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A bstract

In chapter 1 and 2, We begin by introducing a few elementary aspects of 

the symmetric group Sn and there after we give a brief discussion on the 

representation theory with emphasis on the symmetric group. In chapter 3. 

we discuss the construction of an ordinary irreducible Sn-submodule basing 

on the lormat provided in the book bv Sagan [6]. Finally, we discuss on the 

lrieducibility of the constructed submodule as the base field shifts from a 

field of characteristic 0 to a field of characteristic p > 0
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In troduction

As mentioned in [8], A group representation can be thought of as an action 

oi a group G on some vector space. Such actions arise naturally in many 

branches oi mathematics and physics and as such it is important to study 

and understand the theory of representations. Cayley's theorem asserts that 

everv finite group can be embedded in a group of symmetries Sn for some n 

- this makes the studies related to the symmetric group of much significance 

since by the isomorphism guaranteed by the Cayley’s theorem we may un­

derstand the properties of any other finite group.

A* an illustration, the solution space of a differential equation in a 3-dimensional 

?pace having a rotational symmetry has its solution space invariant under ro­

tations. Thus the space of solutions will constitute a representation of the 

rotation group 50(3 ). If we know what all of the representations of 50(3) 

are, then this can help immensely in narrowing down what the space of so­
lutions can be.

In fact, one of the chief applications of representation theory is to exploit 

symmetry. If a system has symmetry, then the set of symmetries will form a 

group, and understanding the representations of the symmetry group allows 

us to use that symmetry to simplify the problem

This report focuses on the representation theory of symmetric groups and 

in particular on the construction of -ill irreducible modules of the symmet- 

lic group 5 ;i 'Otherwise known as the Specht Modules). There are numerous 

applications of representation of groups and in particular tiie representa­

tion of the symmetric group. For instance, they arise in physics, probability
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and statistics, topological graph theory, the theory of partially ordered sets 

amongst many other areas.

This report contains 5 chapters - in chapter 1 we have provided elementary 

definitions as well as basic results about the symmetric group Sn. Chapter 2 

is on the ordinary representation of finite group with some small emphasis on 

the symmetric group Sn. It should be noted that this chapter is not exhaus­

tive as far as representation theory is concerned, we have only mentioned 

some useful aspects that is in direct reference to the main objective of this 

report. In chapter 3 we have dwelt on the construction of the ordinary irre­

ducible modules of the symmetric group Sn popularly known as the Specht 

modules, and a simple example for the case n = 3 has been given.

In representation theory of finite groups, it is useful to know which ordi­

nary irreducible representations remain irreducible when reduced modulo a 

prime p. In chapter 4. we have traced the history of classification of ordinary 

irreducible modules that remain irreducible modulo p.

vi



Chapter

The Symmetric Group Sn

1.1 I n t ro d u c t io n

Definition 1.1.1 (The Sym m etric G roup) Let 5  = {a i ,a 2.. ..a ,}  be 

a set of n distinct elements. For Convenience we label the elements as 

{1. L,.... n} . The set oi all permutations of elements of S  forms a group 

under the binary operation of composition. This group is denoted by Sn and 

is called the symmetric group of degree n.

Herstein [1] and Fraleigh [2j have a fairly elementary treatment of symmetric 
groups.

1.2 P a r t i t io n s

Permutations may be given using different types of notations. 

Definition 1.2.1 A cycle is a permutation of the following form

h  h  '— H Ik
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where ij are all distinct. This cycle is denoted by (i1.i2.i3, • • . ik) and is 

called a k-cyde or a cycle of length k.

A cycle ot length 2 is called a transposition. It can be shown easily that a 

permutation can be written as a product of disjoint cycles; on the other hand, 

every cycle is a product of transpositions. Consequently, every permutation 

can be written as a product of transpositions.

D efinition 1.2.2 The signature of a permutation tt denoted sgn(Tr) is de­

fined to be

sgn(7r) = ( - l ) r

where r  is the number of transpositions in the decomposition of rr in terms 

of transpositions.

An example of a cycle notation of a permutation is

tt =  (123)(45)(6)(7) (1.2.1)

The cycle type of a permutation tt is an expression of the form

where m* is the number of cycles of length k in tt. The permutation in the 

example given in 1.2.1 above has the type

( l2. 2l ,31. 4°, 5°. 6°. 7°)

We can also use a partition to give the cycle type. In 1.2.1 above, tt is a 

product of four cycles: a 3-cycle, a 2-cycle and two 1-cycles. This informa­

tion can be represented as (3. 2,1.1. or more convenientlv using exponential 

notation as (3 .2 .12).



Definition 1.2.3 (P artitio n ) A partition A oi a positive integer n is a 

sequence of positive integers

A = (Ai, A2....... A/)

such that A, > Xi+l for all integers 1 < i < l and £ zm i K = n. The entry At 
is called a part of A

Definition 1.2.4 (C onjugate P a rtitio n ) For each partition A of n there 

is a conjugate partition of n, denoted A' =  (A'r  X'2, . . . ,  X'k) where

X[ = maxf jjAj > ?.}

Exam ple 1.2.1 The permutation given in 1.2.1 has a partition of the type 

A = (3 ,2 .12). Its conjugate partition is then A' = (4. 2.1)

1.3 C o n ju g a cy  Classes of  Sn
Definition 1.3.1 Let g, h 6 G. We say that g is conjugate to g in G if

h = xgx~[ for some x € G

The set g oi all elements conjugate to h in G is called the conjugacy class 

of g in G.

Distinct conjugacy clashes are disjoint and therefore a group G can be written

as

G = 9? U 0 ? U -- -U s f

that is as a union of distinct conjugacy classes.

Definition 1.3.2 If H is a subgroup of G we say that g \ ,g i . .. .  ,gk is a 

transversal for H if H =  {g\H.g2H— ,#*/•/} is a complete set of disjoint, 

left cosets for H in G

3



(. onsidering t he case where G = Sn, we have the following simple observation;

Proposition 1.3.1 Let x be a k-cycle (i{, i2, ... ik) jn Sn and let g € Sn 

then gxg~l is the k-cycle (gii,gi2t. . . ,  gik)

Proof: Write A =  {il f .. .,**}. For ir € A.

4)fPr — gxif = gir+i (or gi\ if r = k.) (1.3.1)

also, for 1 < i < n and i £ A

(9x 9~l )gi = gxi = gi (1.3.2)

Hence g(il t .. • Gk)g~l = {gii-gii, ■ ■ ■ ,gik) as required.

