

DATE:

TIME:

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE (COMPULSORY) (30 MARKS)

- a) Obtain a partial differential equation of first order by eliminating the arbitrary functions of the equation $u = e^{-y}f(x) + e^{x}g(y)$ (5 marks)
- Show that the Laplace's equation in three dimensions $u_{xx} + u_{yy} + u_{zz} = 0$ is satisfied b) by the function $u = r^{-1}$ where;
 - $u = \sqrt{(x x_0)^2 + (y y_0)^2 + (z z_0)^2}$ (5 marks)
- Obtain the solution to the initial value problem $u_{xx} = 4xy + e^x$ with initial conditions c) $u(0, y) = y, u_x(0, y) = 1$ (6 marks)
- Solve the following boundary value problem d) $u_{xy} = 4xy + e^{x}; u_{y}(0, y) = y, u(x, 0) = 2$
- An infinitely long string having one end at x = 0 is initially at rest on the x axis. At e) t = 0, the end x = 0 begins to move along the u - axis in a manner described by $u(0,t) = a \cos \sigma t$. Find the displacement u(x,t) of the string at any point at any time (8 marks)

QUESTION TWO (20 MARKS)

Consider the following equation, $u_{xx} + 4u_{xy} + 4u_{yy} = 0$. Find the differential equation a) of the characteristic curve and obtain the general solution

(4 marks)

(6 marks)

b) Fourier transform of a function f(x) if it exists is defined by

$$\overline{F}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\xi x} dx$$

Hence or otherwise find the Fourier transform of the function $f(x) = e^{-ax^2}$; a > 0

(6 marks)

c) Show that the cylindrical polar form of a Laplace's equation in two dimensions is given by; $\nabla^2 u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$ where $u(r,\theta), r(x,y)$ and $\theta(x,y)$ (10 marks)

QUESTION THREE (20 MARKS)

b) Consider the following nonlinear second order partial differential equation, $r - t \cos^2 x + p \tan x = 0$. Hence or otherwise integrate using Monge's method

(10 marks)

QUESTION FOUR (20 MARKS)

- a) Verify that each of the following equations has the indicated solutions
 - i. $u_{xx} 3u_{xy} + 2u_{yy} = 0; u = f(x + y) + g(2x + y)$ (4 marks)
 - ii. $u_t = \alpha u_{xx}$; $u = e^{-\alpha t} \sin x$

(4 marks)

Obtain the integral of
$$q^2r - 2pqs + p^2t = 0$$
 in the form $y + xf(z) = F(z)$
(12 marks)

QUESTION FIVE (20 MARKS)

b)

- a) Solve the following equations
 - i. $u_{xy} = u_x$ (4 marks)
 - ii. $u_{xx} = 2xy; u(0, y) = y^2, u_x(0, y) = y$ (6 marks)
- b) Find the D'Alembert's solution of the homogenous one-dimension wave equation $u_{xx} = \frac{1}{c^2}u_{tt}$ given that u(x, 0) = f(x) and $u_t(x, 0) = g(x)$ (10 marks)