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SMA 433: PARTIAL DIFFERENTIAL EQUATIONS II 

DATE:               TIME:  

INSTRUCTIONS: Answer question one and any other two questions 

QUESTION ONE (COMPULSORY) (30 MARKS) 

 

a) Obtain a partial differential equation of first order by eliminating the arbitrary functions of 

the equation 𝑢 = 𝑒−𝑦𝑓(𝑥) + 𝑒𝑥𝑔(𝑦)                                          (5 marks) 

b) Show that the Laplace’s equation in three dimensions 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0 is satisfied 

by the function 𝑢 = 𝑟−1 where; 

 𝑢 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2                                                 (5 marks) 

c) Obtain the solution to the initial value problem 𝑢𝑥𝑥 = 4𝑥𝑦 + 𝑒𝑥 with initial conditions 

𝑢(0, 𝑦) = 𝑦, 𝑢𝑥(0, 𝑦) = 1                                                         (6 marks) 

d) Solve the following boundary value problem  

𝑢𝑥𝑦 = 4𝑥𝑦 + 𝑒𝑥; 𝑢𝑦(0, 𝑦) = 𝑦, 𝑢(𝑥, 0) = 2                                            (6 marks) 

e) An infinitely long string having one end at 𝑥 = 0 is initially at rest on the 𝑥 − 𝑎𝑥𝑖𝑠. At 

𝑡 = 0, the end 𝑥 = 0 begins to move along the 𝑢 − 𝑎𝑥𝑖𝑠 in a manner described by 

𝑢(0, 𝑡) = 𝑎 cos 𝜎𝑡. Find the displacement 𝑢(𝑥, 𝑡) of the string at any point at any time                                                       

        (8 marks) 

QUESTION TWO (20 MARKS) 

a) Consider the following equation, 𝑢𝑥𝑥 + 4𝑢𝑥𝑦 + 4𝑢𝑦𝑦 = 0. Find the differential equation 

of the characteristic curve and obtain the general solution 

                                                                                                                                (4 marks) 

b) Fourier transform of a function 𝑓(𝑥) if it exists is defined by  

�̅�(𝜉) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝜉𝑥𝑑𝑥

∞

−∞
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Hence or otherwise find the Fourier transform of the function 

 𝑓(𝑥) = 𝑒−𝑎𝑥
2
; 𝑎 > 0                                                                                                (6 marks) 

c) Show that the cylindrical polar form of a Laplace’s equation in two dimensions is given 

by; ∇2𝑢 = 𝑢𝑟𝑟 +
1

𝑟
𝑢𝑟 +

1

𝑟2
𝑢𝜃𝜃 where 𝑢(𝑟, 𝜃), 𝑟(𝑥, 𝑦) and 𝜃(𝑥, 𝑦)                        (10 marks) 

 

QUESTION THREE (20 MARKS) 

a) Find the Riemann-Green function for the equation                                        
𝜕2𝑢

𝜕𝑥𝜕𝑦
− 2

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
− 2𝑢 = 0 and hence obtain the solution that satisfies the conditions 𝑢 =

0, 
𝜕𝑢

𝜕𝑥
= 2𝑥 on 𝑦 = 𝑥                                                                                              (10 marks) 

b) Consider the following nonlinear second order partial differential equation, 

𝑟 − 𝑡 cos2 𝑥 + 𝑝 tan 𝑥 = 0. Hence or otherwise integrate using Monge’s method                                                                                                   

     (10 marks) 

 

QUESTION FOUR (20 MARKS) 

a) Verify that each of the following equations has the indicated solutions 

i. 𝑢𝑥𝑥 − 3𝑢𝑥𝑦 + 2𝑢𝑦𝑦 = 0; 𝑢 = 𝑓(𝑥 + 𝑦) + 𝑔(2𝑥 + 𝑦)                              (4 marks) 

ii. 𝑢𝑡 = 𝛼𝑢𝑥𝑥; 𝑢 = 𝑒−𝛼𝑡 sin 𝑥                                                                         (4 marks) 

b) Obtain the integral of 𝑞2𝑟 − 2𝑝𝑞𝑠 + 𝑝2𝑡 = 0 in the form 𝑦 + 𝑥𝑓(𝑧) = 𝐹(𝑧) 
                                                                                                                              (12 marks) 

QUESTION FIVE (20 MARKS) 

a) Solve the following equations 

i. 𝑢𝑥𝑦 = 𝑢𝑥                                                                                                    (4 marks) 

ii. 𝑢𝑥𝑥 = 2𝑥𝑦; 𝑢(0, 𝑦) = 𝑦2, 𝑢𝑥(0, 𝑦) = 𝑦                                                   (6 marks) 

b) Find the D’Alembert’s solution of the homogenous one-dimension wave equation 𝑢𝑥𝑥 =
1

𝑐2
𝑢𝑡𝑡 given that 𝑢(𝑥, 0) = 𝑓(𝑥) and 𝑢𝑡(𝑥, 0) = 𝑔(𝑥)                                            (10 marks) 

 