Now considering an arbitrary permutation x € Sn, write

x =  (a i,.. .akl)(bi, .. .bk7) .. (c i ,. . .  c*J as a product of disjoint cycles with 

k‘l ^  k‘2 ^  ^  ks. By the above proposition, for g 6 Sn we have

gxg 1 = (9 a i, .- .g a kl)(gbu...gbki) . . . ( g c l ,.. .gckH)

The 5-tuple A =  (k j, k2, . . . .  k3) is called the cycle-shape of x. it is also called 

a partition of n. We note that x and c/xt,"1 have the same cycle-shape. On

the other hand given any two permutations x. y having the same cycle-shape.
say

x ~  • • • a*i )(&i- • • bk2) . . .  (c i,.. .  Ck,)

9 — (®i» — dfcj )(6 i,. • bk2) . . .  (c j,.. Ck,

then there exist y € 5n sending a L -» d1?. . .  c*, — c*, hence

pxp"1 = y.

Ihus tor x € Sn, the conjugacy class xs” of x in Sn consists of all permu­

tations in Sn which have the same cycle-shape as x. From this we see that

he numbei of possible partitions of n is equal to the number of distinct

•4



conjugacy classes in S„. This fact is used to show that the exact number of 

non-isomorphic irreducible representations of S„ is equal to the number of 

distinct conjugacy classes of Sn

5



I 2"Chapter JLj  _

Representations and Characters of 

Finite Groups

2.1 R e p re se n ta t io n s  of a G ro u p  G
Throughout this report, it will be assumed that G is a finite group and V is 

a finite dimensional vector space over a field F.

Representation theory can be approached from two different angles - either 

in terms of matrices or or in terms of modules.

D efinition 2.1.1 A representation of a group G is a group homomorphism 

T  from G to the group GL{V) of all invertible linear transformations of V . 

hence we say V a G-module.

Definition 2.1.2 (M atrix  R epresen tation) A matrix representation of 

a group G is a group homomorphism .V from G to the group GL{n F) of all 

invertible n x n matrices.

D efinition 2.1.3 If dim V = n we say that the representation T  has degree 

or dimension n, similarly if .V is a matrix representation of G mapping

6



elements of G to the group o f n x n  invertible matrices over F then we say 
that X is of dimension n.

D efinition 2.1.4 Alternatively, we say that V' is a C-rnodule if there exists

a multlPllcatl0n 9V between the elements 6 and € Gsatisfying these 
properties:

1. gv e V,

2. g(civ -r c2w) =  Ci(gv) + c2(gw), where ct € F. w G V

3. (gh)v = g{hv), h e  G

4. ev = v

Consequently we get a correspondence between a matrix representation .Y of 

degree n and the vector space F \  we simply define the multiplication gv by

gv =7 X(g)v  (2.1.1)

It can be verified easily that the multiplication defined satisfies the above 

properties in 2.1.4 and therefore show that F" is a G-module. On the other

hand, if V' is a G-module and E = {iq.nj.u„} a basis for V, then the

mapping c -  gv is an endomorphism. If we define ,Y = [g\s  where (ff)6 

is the matrix of endomorphism relative to the basis B. then the mapping 

defined is a matrix representation of G.

Exam ple 2.1.1 Let G be an arbitrary group. Let A' be a mapping that 

a lig n s  to each element g e G the 1 x 1 identity matrix (1). This represen­

tation of dimension 1 and is called the trivial representation and denoted by 

lc  or just 1 when there is no ambiguity about the group G in context. When



G = Sn another important representation of dimension 1 is the signature 

representation given by

A'(tt) =  sgn(^) for all tt € Sn 

This representation is usually denoted by sgn

Exam ple 2.1.2 Let G act on itself by left multiplication and let FG =

^ { 9i 9̂2....... 9n) denote the group algebra generated by G over F; that is FG

consist of all formal linear combinations

C lg l ^2 o n  ' ‘ ’ T" C ngn ,

where cx € F lor all i (The elements of G are put in boldface to show that they 

are being considered as vectors). Vector addition and scalar multiplication 

in FG are defined by

(Clgl H f Cngn) + (di gi H-----T dngn) = (Cl + di)gi T T (cn *i“ d„ lgn

and

c(cigi J---- -1-Cngn) = (ccOgi 4------- - (cCn)gn

The action or G on itself can be extended to an action on FG by linearity:

9 ( C l S l  - r  • • • -  C n g n ) =  C i ( y g i )  --------C n (y g n )

for all g 6 G. This makes FG a G-module of dimension G |.

To make things more concrete we consider the dihedral group D4 = (a. 6 : 

a2 =  64 =  1. ba = abJ) where 1 denote the identity element and let F = C

CD 4 = {cil-C2b-rC3b2+c4b3+ c5a-fc6ab-C 7ab2- c 8ab3 : c, € C for all *}

8



T j find the matrix of a6J with respect to the standard basis G -  G we 

find tne matrix of endomorphism when a63 acts on the basis elements B =
{ l  b. b2. b3, a. ab. a b 2. ab3}.

a63l = a63, ab3b = a. a6jb2 = ab. a63b3 = ab2. afc3a 6. a63ab = 62,a63ab2 = 6:i «63a b 3

A'(a63) =

Thus

/ o o o o o o o i \0
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

\ 1 0 0 0 0 0 0 0 y/

Atter compul inS the matrices corresponding to the remaining elements of 0 4 

we find that all the matrices are permutation matrices and are all distinct. 

1 he mapping X  mapping elements of 0 4 to the group of G f.{S, Q  is a matrix

representation of 0 4. This representation is known as a regular representation 

and has a lot of significance in representation theory. Furthermore, a matrix

representation of a group G mapping all the elements of G to permutation 

matrices is known as a permutation representation. A regular representation 

of a group G of degree n provides an embedding of G into the symmetric 

group Sn - this is asserted in the Cayley’s Theorem

The book by Gordon and Martin [3] provides more details and more concrete 

examples of group representations in a leisurely introductory manner.

9



2.2 R educ ib i l i ty  a n d  th e  M asch k e’s T h eo rem

We always gain a better understanding of a mathematical object by studying 

its sub-objects. In the theory of modules, we gain a better understanding of 

a module V if we can break it up into smaller modules called the submodules. 

Similarly in matrix theory, we find it easy to handle a matrix that have been 

transformed into its reduced form, i.e. either triangular or diagonal or the 

variations of the two in terms of block matrices. These definitions are useful 

in the formal statement and proof of Maschke’s theorem

Definition 2.2.1 Let V be a (7-module. A subspace W  of V is said to be a 

(7-submodule if it is invariant under the action of (7 i.e.

