/43546/unsteady-flow
http://academic.research.microsoft.com/Keyword/23835/magnetic-field
http://academic.research.microsoft.com/Author/21727394/dumitru-vieru
http://academic.research.microsoft.com/Author/21772407/imran-siddique
http://academic.research.microsoft.com/Publication/27489108/axial-flow-of-several-non-newtonian-fluids-through-a-circular-cylinder
http://academic.research.microsoft.com/Journal/17697/international-journal-of-applied-mechanics


 

                                                       
   

 

 

ISSN: 2319-5967 

  ISO 9001:2008 Certified 
  International Journal of Engineering Science and Innovative Technology (IJESIT) 

   Volume 6, Issue 1, January 2017 

89 

 

[14] Kiema, D. W., Manyonge, W. A., Bitok, J. K., Adenyah, R. K., & Barasa, J. S.(2015)  On the steady MHD couette flow 

between two infinite parallel plates in an uniform transverse magnetic field. Journal of Applied Mathematics & 

Bioinformatics, vol.5, no.1, 2015, 87-99 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2015 

[15] Onyango, E. R., Kinyanjui, M. N., & Uppal, S. M. (2015). Unsteady Hydromagnetic Couette Flow with Magnetic Field 

Lines Fixed Relative to the Moving Upper Plate. American Journal of Applied Mathematics, 3(5), 206-214. 

 

AUTHORS BIOGRAPHY 

 

 

 

  

  
 

 

 

 
 

Mr. Edward Richard Onyango obtained his MSc. in Applied Mathematics from Jomo Kenyatta 

University of Agriculture and Technology (JKUAT), Kenya in 2015. Presently he is a PhD student 

in the same university. His area of research is MHD flows.  

 

 

 

 

 

Professor Mathew Ngugi Kinyanjui Obtained his MSc. In Applied Mathematics from Kenyatta 

University, Kenya in 1989 and a PhD in Applied Mathematics from Jomo Kenyatta University of 

Agriculture and Technology (JKUAT), Kenya in 1998. Presently he is working as a professor of 

Mathematics at JKUAT and The Director of Post Graduate studies at JKUAT. He has Published 

over Fifty papers in international Journals. He has also guided many students in Masters and PhD 

courses. His Research area is in MHD and Fluid Dynamics.  

Dr. Mark Kimathi Obtained his Msc. in Applied Mathematics obtained his MSc. in Applied 

Mathematics from Jomo Kenyatta University of Agriculture and Technology (JKUAT),Kenya in 

2007 and a PhD in Applied Mathematics from Kaiserslautern University in Germany in 2012.He is 

presently working as a Lecturer at Technical University of Kenya 