D efinition 2.2.2 A non-zero (7-module V  said to be reducible if it has a 

non trivial G'-submodule, otherwise V is irreducible. On the other hand, a 

matrix representation X  corresponding to a G-module V  is reducible if V is 

reducible, otherwise X  is irreducible

D efinition 2.2.3 Let X  be a matrix, then X  is a direct sum of matrices A 

and B written X  = A B, if X  has the block diagonal form

T heorem  2.2.1 (M aschke’s Theorem ) Let G be a finite group and F be 

a field such that char F f \G\ and let V be a non-zero FG-module. Then

where each IT'1' is an irreducible FG-subinodule of V*. Equivalently, Maschkes 

theorem states that every representation T  of a finite group G is equivalent 

with a direct sum of irreducible representations.

U) € W  => gw £ W  for all g £ G

v = w{i; e e ■•• ©

10



The proor ot this theorem has been provided in the book by Lederman[4) 

ctiid also a similar one has been given in [5] and is not very complicated.

I  lie proot provided by Sagan in [6] is very simple and straight forward. The 

following is a concrete example based on the proof provided in [6j.

Exam ple 2 .2.1 Let G  = S3 - the group of all permutations of the objects 

in the set S  = {1.2.3}, we can construct CS = €{1.2,3} as an 63-module 

basing on the construction of the regular G'-module as in example 2.1.2. The 

subs pace U generated by the vector (1 4- 2 +  3) is an 63-submodule since for 

any tt € 63 and w =  c(l +  2 + 3) € W (c € C) we have

7TW = 7Tc( 1 4- 2 T 3)

=  c(7r(l) +  7r(2) +  7r(3))

=  c(l 4- 2 — 3) up to re-arrangement 

€ W

II is ot dimension 1 and hence is irreducible. Thus we would wish to express 

CS as €S =  W ® W\ where W: is also an S3-submodule. W is 1 subspace 

01 CS. hence from the theory of vector spaces we know that CS = H' 6

. Therefore, it suffices tor us to find W L and to show that it is an 53-

submodule. On the other hand we can find W 1 by use of a S r invanant

inner product ( ,)  defined on CS i.e. = (Vl.v2) for all tt € S3 and

tor all ci, v2 £ CS. We can define such an inner product between two vectors 

ui =  ci c2- + c33, v2 = di 1 -  d22 -h 1(3.3 as

( v \ .  Vo) =  Cl J 1 -r Cody +  C3J 3

where the bar denotes complex conjugation. This inner product is 53- 

invariant. consequently we can give \V- as

w ~ = C {1 +  2 +  3}1 =  {v = cl -  b2 -  c3 (v. 1 — 2 -4- 4) =  0}

= {t = al -p 62 -r c3 : a 4- b — c = 0}

11



That is VI consist ot all those vectors in CS whose co-ordinates with respect 

to the basis elements add up to zero, e.g. 1 -  2.3 -  2.3 -  1.... Two linearly 

independent vectors will span W 1. For this example lets consider the vectors 

1 - 2 .3 - 2 .  Putting together the bases Bw = {1+ 2+ 3} .B W.  = {1- 2,3 -2 }  

for IT and W L respectively we form a basis B = {1 + 2 + 3,1 -  2.3 -  2} for 

CS. With this basis, every permutation 7t £ S3 has a matrix representation 

which is the matrix of endomorphism [tt]^ We get the following matrices

G o o ' ' G  0 0 ^

W5 = 0 1 0 , [(1 .2)]s = 0 - 1 0

1 ° 0 1 J 1 °  - 1 1 /

G o o ' ' G o o '

[ ( U ) ] s  = 0 0 1 . [(2 ,3)le  = 0 1 - 1

0 1 0 J 0 0 - 1  i

1—> O O OOr—
i

[(1,2,3)]e = 0 0 - 1 , ((1.3,2))e = 1 -1 1

H11 
4

O O70

Clearly all the matrices in this representation are in the form

X(n)
A(g) 0

0 B(g)
(2.2.1)

Now it remains to show that IV 1 is indeed an 53-submodule. We do this 

by considering a general case. If U is a (7-submodule then [JL is also a 

G'-submodule as well, to show this take w € U~ and g € (7 then for all a e U 

(gw a) = (g~Lgw,g~[u) (G-invariance of the inner product)

= (w .g~lu) (properties of groups)

=  0

12



This means that gw 6 UL i.e. U- is a G-submodule. Finally, W -  can 

also be shown to be irreducible and hence CS = W  © W -  is an irreducible 

decomposition of the ^-m odule just as stated in the Maschke’s theorem

2.3 G ro u p  C h a ra c te r s

Let X  be a representation of a group G. For each g e G define a mapping 

X  - G —> C by \{g) = tr  X (g), then x is called the character of the represen­

tation X. Characters of representations have many remarkable properties, 

and they are the fundamental tools for performing calculations in represen­

tation theory. Moreover, basic problems such as deciding whether or not a 

representation is irreducible, can be resolved by doing some easy arithmetic 

with the character of the representation.

Equivalent representations as well as isomorphic G-modules can be shown to 

have same character. Furthermore, if g h £ G are conjugate elements then 

\ (g )  = x(/i) for all characters x of G. If V is a G-module, then the dimension 

of V is called the degree of x> also if V is an irreducible G-module then the 

character x is said to be irreducible otherwise it is a reducible character. 

The regular character of G is the character corresponding to the reqular 

G-module and is denoted Xrcg

P ro position  2.3.1 Let V be a G-module. and suppose that

V =  (j\ 0  [J‘2 © • • • © Ur

a direct sum of irreducible G-modules Ux then the character of V is equal to 

the sum of the characters of the G-modules L \__ l \

13



2.3.1 P e rm u ta t io n  Characters

Let V be an n dimensional vector space with basis {ul; v2, ... vn}. For each 

7r 6 5„, define the multiplication nvt by

Extending this definition to be linear on V shows that V is an .9n-module, 

called the permutation module. Now define the set

fix(7r) =  { i : 1 ^  i ^  n and 7r(z) =

I ne corresponding character \  also called the permutation character is there­

fore given bv

XM = |fix(7T)|

2.3.2 Inner  P ro d u c t  of Characters

We can think or a character x  of 9- group G = {<?i. <?2 -. • . ; <?n} as a row vector 

of complex numbers

X = (x(0i),xte),-..,x(.'7n))

D efinition 2.3.1 Let \  and v  be two characters of a group G, Then the 

inner product of \  and tit is

(x- v) = T  Y ]  x(g)t(g)
\G[ g€C

where the bar denotes complex conjugation. It is shown in [6](section 1.9) 

that yj(g) = dj(g~l) giving us an alternative definition of the inner product

as

(x-i') =  t̂ 7 x(s)<% ~1)
g€C

14



Taking inru i pioduct of characters is a simple method of determining whether 

a representation is irreducible. In fact it has been shown in [3](Theorem 

14.12) that ii \  and ijj are inequivalent irreducible characters then

(X,X) = 1 and

(X.tf) = 0

This is called the Schurs orthogonality relation.

2.4 R e s t r i c te d  and In d u ced  R ep re sen ta t io n s

Let h be a subgroup ot a group G and X  be a matrix representation of G. 

The restriction of X  to H. X [ CH is given by

X f H= X{h) for all h € H

This mapping is actually a representation of the subgroup H and can be 

verified with no complications. If X  has a character then the character 

ot X 1.^ is denoted by x I h - h  is therefore easy to obtain a representation of 

a subgroup H of a group G from a representation of the group itself. The 

other way round may not be that trivial - that is given a representation of 

a subgroup H how can we obtain a representation of the whole group G 

Frobenius succeeded in constructing a representation of a group from thar 

of an arbitrary subgroup, from his procedure, as depicted in the following 

example

Exam ple 2.4.1 Let G = S3. H — ((123)/. Let V be the one dimensional 

representation of H given by

(123) - e 2?

15



Our aim is to obtain a representation X  of the entire group S3 We start by de­

composing S:i into the disjoint left cosets of H. (Lets consider the transversal 

(1 )•(!-) ‘ — {(1)//, (12)//}) and tor any 7r 6 53 we define the mapping

Y i i l ) " v W )  (241) 
\  V((12) '^ ( l ) )  K ((12) - 1tt(12)) J

where V'(jr) =  0 if n $ H. For instance if it = (23) then we have

(1)-'(23)(1) = (23), (1)-'(23)(12) =  (132).

(12)-‘(23)(1) = (123), (12)-‘(23)(12) = (13)

therefore.

*((23)) =  Y f i  ((23)) = V'((23)) y((123)) \  

Y(( 132)) ^((13)) )

0 e T  \

e2-r  0 )

Computation for the rest of matrices for the remaining elements is done in 

ci similar manner and it is not hard to verify that the mapping is actually a

k presentation. VMiat, it remains to show now is that the mapping defined 

in 2.4.1 is a representation irrespective on the group and the subgroup in 

consideration. The following definition is attributed to Frobenius:

D efinition  2.4.1 Let H  be a subgroup of G and t \ , t2} • ., be a transver­

sal tor tne lett cosets of H. If V is a representation of H. then the cor­

responding induced representation Y]% assigns to each g 6 G the block

matrix

( Y{rx xgh) Y ( t i lgt2) • •  Y ( t ; lg tk) ^

II

0*5 Y ( t 2 lgh) Y{ t2 lgt2) •• ■ Y ( t 2 lg t k)

\ Y ( ^ lgti) Y ( t ; lgt2) • • •  Y ( t ; lg t k ) j
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where Y(g) =  0 if g £ H.

Frobenius actually discovered that Y Tg (g) is indeed a representation, that 
is

 ̂ rH (9)Y T H W  =  (gh.) for all g .h £  G (2.4.2)

To show that equation 2.4.2 above is indeed a representation, we need to 
prove the following:

1. V i ^ is always a block permutation matrix

2. V T/y (e) is the identity matrix

3- Z t - i  Y ( t - lgtr)Y{t;lhtj) = Y ( t ; lghtj)

(1) . For a f.xed i we show that Y{t~lgtj) is non-zero for exactly one j .  If we 

assume the contrary, say Y fc 'g t , )  and Y ( t ^ g t k\  j  *  k are non-zero block 

matrices, then from the definition t~lgtj £ H  and t~'gtk £ H => 3x. y £ H 

such that t, ]gtjX = t~lgtky. By cancellation laws t3x = tky this contradicts 

tin iact that ljt tk are representatives of two disjoint left cosets of H . Similar 

arguments show that for a fixed j, Y ( t~Lgtj) is non-zero for exactly one i. The 

hlu« k pei mutation form ensures that the rows and columns of the resultant 

matrix are pairwise linearly independent respectively. This implies that the 

resultant matrix is invertible.

(2) . From the arguments above = t ’ lt3 € H <=> i = j  =* only the 

»1'*< i\ matiices in the main diagonal are non-zero identity matrices.

o If we compare the fij)th  block on both sides ot the equation 2.4.2. it 
implies that

T  Y (ti '‘3tr)Y(t;'htj ) = Y (t~ lghtj) (2.4.3)

We have two cases arising, either t~lghtj £ H or t~lghtj £ H.

We note that t~lght3 = t~lgtrt ; lhtj, therefore if t~lght} £ H => Y(t~lgh t,) =
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0 then either t\ lgtr $ H or t ; lht3 € H for all r  => either Y(t~lgtr) = 0 

or V (tr [ktj) =  0 for all r => forcing their product to be the zero block 

matrix. On the other case it ti lghtj £ H. let m be the unique index 

such that t ; 'g tm 6 H, but then t ^ h t j  = (t ^ g t ^ H ^ g h i j  € H,that is 

h gtm- € H. Since V is a representation defined on H then

Y i ^ g h t i )  = Y {t~x gtmt ^  htj) = Y ( t - lgtm)Y(rmxhtj) (2.4.4)

This proves 2.4.3 above and consequently part (3) above and consequently 

proves that 2.4.2 is actually a representation. We also note that induced and 

rest lit ted representations do not preserve irred ucibility and further more 

induced representations depend only on the subgroup chosen and not the 

transversal. This is asserted in the following proposition (without Proof)

P roposition  2.4.1 Consider H < G and a ... tion Y of

H. Let { t i , . . ,ti} and {si—  , s*} be two transversals for H giving rise to 

representations matrices X  and Z. respectively, for Y  f T h e n  .V and Z

are equivalent.

The proof of this proposition can be found in the book by Sagan [61

C orollary  2.4.1 Let G  be a group and K. H be subgroups of G such that 

I\ < H < G and V a matrix representation of K. Then

(V' Tg) f HZ Y f K (2.4.5)

ProoJ: Let 7\ =  {hi, /i2). . . .  km} be a transversal for the left cosets of K  in 

To = {y[ g2: ■ ■ ■ ■ gn} be a transversal for the left cosets of H in G and 

Cj =  {ai.ft... .. ,Op} be a transversal for the left cosets of A in G. First we

note that
\H\ -  m\K\

\G\ =  n\H\ = nm\ K\

\G\=v\K\

> => p = run

18



Let T = {</,/1, |*  € T2, hj G Tx, 1 ^  i < n, 1 ^  j  ^  m}

Claim : The set T is a transversal for the left cosets of K  in G. To show 

this, suppose that there exist gu gt € T2 and h3. hd € T\ such that

9ihjh  Pi gihdh ^  o (2.4.6)

We have the following cases: either i = l or i ^  l. If i ^  / then since hj K C H 

and hdK  C H and gx. gt are representatives of disjoint left cosets of H. then 

glkJK ngihdK  = <p contradicting 2.4.6 above. On the other hand if i = l the 

cancellation laws imply that 2.4.6 above can be written as

h j K D h dK ^  6  (2.4.7)

Similarly h.,. kd are representatives of their respective left cosets of K in H. 

hence if j  5= d then the above cannot be true. This means that 2.4.6 holds 

if and only if gx = gt and hj = consequently the left cosets gji, K. (gr 6 

T>.hj € T[) are mutually disjoint each with cardinality j/\'  and therefore 

they are in a 1 -  1 correspondence with the left cosets arI\ of I\ in G. This 

proves our claim.

Now going back to 2.4.5 above, we have

V' T* W  = Y{h~xxhd) where j : d € {1.2, . . . ,  m}

(y' Ta ) T h W  = Y  T K {9i lxgi) where i,l € {1.2, . . . ,n}

= Y ( h j \ g - lxgi)hd) (2.4.8)

= Y[{gihj)~lx{gihd))

Y t% {x) = Y(a~ ixaw) where r, w € {1.2.......p} (2.4.9)

Finally as a corollary of proposition 2.4.1 above, 2.4.8 and 2.4.9 imply that 

the resultant representations are equivalent.
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Chapter

Construction of Ordinary Irreducible 

Modules of Sn

It has been proved in Sagan [6] that the number of all irreducible represen­

tations 01 S„is equal to the conjugacy classes of Sn. On the other hand we 

have alreadv seen that the number of possible partitions of n ,s equal to 

thejtumbe, of conjugacy classes of S„. This means that for each partition

'  f Al,A*.......A,i) there corresPond an irreducible S,,-module. Our main
aim in this section is to construct such an irreducible module.

rittenDefinition 3.0.2 For each partition A =  (A„ A,....... A.) of n(also w r i.._

A "  n )’ We find a corresPonding subgroup 5 , by taking an inner product
•5(1.2... ,A,( x 5 (a1+i .Ai+2...A,+Aj> X • ■ • X 5 {n. Ai+l.„ .At+J... n). This subgroup is

called the Young’s subgroup of Sn.
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Aa an illustration, it n — 3 and we take a partition of 3 say A = (2 .1). then 

the corresponding Young Subgroup 5 (2,ij is given as

•5(2.1) = 5(1,2) X 5(3}

= {(1)(2),(1; 2 )} x {(3)}

=  {(1)(2)(3),(1,2)(3)}

= {1, ( 1, 2)}

Taking the Young s subgroup S\  corresponding to a partition A and inducing 

the trivial representation on S\  up to 5n, we get a representation 1 

and consequently we get its corresponding module hfx, which may not be 

irreducible in general. However, the set {A-1). A(2' . A(3), . . .  } of partitions of 

n Cfcin he ordered such that the first module /V/A<* is irreducible and we can 

call it 5 A Next. M y ‘ will contain only copies of 5 A ‘ and a copy of a new 

irreducible 5 Al \  In general A/A will decompose into some 5A° ’ for ; < / 

and a new unique irreducible 5  ' called the ?th Specht module.

3.1 Y o u n g ’s D ia g ra m s  and T ab leaux

Let A = (A,. A2, . . . ,  Afc) be a partition of n. The diagram [Aj of A is an or­

dered set. of boxes with At boxes in row i. The boxes also called nodes mav be 

labeled (i, j)  and thus the young diagram may be defined as [Aj = {(a j)  € 

N x N|j < Aj}. Going back to section 1.2 above we used A = (3. 2 .1*) as an 

example of partition. Its corresponding Young’s diagram is
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D efinition 3.1.1 A Y oung’s tab leau  t of shape A or just A-tableau is an 

array of integers obtained by placing the integers from 1 through n into the 

nodes of the diagram of A in a bijective manner.

Exam ple 3.1.1 For example if n = 3 and A = (2. 1), some of the possible 

tableaux of shape A are

11 —
1 I ] i "3l I T

3 h  = 2
( 3 =  E

3!

For clarity, the grid lines in the diagram may be dropped

D efinition 3.1.2 Two tableaux t\, t-2 of shape A are vow equivalent t.\ ~~ i2. 

if corresponding rows of the two tableaux contains the same elements. This 

is an equivalence relation and consequently, the entire set of A-tableaux can 

be decomposed into distinct sets of disjoint equivalence classes.

D efinition 3.1.3 A tabloid of shape A or A-tabloid is then {̂ } = ~ / }

That is the tabloid {£} is the equivalence class of t.

Thus if

then

t =
2 3 

1

W  =
2 32 3 3 2

1 1  I 1

The lines between the rows of the array is to show that it is a tabloid. It is 

easy to see that the number of A-tabloids is just . ,Ai!a2.'A*
Sn can act on a tableau of shape A in the following manner, for each n € Sn 

let
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This induces an action on tabloids by letting

= {**}

This action is well defined, i.e. if t and s are row equivalent tableaux of shape 

A then the entries in row i of tableau t and s are in a 1 -  1 correspondence, 

consequently it £(tJ) = S(ti7.) then 7r(£(, = n{s(lir)). This means that the

action induced on the set of all tabloids of shape A is independent of the 

choice ot tableau t representing {£}. This action gives rise to an 5,,-niodule.

D efin ition  3.1.4 Suppose A I- n. Let

where { ti} {£2}....... {£r } is a complete list of A-tabloids. Then A/A is called

the permutation module corresponding to A

Exam ple 3.1.2 Let A =  (2.1) h 3. M x is the vector space over the complex 

field C spanned by the set of tabloids below

, . 2 3 1 3  1 2
{t i } ---------- , {t2} ----------- . {t2 ;- = --------

1 2  3

Alter constructing the Sn modules .V/ '' tor each partition A b n our next step 

is to put these modules in some order that will have the properties earlier 

described.

3.2 O rder ing

The set of all partitions of n is partially ordered as in the following definition
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D efin ition  3.2.1 If A and y. are partitions oi n then we sav that A dommaUs 

H written A > y  provided that for all j

1=1

This is a partial order since there exist partitions that cannot be compared 

in this manner e.g. A(1) = (3.1.1,1) and A® = (2.2.2) cannot be compared. 

Another ordering that can be defined on the set of all partitions of n is the 

dictionary order (lexicographical order)

D efinition  3.2.2 If A and y  are partitions of n then we write A > y  if and

only ii then least j  for which A; ^  y3 satisfies the relation A > y }

Lem m a 3.2.1 (D om inance Lemma for P artitions) Let A and ^ be par­

titions of n and suppose that tx is a A-tableau and t2 is a y-tableau. Suppose 

that tor every i the numbers from the zth row of t2 belong to different columns 
of ti then \  > y

Proof. Suppose that we place y x numbers from the first row of U in t\ such 

that no two numbers are in the same column. Then t2 must have at least y : 

columns that is Ai ^  y x. Next insert the y 2 numbers from the second row of 

t2 in different columns. For this to be possible, we require Ai + A2 ^  p\ + p2. 

Continuing this way, we have A > p.

The total order > contains the partial order >, in the sense that if A > p 

then A > /i, but the reverse implication is false in general 

Ii we list A/A in a dual lexicographical order then the first module M (n} is 

one dimensional and will be irreducible to start with. This order will have 

the property described in the introductory paragraphs of this chapter. For 
example if n -  6 then:

(6) >  (5.1) >  (4.2) >  (4,12) >  (32) >  (3.2,1) >  (3, l3) >  (23) >  (22, l2) >  (2.14) >  (l6)
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‘V/'6) -  5  " wi“ be “  "^ u c ib le  module of St, M»-» will contain one copy of a 
new irreducible S<5'1> and copies of S™, just as in the property earlier described

3.3 C o n s t ru c t in g  the  Specht M odu le  C o r re ­

sp o n d in g  to  a  P a r t i t io n  A

Definition 3.3.1 Let t be a A-tableau, then its c o lu m n -s ta b iliz e r  C t a  the Young’s 

subgroup of Sn keeping the columns of t fixed setwise that is

Ct = {7r € Sn : i and 7r(z) belong to the same column of t)

If t nas columns C'i, Co, • •.. Cfc then its column stabilizer is

C\ = Sc, * Sc2 x • • x Sck

Definition 3.3.2 If t is a A-tableau the procedure for constructing SA starts by 

setting the signed column sum € CSn which is obtained by summing the ele­

ments in tiie column stabilizer of t and attaching a signature to each permutation, 
i.e.

Kt = ^  sgn(7r);r 
ir€Ct

As t varies over all A-tableaux in the tabloid {*} we form the product e£ = «£{t} 

called a po iy t.ab lo id associated with the the tableau t

Example 3.3.1 I f t =  4 then Ct = {1, (1,3), (2.5), (1.3)(2,5)} and con-
1 5

sequently wt = 1 -  (1,3) -  (2.5) +  (1,3)(2.5) where 1 denotes the identity element. 
We then form a polytabloid et

3 2 4  1 2 4  3 5 4 1 5 4
------------------------------------------------- - + ------------

1 5 3 5 1 2 3 2

2 0



Its a logical question to ask about the relation between the polytabloids formed 

by appl\ ing the piocess above on to different tabloids corresponding to a partition 

A. We know that if X\,Z2 € Sn have the same cycle-type then, there exists a 

permutation n such that 7r.-r!7r“1 = i 2■ Consequently, if t \ and t2 are two different 

A-tableau.\ in different A-tabloids then there exists a permutation 7r € Sn such that 

t\ = ntox ' The following lemma clarify this relation.

Lemma 3.3.1 Let f be a tableau and rr be a permutation. Then

L  C m  =  7 rC t 7r- 1

2. Km = nKt7r~l

3. eTt = tret

Proof. Let A = (Aj. A-2. ... .  A*) be a partition of n and t be a tableau of shape A. 
A general tableau of t is given by

*1,1 *1.2 • *l,Aj

t _  *2.1 *2.2 • • *2,A,

tie ,l *jfc,2 ■ ' • t k ,Afc

Tae tableau t has columns Ci,C2— ,Ca( and hence its column stabilizer C\ 

will be Ct = S’c t x Sc2 x ■ x 5C-A. A typical element o € C, will be given 

as a disjoint product of cycles of the form {tXJ, . . . .  On the other

hand, if a permutation t acts on the tableau t we get a tableau rrt whose column 

stabilizer CT, will be given by Cm = 5XC| x Snc2 x • • x SwC*, • Consequently a 

typical element r  € CL* will be given by a product of disjoint cycles of the form 

... ,7xtt+rj). Thus to prove part 1 of lemma 3.3 1 above we need to
show

i WU j > *T*l+lJ ...... 7r*t+rj/' = T(*tJ? fl-fl.j, • . • , tt+r^TT 1 (3.3.1)
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By proposition 1.3.1 oi section 1.3 above, the equation 3 3.1 holds true. The proof 

of part 2 proceeds similarly. Finally to prove part 3 we have

eTt = *7r.‘{Trt} = 7r«tT-1 {^t} = 7r*t{t} = 7ret

Definition 3.3.3 For any partition A. the cot : :.g Specht module SA is the

submodule of M x spanned by the polytabloids et , where t is the shape of A

Example 3.3.2 We will use n = 3 to illustrate the entire process of constructing 

all the Specht modules and there after, a generalization for a general n will be given. 

The choice of n = 3 is entirely to keep our calculations as simpler as possible, n = 3 

has three partitions namely A'l) = (3) > A(2' = (2.1) > A(3 = (1.1. 1) listed in 

the dual lexicographical order.

For A1’1’ = (3) we have one unique tabloid

{t} = 1 2  3

Thus Ai'3 = C{{t}} is one dimensional and thus is irreducible. Note also that ts 

t varies over all tableaux of shape A'1' = (3) our procedure as described produces 

polytabloids which are all equal and hence the Specht module 5^3: being the span 

of all the resultant polytabloids will just reduce t.o the span of a single polytabloid. 

It is not difficult to show that the same is true for the case A = (n)

For A(2) = (2.1) we have three distinct tabloids

{*i}
2 3 

1

1 2 

3

Consequently = C{{ti}, {t ->}. {t3}} is 3-dimeusional and is also reducible.

We therefore aim to extract a submodule S '2 ‘ which is irreducible. We start by 

considering a tabloid {£*} and for each tableau say ttiJ in this tabloid we form the 

Young’s subgroup C'tJ stabilizing its columns. We then form the signed column 

sum K.t J and finally we form a poiytabloiti ejj. The second Specht mod lie S'* 1 is



therefore the span of the resultant polytabloids eg. To make things more concrete, 

lets consider the tabloid {t2}. We have two tableaux in this tabloid

, _ 1 3 3 12̂,1 — , t2 0 =
2 '  2

The tableau t2,i has its corresponding Young’s subgroup stabilizing the columns

is C2,1 — {1; (1,2)}. Consequently, the signed column sum k2<1 = 1 -  (1.2) and 
finally we have the polytabloid

1 3  2 3
e2,l = ---------------------

_2_ 1

A similar procedure on the tableau t2>2 yields the polytabloid

3 1 2 1
e2,2 —-------—-----------

2 3

Note that e2ll and e2.2 are linearly independent in the space The Specht

module S '- 11 is thus the span of the two polvtabloids. Note also that we could 

have started with any tabloid tt and still end up with the same Specht Module 
5 —Ll, lemma 3.3.1 above proves this case.

Finally, for A(i) = (1,1,1) = (1J) we have six distinct tabloids. Just as above, we 
will consider only one tabloid say

1

W =  2

3

Tnere is only one tableau t in this tabloid and the corresponding Young’s subgroup

stabilizing the columns of t is the symmetric group 5:}. This yields the signed
column sum

^  ~ 1 ~ ^  + (1»3,2) -  (1.2) -  (1.3) -  (2.3) and consequently we get a single
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polytabloid

J _  _ 2 _  3 2 3 1

et =  _ 2 _  + 3  +  1 - 1 - 2 - 3

3 1 2  3 1 2

Sa ’ is the span of et, it is one dimensional and thus is irreducible. We have 

therefore succeeded in constructing all the irreducible modules of S3. We note 
that if A = ( l n) and t a A-tableau then

(sSn
<3 esn

Consequently et is the signed sum of all n! permutations regarded as tabloids. 
Now for any permutation tt lemma 3.3.1 yields

Substituting t = tccj

e t̂ -  7tet = (sgn 7)7rcr{t} 
<7t Sn

(5P> * = (sgn T -‘) £  (sgn r)r{t} = (sgn «-)et
reSn rSSn

because sgn tt = sgn tt- 1. Thus every polytabloid is a scalar multiple of et so

5 ^  = C{et}

with the action ~et = (sgn 7r;et . This is the sign representation.

Ail along it has been assumed that the entire resultant set ot Specht modules SA 

in the process constitute a full set of all irreducible modules of Sn and are indeed 

meducible. This is not just an assumption, the submodule theorem proves the 

Specht modules are indeed irreducible and further that all the Specht modules 

constructed as in the above process constitute a full set of irreducible Sn modules.
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3.4 I lie S u b m o d u le  T heorem

Given a subset H C Sn and vectors {t>, {s} € define the group algebra 
H and riie Sn invariant inner product (•. •) by

H — ^  sgn(7r)7r 
*€//

({0: M ) = <5{e},{3}

Lemma 3.4.1 (Sign Lemma) Let H C Sn be a subgroup then 

L If 7r G H then

nH = H ~ X = sgn(n) H ~

2. For any u,v£ M x

(H 'u, v) = (u. H~v)

3. Ii the transposition (6,c) € H then we can factor

sum

H =k( l - (b , c) ) ,  keC[Sn]

4. If t is a tableau with 6. c in the same row of t and (6, c) € H then

#-{*} = 0

The sign lemma has been proved in [6](Lemma 2.4.1) and help us to prove these
corollaries

Corollary 3.4.1 Let t. and s be tableaux of shape A and /r respectively with 

A,/4 u n. If «t{s} yL 0 then A > n and if A = M then *t{s} = ~{e£}

Corollary 3.4.2 If u € M :i and t is a tableau of shape n then is a scalar 
multiple of et.

We are now in a position to state and prove the main result in this section
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Theorem 3.4.1 (Submodule Theorem) Let U be a submodule of A/*1, then

U D S» or U C S^-

In particular if M tl is a module over €. then the S'x are irreducible. The layman 

statement of this theorem is that the Specht Module S'1 does not contain any other 
submodule of the module A/>

Proof. Consider u € l 7 and a /x-tableau t. By corollary 3.1.2 above k,u = fe t for 
some scalar / .  Two cases arise:

Case 1: Suppose that there exists a ^ and a t with /  # 0. Then since u 6 U we 

have fe t = Ktu € U (Since /  is non-zero) and S‘l C Cr(Since is cyclic)

Case 2: Suppose that we always have *tu = 0. Consider any u € U and any 

arbitrary /x-tableau t, we can apply part 2 of the sign lemma to obtain

\u, et) = (u.«t{t})

=  («tu,{t}>

HO. {*})
= 0

Since et span we have p € SM~. Finally it has been proved in [6](Theorem 

2.4.6j that the S A for A h n form a complete list of irreducible S,i-inodules over 
the complex held.

In chapter _ we defined representations while restricting ourselves to the field 

ot complex numbers. This should not imply that the only representations studied 

are over the field of complex complex numbers. In fact a lot interesting studies in 

lepresentation theory arise when we consider other fields different from the field 

of complex numbers such as field of finite prime characteristic p. The theorem we 

just proved - the irreducibilitv ot the Specht modules, entirely depends on the field 

over which the module M x is defined. The reclucihilir.y of Specht modules over the 

fields ot finite characteristic is discussed in the next chapter.
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Chapter

Modular Representation of the 

Symmetric Group

4.1 H is to r ica l  P e rspec t ive

In representation theory of finite groups, it is useful to know which ordinary ir­

reducible representations remain irreducible modulo p. For the symmetric groups 

Sn this amounts to determining which Specht modules are irreducible over a field 

oi characteristic p. The definition of SA is independent of the field F we are work­

ing over, thus we write Sj when we wish to draw attention to the ground field F 

or to draw attention about the field and further stress the fact that F is ol 

characteristic p. Much of the ground work in this area has been dealt with in [7

Definition 4.1.1 (p-regular, p-singular. p-restricted) A partition A = (Ai A_».
is p-regular if it does not have p equal parts otherwise it is p-singular. It is p- 

restricted if there is no i with A, — M+i ^ p

Let SA be a submodule of A/a corresponding to a partition A of n. In '9j. the 

author proved the following

1. For any submodule U of A/A, either U 3  5A or U C 5 A~ ; See theorem .3.4.1

■ ••A fc)
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above)

2. SA n S x± C SA <=> A is p-regular. In this case, (by 1 above) S x n S x±  is the 
unique maximal submodule of Sx

3. Write D> = SA/5 A n  xhen s  lf and on,y if A = ^  and ^

p-regular)

4. Ii A is p-regular, just one composition factor of \ I X is isomorphic to Dx. 

The other composition factors have the form D^ with p > A

5. If A is p-singular ail composition factors of \ I X have the form Z>* with p > A

Given a partition A r  n and a field F, we construct a Specht module S x and if char 

F = 0. then S x is irreducible. As A runs over all partitions of a. the submodules 

SA constitute all the irreducible representations of Sn. Otherwise, if char F = p. 

then then' is a canonically defined submodule l/'A C Sx. and l 'A is proper it and 

only if A is p-regular. Let Dx = Sx/ V x, then each Dx is simple and as A runs 

over all of the p-regular partitions of n then Dx runs over all of the irreducible 
FSn-inodules

4.1.1 C a te r  s C on jectu re  for Specht M odules

From Section 4.1 we saw that the Dx s constitute all the irreducible p-modular 

representations of Sn. We are however concerned with the question ’‘Which or­

dinary irreducible representations of the symmetric group Sv remain irreducible 

modulo a prime p? . R. W. Carter conjectured an answer to this question

Definition 4.1.2 (Hook and Hook Length) If v = (i.j) is a node in the di­
agram of A then it has a hook

Hv = Hij = {(i j ') : j  > j}  u {(i',;j i > z} 

with the corresponding hook length

= \Hij\
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Definition 4.1.3 (Hook Graph) The hook graph of a diagram (Aj is a tableau 

corresponding to A obtained when the content of every node (i.j) is its hook length

Hhj )

Definition 4.1.4 (p-power diagram, Definition 3.3 [10] ) The p-power di­

agram [Aj; is obtained from the hook graph for [A] by replacing each entry h(i.j) 
by max{apa divides

Conjecture 4.1.1 (Carter) If A is p-regular then SA is irreducible if and only 

if no column of the p-power diagram contains two different numbers

James proved in [11]. that the condition in Carter’s conjecture is necessarv for 

SA to be irreducible and went ahead to prove that the conjecture is correct when
p = 2.

4.1.2 Jam es-M a th as  C on jectu re  on the R educib ilitv  of 

S pech t M odules

In the article 12], James and Mathas classified the irreducible Specht modules for 

the case p = 2 and thereby verified the conjecture by Cater (Conjecture 4.1.1) 

in this case. In his book [13], Mathas also conjectured a necessary and sufficient 

condiricn i hat must be satisfied by the diagram of a partition A, in order for the 

corresponding Specht module to be reducible on the case where p is an odd prime.

Conjecture 4.1.2 (Conjecture 5.47 [13]) If p is an odd prime, then the Specht 

module 5 ^  is reducible if and only if the Young diagram Aj contains nodes

(i. j).(i .ki  and (r,j) such that

> o

and

M h(rJ))  /  yp(MM)) r  Vp(h{i,k))
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Where vp is the p-adic valuation function and h{i.j) the hook length of the node

(m )-

Lyle proved a major part of the necessary part of conjecture 4.1.2 in the article 

[14] and, thereafter. Fayers [15] build on the work of Lyle to complete the proof 

of the necessary part, and almost immediately, completed the proof of conjecture

4.1.2 by proving the sufficiency of the condition in [16].

4.1.3 M ore on the  H istory  of M odular R ep resen ta tions

The study of modular representation theory was in some sense started by H. E. 

Dickson in 1902. Between 1935 and 1977 Brauer almost single-handedly con­

structed the body of what is now regarded as the classical modular representation 

theory. Brauer's main motivation in studying modular representations was to ob­

tain numbei theoretic restrictions on the possible behavior or ordinary character 

tables, and thereby find restrictions upon the structure of finite groups.

It was really I A. Green Who first systematically developed the study of modular 

representation theory from the point of view of examining the set of indecom­

posable modules. Green's results were an indispensable tool in the treatment by 

Thompson, and then more fully by Dade, of blocks with cyclic defect groups. Since 

then, manv other people have become interested in the study of the modules for 
their own sake
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Chapter

Summary

5.1 I r re d u c ib le  FSn-M odu les

1 he definition ot S x is independent of the field F we are working over - thus for any 

field F we may construct a Specht module S x . Depending on the characteristic of 

the field F and also the nature of the partition A, SA may be irreducible

As summarized in [17], when char F = 0. the Specht module S x is irreducible, and 

as A ranges over all partitions of n. the modules S v range over all non-isomorphic 

irreducible FSn — modules. However, if char F = p > 0. then Sj  may be reducible, 

but when A is p—regular, then Sf  has a uniquely defined quotient module, Dx, 

which is irreducible. Consequently as A ranges over all p—regular partitions of n. 

the DA range over all distinct irreducible FSn-modules We note that when F has 

characteristic p > 0, we may always choose a basis so that Sj  may be viewed as 

being over F;,

In other words, given any field F of any characteristic then it is possible for us 

to construct the irreducible F5n-modules. Therefore if our sole objective is to ob­

tain the irreducible F5n-modules, then we will have achieved our goal. However.
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if we are further interested in knowing which irreducible FSn-modules when char 

iF = 0 remains irreducible when we shift our base field to a field of char F = p > 0, 

then these FSn -modules arc classified as follows:

5.2 p - I r r e d u c i b l e  S pech t  M odules

The case p = 2 is different from the general case: the classification of 2-irreducible 

Specht modules was dealt with by James and Mathas in [12]. Their main result 
was as follows:

Theorem 5.2.1 Let A = (Ai, A2.......Â.) be a partition. Then the Specht module

S x is irreducible in characteristic 2 if and only if

1. Ai  —  A7;+1 =  -1 mod 2^A,+l-A,+2l for all i ^ 1; or,

2- A- -  A'+1 = -1  mod 2^A,+1-Ai+^ for all i ^ 1 where A' = (A't , a'2. .. , \'t) is 

a partition conjugate to A: or,

3. A = (2.2)

When p is an odd prime, then James and Mathas conjectured(conjecture 4 1.2) 

necessary and sufficient conditions that must be satisfied by a partition A such 

that the corresponding Specht Module SA is irreducible. The conjecture has been 

proved and this enables us to cla&sify all p-irreducible Specht modules irrespective 

of the characteristic of the field F over which the Specht module is defined.
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